首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D-manno-3-Heptulose (5) was synthesized by dimethyl sulfoxide-phosphorus pentaoxide oxidation of 1,2:3,4:6,7-tri-O-isopropylidene-D-glycero-D-manno-heptitol (3, prepared from volemitol), followed by hydrolysis. D-ido-3-Heptulose (8) was synthesized similarly by oxidation of 1,2:4,5:6,7-tri-O-isopropylidene-D-glycero-l-galacto-heptitol (7, prepared from D-glycero-l-galacto-heptitol, 6). Another tri-O-isopropylidene derivative (11), having a free primary hydroxyl group, was produced in larger amount than 7, and 11 yielded D-glycero-l-galacto-heptose (14). Compound 8 was also synthesized by way of 1,2:4,5.6,7-tri-O-isopropylidene-D-glycero-l-gulo-heptitol (15). The production of 15 from D-glycero-l-gulo-heptitol (13) was accompanied by a larger amount of 2,3:4,5:6,7-tri-O-isopropylidene-D-glycero-D-ido-heptitol (17) which, upon oxidation followed by hydrolysis, yielded D-glycero-D-ido-heptose (18). One of the two tri-O-isopropylidene derivatives obtained by acetonation of perseitol, 2,3:4,5:6,7-tri-O-isopropylidene-D-glycero-D-galacto-heptitol (19), yielded D-glycero-D-galacto-heptose (20).  相似文献   

2.
Treatment of 2,4-O-benzylidene-1,6-di-O-tosyl-D-glucitol (1) with potassium thiolbenzoate afforded the 6-S-benzoyl compound 2 and its 5-benzoate 4, the structure of which was proved chemically. When 1 was acetylated and then treated with the thiolate, the acetylated 6-S-benzoyl compound 19 was obtained in good yield in addition to some 1,6-di-S-benzoyl derivative 21. Treatment of 19 with acetic anhydride-acetic acid-sulfuric acid afforded 2,3,4,5-tetra-O-acetyl-6-S-acetyl-1-O-tosyl-D-glucitol (26), which was converted by sodium methoxide into a mixture of 1,5-anhydro-6-thio-D-glucitol (28) and 1,6-thioanhydro-D-glucitol (29). These two compounds were isolated as their acetates (30 and 31) by column chromatography, or by converting 28 into its S-trityl derivative (32).  相似文献   

3.
Benzyl 2-acetamido-2-deoxy-3-O-methyl-α-d-glucopyranoside (3) was obtained by deacetalation of its 4,6-O-benzylidene derivative (2). Compound 2 was prepared by methylation of benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside with methyl iodide-silver oxide in N,N-dimethylformamide. Diol 3 was selectively benzoylated and p-toluenesulfonylated, to give the 6-benzoic and 6-p-toluenesulfonic esters (4 and 5, respectively). Displacement of the sulfonyl group of 5 with sodium benzoxide in benzyl alcohol afforded the 6-O-benzyl derivative (6). Glycosylation of 4 with 2,3,4,6-tetra-O-acetyl-α-d-galactopyranosyl bromide (7) in dichloromethane, in the presence of 1,1,3,3-tetramethylurea, furnished the disaccharide derivative 8. Similar glycosylation of compound 6 with bromide 7 gave the disaccharide derivative 10. O-Deacetylation of 8 and 10 afforded disaccharides 9 and 11. The structure of compound 9 was established by 13C-n.m.r. spectroscopy. Hydrogenolysis of the benzyl groups of 11 furnished the disaccharide 2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-3-O-methyl-d-glucopyranose (N-acetyl-3-O-methyllactosamine).  相似文献   

