首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Heavy metals in some Chinese herbal plants   总被引:1,自引:0,他引:1  
The concentrations of nine heavy metals, cadmium, cobalt, copper, iron, manganese, nickel, lead, zinc and mercury in 42 Chinese herbal medicinal plants were determined. Generally, all the samples studied had, relative to the other trace metals, higher concentrations of iron, manganese, and zinc. The concentration range of the metals determined was comparable to that in many of the East Asian vegetables and fruits. A few samples were found to contain relatively higher concentrations of the toxic metals such as cadmium, lead, and mercury. This was probably caused by contamination during air-drying and preservation.  相似文献   

2.
The response of arsenate and non-tolerant Holcus lanatus L. phenotypes, where tolerance is achieved through suppression of high affinity phosphate/arsenate root uptake, was investigated under different growth regimes to investigate why there is a polymorphism in tolerance found in populations growing on uncontaminated soil. Tolerant plants screened from an arsenic uncontaminated population differed, when grown on the soil from the populations origin, from non-tolerants, in their biomass allocation under phosphate fertilization: non-tolerants put more resources into tiller production and down regulated investment in root production under phosphate fertilization while tolerants tillered less effectively and did not alter resource allocation to shoot biomass under phosphate fertilization. The two phenotypes also differed in their shoot mineral status having higher concentrations of copper, cadmium, lead and manganese, but phosphorus status differed little, suggesting tight homeostasis. The polymorphism was also widely present (40%) in other wild grass species suggesting an important ecological role for this gene that can be screened through plant root response to arsenate.  相似文献   

3.
Summary The influence of heavy metal additions on availability and uptake of cadmium, lead, zinc, copper, manganese and iron by oat was studied. The experiments were carried out as pot experiments using sandy loam, sandy soil and organic soil. Selective extractants were used to remove metals held in different soil fractions.Lead and copper were preferently bound by organics and oxides, zinc by oxides and inorganics, and cadmium by inorganics and organics.Addition of cadmium to the soils resulted in higher cadmium concentrations in all plant parts but lower concentrations of lead, zinc, copper, manganese and iron, and the accumulation indexes of these metals were also lower when cadmium was added to the soil.Addition of cadmium plus lead, zinc and copper resulted in higher cadmium concentrations in leaves and straw of plants grown in sandy loam and sandy soil, but lower concentrations when plants were grown in organic soil as compared with the results when cadmium was added separately. The transfer of cadmium, lead, zinc and copper from soil to plant was greatest from sandy soil, and zinc and cadmium were more mobile in the plant than were lead and copper.Cadmium concentrations in leaves correlated significantly with CaCl2 and CH3COOH extractions in sandy loam and sandy soil and with CH3COOH extractions in organic soil.Generally, the total metal uptake was lowest from organic soil.  相似文献   

4.
The distribution of silver, arsenic, cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead, selenium and zinc binding to species with different molecular weight in aqueous extract of krill was studied by on-line size-exclusion chromatography (SEC)/inductively coupled plasma mass spectrometry (ICP-MS). The extract was fractionated in three fractions with different molecular weight (MW) ranges (>20,000 relative molecular mass (rel. mol. mass), 2000-20,000 rel. mol. mass and <2000 rel. mol. mass), which were further analyzed by SEC with columns having different optimum fractionation ranges in order to obtain more detailed information about the MW distribution of the elements. Various distribution profiles for the target elements among different MW ranges were observed. The results obtained indicated that manganese, zinc, silver, cadmium and lead species were mostly distributed in the higher MW range (>20,000 rel. mol. mass). In the case of chromium, iron, cobalt, arsenic and selenium, most of them bind to species with lower MW (<2000 rel. mol. mass). Only copper and nickel species was predominantly present in middle MW range (2000-20,000 rel. mol. mass). Further speciation of arsenic compounds in the small MW fraction was carried out with anion exchange chromatography (AEC) coupled with ICP-MS. The results showed that the dominant arsenic species in this fraction is As(III) (63% of extractable arsenic), while As(V) (13%) and two unknown arsenic species (19% and 5%, respectively) are present in lower amounts.  相似文献   

