首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
mRNA poly(A) tail, a 3'' enhancer of translational initiation.   总被引:20,自引:13,他引:20       下载免费PDF全文
To evaluate the hypothesis that the 3' poly(A) tract of mRNA plays a role in translational initiation, we constructed derivatives of pSP65 which direct the in vitro synthesis of mRNAs with different poly(A) tail lengths and compared, in reticulocyte extracts, the relative efficiencies with which such mRNAs were translated, degraded, recruited into polysomes, and assembled into messenger ribonucleoproteins or intermediates in the translational initiation pathway. Relative to mRNAs which were polyadenylated, we found that nonpolyadenylated [poly(A)-]mRNAs had a reduced translational capacity which was not due to an increase in their decay rates, but was attributable to a reduction in their efficiency of recruitment into polysomes. The defect in poly(A)- mRNAs affected a late step in translational initiation, was distinct from the phenotype associated with cap-deficient mRNAs, and resulted in a reduced ability to form 80S initiation complexes. Moreover, poly(A) added in trans inhibited translation from capped polyadenylated mRNAs but stimulated translation from capped poly(A)- mRNAs. We suggest that the presence of a 3' poly(A) tail may facilitate the binding of an initiation factor or ribosomal subunit at the mRNA 5' end.  相似文献   

4.
Eukaryotic mRNAs possess a poly(A) tail that enhances translation via the (7)mGpppN cap structure or internal ribosome entry sequences (IRESs). Here we address the question of how cellular IRESs recruit the ribosome and how recruitment is augmented by the poly(A) tail. We show that the poly(A) tail enhances 48S complex assembly by the c-myc IRES. Remarkably, this process is independent of the poly(A) binding protein (PABP). Purification of native 48S initiation complexes assembled on c-myc IRES mRNAs and quantitative label-free analysis by liquid chromatography and mass spectrometry directly identify eIFs 2, 3, 4A, 4B, 4GI, and 5 as components of the c-myc IRES 48S initiation complex. Our results demonstrate for the first time that the poly(A) tail augments the initiation step of cellular IRES-driven translation and implicate a distinct subset of translation initiation factors in this process. The mechanistic distinctions from cap-dependent translation may allow specific translational control of the c-myc mRNA and possibly other cellular mRNAs that initiate translation via IRESs.  相似文献   

5.
Poly(A) (pA) tail binding proteins (PABPs) control mRNA polyadenylation, stability, and translation. In a purified system, S. cerevisiae PABPs, Pab1p and Nab2p, are individually sufficient to provide normal pA tail length. However, it is unknown how this occurs in more complex environments. Here we find that the nuclear exosome subunit Rrp6p counteracts the in vitro and in vivo extension of mature pA tails by the noncanonical pA polymerase Trf4p. Moreover, PABP loading onto nascent pA tails is controlled by Rrp6p; while Pab1p is the major PABP, Nab2p only associates in the absence of Rrp6p. This is because Rrp6p can interact with Nab2p and displace it from pA tails, potentially leading to RNA turnover, as evidenced for certain pre-mRNAs. We suggest that a nuclear mRNP surveillance step involves targeting of Rrp6p by Nab2p-bound pA-tailed RNPs and that pre-mRNA abundance is regulated at this level.  相似文献   

6.
W J Ma  S Chung    H Furneaux 《Nucleic acids research》1997,25(18):3564-3569
The Elav-like proteins are specific mRNA binding proteins which are required for cellular differentiation. They contain three characteristic RNP2/RNP1-type RNA binding motifs. Previously we have shown that the first and second RNA binding domains bind to AU-rich elements in the 3'-UTR of mRNA. In this paper we show that the Elav-like proteins exhibit poly(A) binding activity. This activity is distinct from poly(A) binding activities that have been previously described. The Elav-like proteins specifically bind to long chain poly(A) tails. We have shown that the third RNA binding domain encompasses this poly(A) binding activity. Using poly(A)-Sepharose beads in a 'sandwich' assay we have shown that the Elav-like proteins can bind simultaneously to the AU-rich element and to the poly(A) tail.  相似文献   

7.
The highly unstable c-myc mRNA has been shown to be stabilized in cells treated with protein synthesis inhibitors. We have studied this phenomenon in an effort to gain more insight into the degradation pathway of this mRNA. Our results indicate that the stabilization of c-myc mRNA in the absence of translation can be fully explained by the inhibition of translation-dependent poly(A) tail shortening. This view is based on the following observations. First, the normally rapid shortening of the c-myc poly(A) tail was slowed down by a translation block. Second, c-myc messengers which carry a short poly(A) tail, as a result of prolonged actinomycin D or 3'-deoxyadenosine treatment, were not stabilized by the inhibition of translation. We propose that c-myc mRNA degradation proceeds in at least two steps. The first step is the shortening of long poly(A) tails. This step requires ongoing translation and thus is responsible for the delay in mRNA degradation observed in the presence of protein synthesis inhibitors. The second step involves rapid degradation of the body of the mRNA, possibly preceded by the removal of the short remainder of the poly(A) tail. This last step is independent of translation.  相似文献   