4.
Methyl 4,6-O-benzylidene-2-deoxy-α-D-ribo-hexopyranoside (1) is converted into methyl 3,4-di-O-benzoyl-6-bromo-2,6-dideoxy-α-D-ribo-hexopyranoside (3) via the 3-O-benzoyl derivative (2) of 1 by subsequent treatment with N-bromosuccinimide. Compound 3 is the key intermediate in high-yielding, preparative syntheses of the title dideoxy sugars, which are constituents of many antibiotics. Dehydrohalogenation of 3 affords the 5,6-unsaturated glycoside 7. which undergoes stereospecific reduction by hydrogen with net inversion at C-5 to give methyl 3,4-di-O-benzoyl-2,6-dideoxy-β-L-lyxo-hexopyranoside (8), whereas reductive dehalogenation of 3 provides the corresponding D-ribo derivative 4. The unprotected glycosides 9 (L-lyxo) and 5 (D-ribo) are readily obtained by catalytic transesterification, and mild, acid hydrolysis gives the crystalline title sugars 10 (L-lyxo) and 6 (D-ribo) in 45 and 57% overall yield from 1 without the necessity of chromatographic purification at any of the steps.  相似文献   

5.
Acetylation of benzyl 6-deoxy-3,4O-isopropylidene-β-L-galactopyranoside gave benzyl 2-O-acetyl-6-deoxy-3,4-O-isopropylidene-β-L-galactopyranoside (1). Removal of the isopropylidene group afforded benzyl 2-O-acetyl-6-deoxy-β-L-galactopyranoside (2), which was converted into benzyl 2-O-acetyl-6-deoxy-3,4-di-O-(methyl-sulfonyl)-β-L-galactopyranoside (3). Benzyl 2,3-anhydro-6-deoxy-4-O-(methyl-sulfonyl)-β-L-gulopyranoside (4) was obtained from 3 by treatment with alkali. Reaction of 4 with sodium azide in N,N-dimethylformamide gave a mixture of two isomeric benzyl 2,4-diazido-2,4,6-trideoxy hexoses, the syrupy diazido derivative 5 and the crystalline benzyl 2,4-diazido-2,4,6-trideoxy-β-L-idopyranoside (6). Acetylation of 6 afforded a compound whose n.m.r. spectrum was completely first order and in agreement with the structure of benzyl 3-O-acetyl-2,4-diazido-2,4,6-trideoxy-β-L-idopyranoside (7). Lithium aluminium hydride reduction of 5, followed by acetylation, afforded a crystalline product (8), shown by n.m.r. spectroscopy to be benzyl 2,4-diacetamido-3-O-acetyl-2,4,6-trideoxy-β-L-altropyranoside. Similar treatment of the diazido derivative 6 afforded benzyl 2,4-diacetamido-3-O-acetyl-2,4,6-trideoxy-β-L-idopyranoside (9). Compounds 8 and 9 could also be obtained from 4 by treatment of the crude diazido mixture with lithium aluminium hydride, with subsequent N-acetylation. The syrupy benzyl 2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranoside (10) and the crystalline benzyl 2,4-diacetamido-2,4,6-trideoxy-β-L-idopyranoside (11) thus obtained were then O-acetylated to give 8 and 9 respectively. Benzyl 2,4-diacetamido-2,4,6-trideoxy-β-L-talopyranoside (15) was obtained from 11 by treatment with methanesulfonyl chloride and subsequent solvolysis. Compound 15 was O-acetylated to yield benzyl 2,4-diacetamido-3-O-acetyl-2,4,6-trideoxy-β-L-talopyranoside (16). the n.m.r. spectrum of which was in full agreement with the assigned structure. The mass spectra of compounds 8–11, 15, and 16 were also in agreement with their proposed structures. Removal of the benzyl groups from 10, 11 and 15 afforded the corresponding 2,4-diacetamido-2,4,6-trideoxyhexoses 12, 13, and 17, having the L-altro, L-ido, and L-talo configurations, respectively.  相似文献   

6.
Four new flavonoid glycosides, curcucomosides A–D (14), three known flavonoid glycosides, 57, and four known diarylheptanoids, 811, were isolated from the ethanol extract of the aerial parts of Curcuma comosa. The structures of the new compounds were established as rhamnazin 3-O-α-l-arabinopyranoside (1), rhamnocitrin 3-O-α-l-arabinopyranoside (2), rhamnazin 3-O-α-l-rhamnopyranosyl-(1→2)-O-α-l-arabinopyranoside (3), and rhamnocitrin 3-O-α-l-rhamnopyranosyl-(1→2)-O-α-l-arabinopyranoside (4) by spectroscopic analysis and chemical reactions whereas those of the known compounds were identified by spectral comparison with those of the reported values.  相似文献   