5.
Trace element disturbance is often observed in hemodialysis patients. While trace element concentrations have been reported in blood samples from hemodialysis patients, they have not been well investigated in scalp hair. In the present study, 22 trace elemental concentrations were measured by inductively coupled plasma-atomic emission spectrometry in the scalp hair of 80 male hemodialysis patients and compared with those of 100 healthy male subjects. In hemodialysis patients, the concentrations of beryllium, arsenic, magnesium, chromium, manganese, iron, selenium, molybdenum, iodine, vanadium, and cobalt were significantly higher than those in healthy subjects, while lead, mercury, copper, germanium, and bromine were significantly lower than those in the former group. No significant differences were observed for lithium, aluminum, cadmium, zinc, boron, or nickel. There were significant positive correlations between the duration of hemodialysis and the magnesium and manganese concentrations. There was a significant negative correlation between cadmium concentration and the duration of hemodialysis. There were significant positive correlations between dialysis efficacy (Kt/V) and magnesium, manganese, zinc, and selenium concentrations. In conclusion, trace element concentrations of the scalp hair are different between hemodialysis patients and healthy subjects. Essential trace elements, such as magnesium, manganese, zinc, and selenium, may be affected by the duration of hemodialysis and Kt/V.  相似文献   

6.
Changes in essential trace elements and heavy metals may affect the atherosclerotic state of patients on maintenance hemodialysis (HD). The aim of the study was to evaluate the relation between the serum levels of some trace elements and heavy metals (iron, zinc, manganese, copper, magnesium, cobalt, cadmium, lead, and copper/zinc ratio) and carotid artery intima-media thickness (CIMT) in HD patients. Fifty chronic HD patients without known atherosclerotic disease and 48 age- and sex-matched healthy individuals were included in the study. The serum levels of trace elements (iron, zinc, manganese, copper, and magnesium) and heavy metals (cobalt, cadmium, and lead) were measured by Atomic Adsorption Spectrophotometer (UNICAM-929). CIMT was assessed by carotid artery ultrasonography. The serum levels of iron, zinc, and manganese were lower; levels of copper, magnesium, cobalt, cadmium, lead, and copper/zinc ratio were higher in HD patients compared to controls. CIMT in HD patients were higher than the control group (0.64?±?0.11 vs 0.42?±?0.05, p?相似文献   

7.
Levels of nine heavy metals were measured in the livers and salt glands of greater scaup (Aythya marila), black duck (Anas rubripes) and mallard (A. platyrhynchos) from Raritan Bay, New Jersey to determine if the functioning avian salt gland concentrates heavy metals. Heavy metals examined were cadmium, cobalt, chromium, copper, lead, mercury, manganese, nickel and zinc. Heavy metal levels varied significantly by species and tissue for chromium, copper, lead, and manganese, and by tissue for cobalt, mercury, nickel and zinc. In comparing tissues cobalt was higher in the salt glands than in livers of all three species; chromium and nickel were higher in the salt gland than liver for mallard and black duck; and lead, manganese and zinc were higher in the liver than the salt gland in greater scaup. Generally metal levels were higher in the salt gland for mallard and black duck, and in the liver for greater scaup.  相似文献   

8.
To better understand the relationship between prenatal exposure to heavy metals and trace elements and the risk of adverse pregnancy outcomes, we investigated the status of heavy metals and trace elements level in a Chinese population by collecting umbilical cord blood. Umbilical cord blood heavy metals and trace elements concentrations were determined by inductively coupled plasma–mass spectrometry. No differences with statistical significance in the median arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), strontium (Sr), thallium (Tl), vanadium (V), and zinc (Zn) concentrations were observed between the adverse pregnancy outcome group and the reference group. Titanium (Ti) and antimony (Sb) were found at higher levels with statistical significance in the cord blood samples with adverse pregnancy group when compared to the ones in the reference group. The association between Ti levels and the risk of adverse pregnancy outcomes remained significant after adjusting for potential confounding factors, including newborn weight. These results indicated that environmental exposure to Ti may increase the risk of adverse pregnancy outcomes in Chinese women without occupational exposure.  相似文献   