8.
Two simplified kinetic proofreading scanning (KPS) models were proposed to describe the 5' cap and 3' poly(A) tail dependency of eukaryotic translation initiation. In Model I, the initiation factor complex starts scanning and unwinding the secondary structure of the 5' untranslated region (UTR) from the 5' terminus of mRNA. In Model II, the initiation factor complex starts scanning from any binding site in the 5' UTR. In both models, following ATP hydrolysis, the initiation factor complex either dissociates from mRNA or continues to scan and unwind RNA secondary structure in the 5' UTR. This step repeats n times until the AUG codon is reached. These two models show very different cap and/or poly(A) tail dependency of translation initiation. The models predict that both cap and poly(A) tail dependencies of translation, and translatability of mRNAs are coupled with the structure of 5' UTR: the translation of mRNA with structured 5' UTR is strongly cap- and poly(A) tail-dependent; while translation of mRNA with unstructured 5' UTR is less cap- and poly(A) tail-dependent. We use these two models to explain: (1) the cap and poly(A) tail dependence of translation; (2) the effect of exogenous poly(A) on translation; (3) repression of host mRNA and translation of late adenovirus mRNA in the late phase of adenovirus infection; (4) repression of host mRNA and translation of Vaccinia virus mRNA in virus-infected cell; (5) heat shock repression of translation of normal mRNA and stimulation of translation of hsp mRNA; and (6) the synergistic effect of cap and poly(A) tail on stimulating translation. The kinetic proofreading scanning models provide a coherent interpretation of those phenomena.  相似文献   

9.
RNA phage GA coat and lysis protein expression are translationally coupled through an overlapping termination and initiation codon UAAUG. Essential for this coupling are the proximity of the termination codon of the upstream coat gene to the initiation codon of the lysis gene (either a <3 nucleotide separation or physical closeness through a possible hairpin structure) but not the Shine-Dalgarno sequence. This suggests that the ribosomes completing the coat gene translation are exclusively responsible for translation of the lysis gene. Inactivation of ribosome recycling factor (RRF), which normally releases ribosomes at the termination codon, did not influence the expression of the reporter gene fused to the lysis gene. This suggests the possibility that RRF may not release ribosomes from the junction UAAUG. However, RRF is essential for correct ribosomal recognition of the AUG codon as the initiation site for the lysis gene.  相似文献   

10.
Vaccinia poly(A) polymerase (VP55) interacts with > or = 33-nucleotide (nt) primers via uridylates at two sites (-27/-26 and -10). It adds approximately 30-nt poly(A) tails with a rapid, processive burst in which the first few nt are added without substantial primer movement, and addition of the remaining adenylates is dependent upon a six-uridylate tract at the extreme 3' end of the primer and accompanied by polymerase translocation. Interaction of VP55 with 2-aminopurine (2-AP)-containing primers was associated with a 3-fold enhancement in 2-AP fluorescence. In stopped-flow experiments, fluorescence intensity changed with time during the polyadenylation burst in a manner dependent upon the position of 2-AP, indicating a non-uniform isomerization of the polymerase-primer complex with time consistent with a discontinuous (saltatory) translocation mechanism. Three distinct translocatory phases could be discerned: a -10(U)-binding site forward movement, a -27/-26(UU)-binding site jump to -10, then a -27/-26(UU)-binding site movement further downstream. Poly(A) tail elongation showed no apparent pauses during these isomerizations. Fluorescence changes during polyadenylation of 2-AP-containing primers with short preformed oligo(A) tails reinforced the above observations. Primers composed entirely of oligo(U) (apart from the 2-AP sensor), in which the polymerase modules might be most able to "slide" uniformly, also showed the characteristic saltatory pattern of translocation. These data indicate, for the first time, a discontinuous mode of translocation for a non-templated polymerase.  相似文献   

11.
12.
A nuclear tRNALys gene from Arabidopsis thaliana was cloned and mutated so as to express tRNAs with altered anticodons which bind to a UAG nonsense (amber) codon and to the Arg (AGG), Asn (AAC,AAT), Gln (CAG) or Glu (GAG) codons. Concomitantly, a codon in the firefly luciferase gene for a functionally important Lys was altered to an amber codon, or to Arg, Asn, Gln, Glu, Thr and Trp codons, so as to construct reporter genes reliant upon incorporation of Lys. The altered tRNALys and luciferase genes were introduced into Nicotiana benthamiana protoplasts and expression of the mutated tRNAs was verified by translational suppression of the mutant firefly luciferase genes. Expression of the amber suppressor tRNA CUA Lys from non-replicative vectors promoted 10–40% suppression of the luciferase nonsense reporters while expression of the amber and missense tRNALys suppressor genes from a geminivirus vector capable of replication promoted 30–80% suppression of the luciferase nonsense reporter and up to 10% suppression of the luciferase missense reporters with Arg, Asn, Gln and Glu codons.  相似文献   