7.
A series of 2-O-benzoyl-4,6-di-O-benzyl-α-d-galactopyranosyl halides carrying either a second benzoyl group (8a, 12a) or a selectively removable, temporary protecting group (8b–d, 12b) at position 3 was synthesized from allyl α-d-galactopyranoside (1). The key intermediate was 1-propenyl 4,6-di-O-benzyl-α-d-galactopyranoside (5), prepared from 1 via the 4,6-O-benzylidene-2,3-di-O-crotyl derivative 2. The successive incorporation of the 2-O-benzoyl group, by selective acylation at low temperature, and of various 3-substituents gave fully substituted 1-propenyl α-d-galactopyranosides 6a–d. These were converted into the glycosyl halides by published methods. An improved preparation of allyl 2,6-di-O-benzyl-(15) and 2,4,6-tri-O-benzyl-(19) α-d-galactopyranoside was achieved. The direct acetonation of 1 to the 3,4-O-isopropylidene derivative 13, followed by benzylation and mild acid hydrolysis, gave 15 in 56% yield. The transient protection of O-3 in 15 was accomplished by the alkylation of the dibutylstannylene derivative 16 with (2-methoxyethoxy)methyl chloride. Successive benzylation and mild acid hydrolysis of the product 17 efficiently furnished 19.  相似文献   

8.
Oxidative dimerization of 7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranoside (1) gave a high yield of the diyne 2, readily reduced by lithium aluminum hydride to the trans,trans-diene (4). The structures of 2 and 4 were established spectroscopically and by degradation of 4 to d-glycero-d-galacto-heptitol (perscitol). A mixture of the alkyne 1 and its 7-epimer 10 was readily oxidized by dimethyl sulfoxide-acetic anhydride to the 6-ketone 11, and the 8-alkene analog was similarly prepared from the alkenes derived from 1 and 10. Likewise, oxidation of 6,7-dideoxy-1,2-O-isopropylidene-α-d-gluco(and β-L-ido)-hept-6-enopyranose gave the corresponding 5-ketone. The acetylenic ketone 11 gave a crystalline oxime and (2,4-dinitrophenyl)hydrazone, the latter being accompanied by the product of attack of the reagent at the acetylene terminus (C-8). Previous work had shown that formyl-methylenetriphenylphosphorane did not convert 1,2:3,4-di-O-isopropylidene-6-aldehydo-α-d-galacto-hexodialdo-1,5-pyranose into the corresponding C8 unsaturated aldehyde, although the latter was obtainable via1 and 10 by an ethynylation-hydroboration sequence. The Wittig route with formylmethylenetriphenylphosphorane is shown to be satisfactory for obtaining C7 unsaturated aldehydes from 3-O-benzyl-1,2-O-isopropylidene-5-aldehydo-α-d-xylo-pentodialdo-1,4-furanose (22) and the 3-epimer of 22, respectively. These reactions provide convenient access to higher-carbon sugars and chiral dienes for synthesis of optically pure products of cyclo-addition reactions.  相似文献   

9.
The products (1) from the periodate oxidation of 1,2-O-isopropylidene-α-D-glucofuranose were converted by ethynylmagnesium bromide into a separable, 14:11 mixture of 6,7-dideoxy-1.2-O-isopropylidene-β-L-ido-hept-6-ynofuranose (2) and its α-D-gluco analog 3. These crystalline products were further characterized as their respective 3,5-diacetates (5 and 7) and 3,5-dibenzoates (4 and 6). Ozonolysis of 2 and 3 led to 1,2-O-isopropylidene-β-L-idofuranurono-6,3-lactone (8) and its α-D-gluco analog 9, respectively; similar ozonolysis of the dibenzoates 4 and 6, followed by treatment with diazomethane, gave methyl 3,5-di-O-benzoyl-1,2-O-isopropylidene-α-L-idofuranuronate (10) and its α-D-gluco analog 11, respectively. Diborane reduction of the ozonolysis products from 4 gave 1,2-O-isopropylidene-β-L-idofuranose (13) as its 3,5-dibenzoate (12), and a similar sequence was performed with 6. The propargylic alcohols 2 and 3 were reduced by lithium aluminum hydride, in high yield, to the allylic alcohol analogs 15 and 16, further characterized as their 3,5-dibenzoates 17 and 18; compounds 15 and 16 were also obtainable by vinylation of compounds 1. The two series of derivatives in this work, epimeric at C-5, were examined comparatively by polarimetry and p.m.r. spectroscopy.  相似文献   