9.
Concentrations of cadmium, mercury, lead, arsenic, selenium, copper, zinc, manganese and iron in liver, and cadmium in kidneys, were analysed in 95 carcasses of arctic fox (Alopex lagopus) caught in Svalbard during three winter seasons from 1984 through 1986. The hepatic concentration ranges of cadmium, mercury, lead and arsenic were 0.1–2.4, 0.01–2.2, < 0.5–2.9 and 0.01–1.3 g·g–1 WW, respectively. The range of cadmium concentration in the kidneys was from 0.2 to 13 g·g–1 WW. Cadmium and mercury concentrations were higher in adult animals than in juveniles. The average concentrations of cadmium and lead were similar to recently published levels in polar bear from Svalbard, but the mercury concentrations were lower. Significant geographical differences were observed between trapping areas. Foxes caught north of Isfjorden had lower levels of liver iron and higher levels of all other elements analysed than those caught south of Isfjorden. The recorded concentrations of heavy metals indicate a moderate degree of exposure, which most likely is of natural origin.Gunnar Norheim died January 9, 1991  相似文献   

10.
The aim of this study was to determine the levels of cadmium, lead, iron, zinc, selenium, manganese, copper and molybdenum in different cuts of beef, pork, lamb, chicken and foal collected from supermarkets and butcheries in Switzerland. The concentrations of manganese, copper, molybdenum, zinc, iron, selenium, cadmium and lead were determined by inductively coupled plasma mass spectrometry (ICP-MS) after microwave digestion. Mean values and their respective coefficients of variation were calculated from the measured concentrations. The concentrations found for cadmium and lead ranged from 0.6 to 3.9 μg/100 g and 1.0 to 2.1 μg/100 g, respectively. Concentrations ranged between 0.5 and 3.3 mg/100 g for iron, 0.7 and 5.1 mg/100 g for zinc, 9 and 44 μg/100 g for selenium, 3.1 and 16.7 μg/100 g for manganese, 0.3 and 132 μg/100 g for copper and 0.9 and 3.2 μg/100 g for molybdenum. Differences found for the concentrations in meat from different species as well as between the individual meat cuts were notable for iron, zinc, selenium and copper. Manganese concentrations were found to vary unsystematically within muscles and species. Molybdenum concentrations were higher in chicken meat in comparison with the mammalian meats. The highest coefficients of variation were found for manganese (13% to 142%) and copper (13% to 224%), while the lowest was found for zinc (4% to 45%). In conclusion, in order to provide an accurate overview and to be able to calculate reliable dietary intakes, it is important to include the variability in food composition data.  相似文献   

11.
BackgroundMetals are a minor constituent in honey, but they have been suggested to be a potential tool to characterize honeys according to their botanical or geographical origin.MethodsA total of 40 metals were analyzed by Inductively Coupled Plasma-Mass Spectrometry in monofloral and multifloral honeys from Northwestern Italy. PCA and ANOVA were used to discriminate honeys according to the various floral types.ResultsThe highest levels of trace elements and rare earth elements (REEs) were found in chestnut honey, while the lowest concentrations were recorded in acacia and rhododendron honeys. Rubidium and aluminum were the most represented nonessential elements, while manganese, iron, zinc and copper had the highest values of the essential elements. Potentially toxic elements arsenic, cadmium and lead were close to or below the limit of quantification.ConclusionsThe present study showed significant differences in metal concentrations according to honey floral type, reflecting the strong influence of botanical origin on the chemical composition of this particular food.  相似文献   