13.
Dewannieux M  Heidmann T 《Genomics》2005,86(3):378-381
Alu are mobile noncoding Short INterspersed Elements (SINEs) present at a million copies in the human genome. Using marked Alu sequences in an ex vivo assay, we previously showed that they are mobilized through diversion of the LINE (Long INterspersed Elements) retrotransposition machinery, with the poly(A) tail of the Alu being required for their mobility. Here we show that other homopolymeric tracts cannot functionally replace the Alu poly(A) tail, and that the Alu transposition rate varies over a two-log range depending on the poly(A) tail length. Variation is according to a sigmoid-shaped curve with a lag observed for tails shorter than 15 nt and a plateau reached for tails longer than 50 nt, consistent with the binding of a limited number of a protein component requiring multiple contacts for a productive interaction with the poly(A) stretch. This analysis indicates that most of the naturally occurring genomic Alu, owing to their pA tail length, should be poor substrates for the LINE machinery, a feature possibly "selected" for the host sake.  相似文献   

14.
15.
16.
We have previously shown that destabilization of gro alpha mRNA is associated with poly(A) shortening. In this study, we used high-resolution Northern blots to determine the rate and extent of gro alpha mRNA poly(A) shortening. gro alpha mRNA was found to undergo complete deadenylation within 2 h following withdrawal of IL-1. However, the process was not uniform: at 1 h following IL-1 withdrawal, gro alpha mRNA poly(A) lengths ranged from 0 to 180 nucleotides. There was an accumulation of deadenylated gro alpha mRNA which suggested that there may be another step before the mRNA is destroyed. Cycloheximide was found to block gro alpha mRNA degradation at the level of poly(A) shortening. Northern blots revealed a previously unrecognized periodic distribution of poly(A) lengths that was consistent with endonucleolytic cleavage between complexes of poly(A)-binding protein. The findings indicate that the degradation pathway of gro alpha mRNA is a slower version of the c-fos mRNA model, with the important additional feature that deadenylation and degradation are subject to physiologic regulation. This study provides a detailed picture of gro alpha mRNA poly(A) shortening and establishes a basis for further investigation of the mechanism by which IL-1 stabilizes specific mRNAs.  相似文献   

17.
Meiotic maturation of Xenopus laevis oocytes by progesterone requires translation of stored maternal mRNAs. We investigated the role of poly(A) tail elongation of mRNAs during this process using cordycepin, which inhibits poly(A) tail elongation of mRNAs. When oocytes were treated with the buffer containing 10 mM cordycepin for 12 h, concentration of 3'-dATP in cytosol of oocytes increased to 0.7 mM, while that of ATP remained constant at around 1.2 mM. Incorporation of [32P]AMP into poly(A) mRNA was inhibited almost completely by this treatment. Progesterone-induced germinal vesicle breakdown (GVBD) was also abolished. Dose dependence of inhibition of progesterone-induced GVBD on cordycepin was similar to that of [32P]AMP incorporation into poly(A) mRNA. However, maturation-promoting factor-induced GVBD was unaffected by treatment of oocytes with cordycepin. Furthermore, the inhibition of GVBD by cordycepin was rescued by removal of cordycepin even in the presence of actinomycin D. Therefore, we concluded that poly(A) tail elongation of mRNA is required for induction of meiotic maturation of X. laevis oocytes. In addition, progesterone induced a 2.7-fold activation of [32P]AMP incorporation into the poly(A) tail of mRNA after a lag period of 3 h whereas GVBD was induced after 6-8 h from the progesterone treatment. Syntheses of most of the proteins were unaffected by treatment of oocytes with progesterone or cordycepin. However, syntheses of several proteins were increased or decreased by progesterone and cordycepin treatment.  相似文献   

18.
19.
A B Sachs  R W Davis 《Cell》1989,58(5):857-867
Depletion of the essential poly(A) binding protein (PAB) in S. cerevisiae by promoter inactivation or by the utilization of a temperature-sensitive mutation (pab1-F364L) results in the inhibition of translation initiation and poly(A) tail shortening. Reversion analysis of pab1-F364L yielded seven independent, extragenic cold-sensitive mutations (spb1-spb7) that also suppress a PAB1 deletion. These mutations allow translation initiation without significantly changing poly(A) tail lengths in the absence of PAB, and they affect the amount of 60S ribosomal subunit. Consistent with this, SPB2 encodes the ribosomal protein L46. These data suggest that the 60S subunit mediates the PAB requirement of translation initiation, thereby ensuring that only intact poly(A)+ mRNA will be translated efficiently in vivo.  相似文献   

20.
The regulation of translation has emerged as a major determinant of gene expression and is critical for both normal cellular function and the development of disease. Numerous studies have highlighted the diverse, and sometimes related, mechanisms which underlie the regulation of global translation rates and the translational control of specific mRNAs. In the present paper, we discuss the emerging roles of the basal translation factor PABP [poly(A)-binding protein] in mRNA-specific translational control in metazoa which suggest that PABP function is more complex than first recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号