10.
2-Acetamido-2-deoxy-5-thio-d-glucopyranose (12) has been synthesized from methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-d-glucofuranoside (1). Benzoylation of 1, followed by O-deisopropylidenation, gave methyl 2-acetamido-3-O-benzoyl-2-deoxy-β-d-glucofuranoside, which was converted, via selective benzoylation and mesylation, into methyl 2-acetamido-3,6-di-O-benzoyl-2-deoxy-5-O-mesyl-β-d-glucofuranoside (5). Treatment of 6, formed by the action of sodium methoxide in chloroform on 5, with thiourea gave methyl 2-acetamido-2,5,6-trideoxy-5,6-epithio-β-d-glucofuranoside (7), which was converted into the 5-thio compound 9 by cleavage of the epithio ring in 7 with potassium acetate. Alkaline treatment of 10, derived from 9 by hydrolysis, afforded the title compound. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

11.
Fourteen compounds were isolated from the 95% ethanol reflux extract of Asarum sieboldii Miq. var. Seoulense Nakai, including five phenanthrene derivatives (15), three isobutyl amides (68), three phenylpropanoids (911) and three lignins (1214). The structures of these compounds were identified by spectroscopic methods and by comparison with the reported spectroscopic data. Among them, compounds 6 and 11 were firstly reported from the family Aristolochiaceae, and compounds 3 and 4 were reported for the first time from the genus Asarum. Additionally, compounds 1, 2 and 8 were isolated from A. sieboldii Miq. var. Seoulense Nakai for the first time. These compounds have shown chemical relationships between A. sieboldii Miq. var. Seoulense Nakai and other species of Asarum as well as those found in the genus Aristolochia in the family Aristolochiaceae.  相似文献   

12.
Lithium triethylborohydride (LTBH) reacts readily with p-toluenesulfonates of methyl 4,6-O-benzylidene-α-d-glucopyranoside (4) to give deoxyglycosides in > 90% yield. Thus, the 2,3-ditosylate (1) and the 3-monotosylate (2) thereof afford methyl 4,6-O-benzylidene-2-deoxy-α-d-ribo-hexopyranoside (7) in highly regio- and stereo-selective reactions that proceed via methyl 2,3-anhydro-4,6-O-benzylidene-α-d-allopyranoside (6), and the 2-monotosylate (8) of 4 gives the 3-deoxy-α-d-arabino isomer (12) of 7via the corresponding 2,3-anhydro-α-d-mannopyranoside 11. In the series of the corresponding β anomers, the 3-monotosylate 14 and the 2-monotosylate 16 are similarly desulfonyloxylated, with equal ease, but furnish mixtures of regioisomeric deoxyglycosides, namely, the 3- and 2-deoxy-β-d-ribo derivatives 20 and 21, and 2- and 3-deoxy-β-d-arabino derivatives 22 and 23, respectively. It could be shown that this difference is due to the failure of the intermediary, β-glycosidic epoxides 18 and 19 (the anomers of 6 and 11) to obey the Fürst-Plattner rule in their reductive ring-opening with LTBH. The β-glycosidic 2,3-ditosylate 15 reacts less readily, and gives 20–23, with 20 preponderating. The 2-O-methyl-3-O-tosyl-β-d-glucopyranoside 24 is partly desulfonylated and partly desulfonyloxylated, whereas its 3-O-methyl-2-O-tosyl isomer 27 undergoes desulfonylation exclusively. The reductions of 1, 2, and 8 by LTBH are compared with those previously effected by lithium aluminum hydride, which are slower, involve considerable desulfonylation, and afford lower yields of deoxyglycosides, with the main products differing from those obtained by the action of LTBH. Mechanistic differences associated with the two reductants are discussed.  相似文献   