12.
Trace element budget in an African savannah ecosystem   总被引:1,自引:1,他引:0  
The concentration of selected trace elements (Co, Cu, Fe, Mn, Mo, Se, and Zn) were analysed in soils, grass, bush, and tree samples from the Mole National Park, Ghana. The distribution of the essential nutrients: cobalt, copper, manganese, and selenium is controlled by bedrock geology, whereas iron, molybdenum, and zinc distribution is controlled by soil and hydrological processes. In the soils, iron, manganese, and cobalt are largely fixed in the mineral fraction while most of the copper, molybdenum, and selenium in the soils can be extracted by disodium ethylenediaminetetracetate. Copper, cobalt, and manganese appear to be preferentially concentrated in grass species while molybdenum and selenium are concentrated in browse plants. Variations in uptake exist between wet and dry seasons with all trace elements studied, except iron and manganese, showing a marked increased availability in the wet season and increased concentration in the residual fraction of the mineral and organic soils in the dry season. In the dry season the plant concentration of molybdenum and selenium decreased while copper and zine showed increased concentrations and this may be related to a lower pH of the groundwaters at this time. A budget of metal input and output in the ecosystem at Mole has been computed. From this potential dietary deficiencies in cobalt can be observed, however for other metals soil and plant concentrations are sufficient to prevent straightforward deficiencies while the concentrations of molybdenum and selenium are sufficiently low to be considered safe.  相似文献   

13.
Ninety-nine samples of common Chinese medicines were purchased from Chinese medical shops in Singapore and Malaysia and analyzed for mercury, lead, copper, cadmium, cobalt, iron, and nickel. The majority of these medicines were manufactured in China, Hong Kong, and Malaysia. A few of them were of Singapore and Taiwan origin. Atomic absorption method (both flame and flameless) was used for the analyses. Mercury was found to be present in high concentrations in several of the medicines that were for oral consumption.  相似文献   

14.
This study reports age-related changes in 7 element (iron, copper, zinc, manganese, mercury, cadmium and lead) concentrations in the liver, kidney and brain of male and female Sprague-Dawley rats from 1 to 364 days of age. Atomic absorption spectrometry was used for the measurements. Copper, mercury and cadmium in the male and female kidneys increased from weaning until 127 days of age, as did iron concentrations in the female liver and kidney. After 127 days, especially, the copper concentration in the female kidney and cadmium concentration in the male and female kidney increased further. Consistent and statistically significant (P less than 0.05) sex differences in element concentrations were found for three elements (iron, copper and zinc). Except for the zinc concentration in the liver from 50 to 72 days, iron (in liver and kidney), zinc (in kidney) and copper (in liver, kidney and brain) concentrations in female rats during the adult stage, were all higher than those of male rats. Isolated differences for other elements (manganese, mercury and cadmium) were also found. The data will be helpful when setting up long-term animal investigations of the biological effect of elements.  相似文献   

15.
The health risks due to metal exposure from consuming various fish and seafood species were assessed for the Catalan population living near the Ebro River (Spain). The concentrations of arsenic, cadmium, chromium, copper, mercury, manganese, nickel, and lead were determined in samples of mussel, clam, hake, sole, cuttlefish, sardine, and anchovy randomly acquired in various localities of the zone under evaluation. In general terms, metal concentrations were similar or lower than the levels recently reported in the literature. The current dietary intake of metals is analogous to that recently estimated for the non-exposed population of Catalonia. Metal exposure through fish and seafood consumption would only mean a slight increase of noncarcinogenic and carcinogenic risk for arsenic, whereas the remaining elements showed risk values below the corresponding threshold levels.  相似文献   

16.
Summary Accumulations of copper, lead and arsenic in soils affected by orchard sprays or mining were investigated in relation to their effects on growth and composition of plants. Seasonal variations in concentrations of the elements in pasture plants sampled from contaminated soils in the field are reported. The effects of soil temperature and applications of the nutrients P, S and N on the composition of plants grown in contaminated soils were investigated in glasshouse experiments.The copper concentrations of pasture species sampled from sites which were formerly orchards were usually high (20 to 60 mg kg–1) during most of the growing season and may present some risk of toxicity to grazing ruminant animals. Lead (0.8 to 21 mg kg–1) and arsenic (<0.2 to 5.8 mg kg–1) concentrations were within, or close to the normal range of concentration in plants. In the glasshouse experiments, soil temperature was found to be an important factor in the uptake of copper, lead and arsenic. There were significant differences in uptake between genotypes. Applications of fertilizers at rates equivalent to those used for commercial vegetable production generally resulted in small decreases in the concentrations of copper, lead and arsenic concentrations in silver beet.  相似文献   