13.
N-Alquil nitrones 1c and 36 were prepared from aromatic aldehydes and N-tert-butylhydroxylamine or N-methylhydroxylamine in good yields and soft conditions. Their protective effect against microvascular damages caused by ischemia/reperfusion in ‘hamster cheek pouch’ assay was investigated and compare with that observed for nitrones 1a,b and 2, previously studied. Nitrones 3b, 4b and 4c were the most active ones in inhibiting macromolecular permeability increase induced by ischemia/reperfusion when administered by gavage and intravenous, while 3a and 4a were active only after intravenous administration. N-tert-butylhydroxylamine and Nt-methylhydroxylamine, products of the hydrolysis of these nitrones, were weakly active when administered by gavage or intravenous. Nitrone (4a) was the most potent in inhibiting macromolecular permeability increase induced by histamine. In this case, N-tert-butylhydroxylamine was as active as 4a. The lypophylicity in nitrones, specially in N-methyl nitrones, play an important role on the protective action when compounds were administered by gavage.  相似文献   

14.
Three new nor-oleanane triterpenoids, paeonenoides I-K (1-3), together with 13 known triterpenoids including nor-oleanane, oleanane, ursane, and cycloartane types, were isolated from the leaves of Paeonia suffruticosa and P. delavayi. The structures of the new compounds were elucidated with the aid of HRESIMS, 1D and 2D NMR, IR, and [α]D spectroscopic methods. Nine compounds (5-6, 8-11, 13-14 and 16) showed inhibition against PTP1B with IC50 values ranging from 36.5 to 192.6 μM, six compounds (5-6, 8-10 and 14) exhibited inhibitory activity against GPa with IC50 values ranging from 39.8 to 108.0 μM, and five compounds (1, 6, 10, 15 and 16) could significantly stimulate GLP-1 secretion by 100.2–313.4% (20 μM). Docking study demonstrated that compounds 5 and 6 strongly bonded with Gpa and PTP1B by salt bridges, hydrogen bonds and hydrophobic interactions, verifying the importance of carboxyl and hydroxyl groups. Especially, compounds 5 and 14 could simultaneously inhibit PTP1B and GPa with IC50 values of 57.8, 47.9 μM and 39.8, 45.2 μM, and compounds 6 and 10 could stimulate GLP-1 secretion by 293.6% and 313.4% at 20 μM.  相似文献   

15.
6-Deoxy-3-O-methyl-6-nitro-d-allose (5) and -l-talose (6) were synthesized from 1,2-O-isopropylidene-3O-methyl-α-d-allofuranose (1) by the nitromethane method via their furanoid, 1,2-O-isopropylidene derivatives (2 and 3). The barium hydroxide-catalyzed cyclization of the free nitrohexoses (5 and 6) was investigated. Under conditions favoring kinetic control (pH ~8, 0°), 5 gave mainly 1d-5-deoxy-2-O-methyl-5-nitro-allo-inositol (7), with the 1l-epi-1 (8) and epi-6 (9) stereoisomers as minor products. Compound 6 afforded a high yield of the myo-5-isomer (11); the 1l-allo-5 (13) and 1d-epi-1 (14) isomers were formed in small proportions but not isolated. The thermodynamically controlled, mutual interconversion of the stereoisomeric products was studied, as was the formation of nitronate salts and the regeneration of free nitroinositols. Upon immediate acidification, the nitronate obtained from 11 gave 11 and the neo-2 epimer (12) in a ratio of 2:3. The nitronate produced by 7 underwent rapid β-epimerization. The five isolated deoxynitroinositol monomethyl ethers were further characterized as tetra-acetates (7a, 9a, 11a, and 12a) and isopropylidene derivatives (7b, 8b, and 9b).  相似文献   