17.
18.
Increased concentrations of important nutrients in edible parts of plants could result in biofortified foods. Soybean [Glycine max (L.) Merr.] is a major legume crop and an important source of certain nutrients, including protein and minerals, in human and animal diets. Understanding the underlying genetic basis of seed composition is crucial to improving seed nutrient composition. In this study we used three soybean recombinant inbred line mapping populations derived from the crosses Williams 82 × DSR-173, Williams 82 × NKS19-90 and Williams 82 × Vinton 81, and constructed a joint linkage map from these populations. Forty quantitative trait loci (QTLs) were detected for 18 traits: seed weight, seed magnesium, sulfur, calcium, manganese, potassium, iron, cobalt, nickel, copper, zinc, selenium, molybdenum, cadmium and arsenic concentrations, total nitrogen:total sulfur (N:S) ratio, cysteine and methionine concentrations. Using the joint linkage map, we detected nine QTLs that were not identified in the individual populations. We identified several candidate genes that might contribute to these traits, including transporters and genes involved in nitrogen and amino acid metabolism. Some strong QTLs had no obvious candidate genes, offering the possibility that subsequent confirmation of these QTLs may result in identification of new genes affecting seed nutrients in soybean. Seed weight and seed mineral concentrations were not highly correlated, suggesting the possibility of improving seed mineral concentrations without significant changes in seed weight. An inverse relationship between N:S ratio and most other minerals suggests the possibility of using N:S ratio as an indirect measure of seed mineral concentration in soybean breeding programs.  相似文献   

19.
Influence of chosen elements on the dynamics of the cariogenic process   总被引:1,自引:0,他引:1  
This prospective study comprised 140 natural crowns of the teeth extracted from 31 boys and 35 men, as well as 39 girls and 35 women. They were divided into two groups. Group I consisted of primary teeth and group II consisted of permanent teeth. In each group, two subgroups were distinguished: subgroup A containing teeth without caries and subgroup B comprising carietic teeth. Zinc, iron, copper, nickel, chromium, cobalt, lead, cadmium, selenium, and strontium were determined in the samples by using the total reflection X-ray fluorescence method. Significantly higher concentrations of zinc, iron, copper, nickel, selenium, and strontium were detected in the crowns of healthy primary and permanent teeth than in the crowns of the carietic primary and permanent teeth. The concentrations of chromium, cobalt, lead, and cadmium were significantly higher in primary and permanent teeth with caries than in the healthy ones. Judging from the obtained results, we think that lower concentrations of zinc, iron, copper, nickel, selenium, and strontium together with higher concentrations of chromium, cobalt, lead, and cadmium in the carietic primary and permanent teeth, in relation with the respective concentrations of those elements in healthy teeth, can be one of the caries risk factors.  相似文献   

20.
Many reports have documented wetlands removing a wide variety of contaminants in mine drainage, including aluminum, arsenic, cadmium, cobalt, copper, cyanide, iron, lead, manganese, nickel, selenium, uranium, and zinc. This article reviews biogeochemical processes responsible for their ability to transform and retain metals into insoluble forms. Shallow depth and large inputs of organic matter are key characteristics of wetlands that promote chemical and biological processes effecting metal removal. Aquatic macrophytes play an essential role in creating and maintaining this environment, but their uptake of metals usually accounts for a minor proportion of the total mass removed. Sorption onto organic matter is important in metal removal, particularly for copper, nickel, and uranium. Aluminum, iron, and manganese are often removed by hydrolysis, with the resulting acidification of water buffered by alkalinity produced in wetland sediments by anaerobic bacteria. Bacterial sulfate reduction accounts for much of this alkalinity. It can also contribute significantly to metal removal by formation of insoluble sulfides. Other important processes include the formation of insoluble carbonates, reduction to nonmobile forms, and adsorption onto iron oxides and hydroxides. Examples from field studies are presented throughout the review to illustrate these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号