16.
2,6-Anhydro-d-glycero-l-manno-heptose (1) is converted by the cyanohydrin reaction into crystalline d-threo-l-talo-octononitrile (3), which shows mutarotation in water. The equilibrium mixture, as measured by 13C-n.m.r. spectroscopy, contains about equal amounts of 3 and its epimer, d-threo-l-galacto-octononitrile. On evaporation of the aqueous mixture, pure, crystalline 3 is again obtained. Labelling experiments in 3H2O proved that epimerization proceeds through reversible deprotonation. Stabilization of 3 in the solid state is explained by intramolecular hydrogen-bonding. In pyridine, rapid isomerization of 3 occurs. When acetylation of 3 is conducted in this solvent, the yield of 2,4,5,6,8-penta-O-acetyl-3,7-anhydro-d-threo-l-talo-octono-nitrile (4) depends strongly on the conditions of acetylation. Acetylation after equilibration produces an equimolar mixture of 4 and its isomer 2,4,5,6,8-penta-O-acetyl-3,7-anhydro-d-threo-l-galacto-octononitrile. Structural assignment for both was achieved by 360-Mhz, 1H- and 13C-n.m.r. spectroscopy. Reduction of 4 in pyridine-acetic acid-water in the presence of N,N-diphenylethylenediamine yields a 1:2.36 mixture of 2,4,5,6,8-penta-O-acetyl-3,7-anhydro-d-threo-l-talo-octose N,N-diphenylimidazolidine (6) and 2,4,5,6,8-penta-O-acetyl-3,7-anhydro-d-threo-l-galacto-octose N,N-diphenylimidazolidine (8). Compounds 6 and 8 could be separated and obtained as crystalline solids, and their structure proved by 1H- and 13C-n.m.r. spectroscopy. Hydrolysis of 6 and 8 gave 2,4,5,6,8-penta-O-acetyl-3,7-anhydro-d-threo-l-galacto-octose and -d-threo-l-talo-octose.  相似文献   

17.
One new bithiophenes, 5-(but-3-yne-1,2-diol)-5′-hydroxy-methyl-2,2′-bithiophene (2), two new polyacetylenic glucosides, 3-O-β-d-glucopyranosyloxy-1-hydroxy-4E,6E-tetradecene-8,10,12-triyne (8), (5E)-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-β-d-glucopyranoside (9), six new terpenoid glycosides, rel-(1S,2S,3S,4R,6R)-1,6-epoxy-menthane-2,3-diol-3-O-β-d-glucopyranoside (10), rel-(1S,2S,3S,4R,6R)-3-O-(6-O-caffeoyl-β-d-glucopyranosyl)-1,6-epoxy menthane-2,3-diol (11), (2E,6E)-2,6,10-trimethyl-2,6,11-dodecatriene-1,10-diol-1-O-β-d-glucopyranoside (12), 3β,16β,29-trihydroxy oleanane-12-ene-3-O-β-d-glucopyranoside (13), 3,28-di-O-β-d-glucopyranosyl-3β,16β-dihydroxy oleanane-12-ene-28-oleanlic acid (14), 3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl oleanlic-18-ene acid-28-O-β-d-glucopyranoside (15), along with fifteen known compounds (1, 37, and 1624), were isolated from the aerial parts of Eclipta prostrata. Their structures were established by analysis of the spectroscopic data. The isolated compounds 19 were tested for activities against dipeptidyl peptidase IV (DPP-IV), compound 7 showed significant antihyperglycemic activities by inhibitory effects on DPP-IV in human plasma in vitro, with IC50 value of 0.51 μM. Compounds 1024 were tested in vitro against NF-κB-luc 293 cell line induced by LPS. Compounds 12, 15, 16, 19, 21, and 23 exhibited moderate anti-inflammatory activities.  相似文献   

18.
The reaction of methyl 2,3:4,6-di-O-benzylidene-α-D-mannopyranoside (5) with N-bromosuccinimide gave mainly three, isomeric dibromo dibenzoates, identified as the 3,6-dibromo-altro (1), 3,6-dibromo-manno (2), and 4,6-dibromo-ido (3) derivatives by subsequent chemical transformation and by extended n.m.r.-spectral studies. The reaction of methyl 2,3:4,6-O-benzylidene-α-D-allopyranoside (22) with N-bromosuccinimide gave two isomeric dibromo dibenzoates, the 2,6-dibromo-altro (23) and 3,6-dibromo-gluco (24) products, and their structures were similarly assigned. A similar reaction-sequence with methyl 2,3:4,6-di-O-benzylidene-α-D-glucopyranoside (32), however, yielded two isomeric monobenzoates 33 and 34, which could be identified straightforwardly. The results are consistent with the intermediate formation of benzoxonium ions that undergo favored axial attack. Thus the observed products and their ratios in reactions of 5 and of 22 with N-bromo-succinimide are explicable. Compound 32, however, does not appear to react by way of an intermediate, five-membered 2,3-trans benzoxonium ion.  相似文献   

19.
Selective tritylation of methyl β-sophoroside (1) and subsequent acetylation gave the 3,4,2′,3′,4′-penta-O-acetyl-6,6′-di-O-trityl derivative, which was O-detritylated, and the product p-toluenesulfonylated, to give methyl 3,4,2′,3′,4′-penta-O-acetyl-6,6′-di-O-p-tolylsulfonyl-β-sophoroside (4) in 63% net yield. Compound 4 was also obtained in 69% yield by p-toluenesulfonylation of 1, followed by acetylation. Several, 6,6′-disubstituted derivatives of 1 were synthesized by displacement reactions of 4 with various nucleophiles. Treatment of 4 with sodium methoxide afforded methyl 3,6:3′,6′-dianhydro-β-sophoroside. Several 6- and 6′-monosubstituted derivatives of 1 were prepared, starting from the 4,6-O-benzylidene derivative of 1.  相似文献   

20.
Addition of 5-bromo-2′,3′-O-isopropylidene-5′-O-trityluridine (2) in pyridine to an excess of 2-lithio-1,3-dithiane (3) in oxolane at 78° gave (6R)-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene -5′-O-trityluridine (4), (5S,6S)-5-bromo-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene-5′-O-trityluridine (5), and its (5R) isomer 6 in yields of 37, 35, and 10%, respectively. The structure of 4 was proved by Raney nickel desulphurization to (6S)-5,6-dihydro-2′,3′-O-isopropylidene-6-methyl-5′-O-trityluridine (7) and by acid hydrolysis to give D-ribose and (6R)-5,6-dihydro-6-(1,3-dithian-2-yl)uracil (9). Treatment of 4 with methyl iodide in aqueous acetone gave a 30&%; yield of (R,S)-5,6-dihydro-6-formyl-2′,3′-O-isopropylidene-5′-O-trityl-uridine (10), characterized as its semicarbazone 11. Both 5 and 6 gave 4 upon brief treatment with Raney nickel. Both 5 and 6 also gave 6-formyl-2′,3′-O-isopropylidene-5′- O-trityluridine (12) in ~41%; yield when treated with methyl iodide in aqueous acetone containin- 10%; dimethyl sulfoxide. A by-product, identified as the N-methyl derivative (13) of 12 was also formed in yields which varied with the amount of dimethyl sulfoxide used. Reduction of 12 with sodium borohydride, followed by deprotection, afforded 6-(hydroxymethyl)uridine (17), characterized by hydrolysis to the known 6-(hydroxymethyl)uracil (18). Knoevenagel condensation of a mixture of the aldehydes 12 and 13 with ethyl cyanoacetate yielded 38%; of E- (or Z-)6-[(2-cyano-2-ethoxycarbonyl)ethylidene]-2′,3′-O-isopropylidene-5′-O-trityluridine (19) and 10%; of its N-methyl derivative 20. Hydrogenation of 19 over platinum oxide in acetic anhydride followed by deprotection gave R (or S)-6-(3-amino-2-carboxypropyl)uridine (23).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号