首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enteritis induced by non-typhoid pathogenic Salmonella is characterized by fluid secretion and inflammatory responses in the infected ileum. The inflammatory response provoked by Salmonella initially consists largely of a neutrophil (PMN) migration into the intestinal mucosa and the gut lumen. The interactions between Salmonella and intestinal epithelial cells are known to play an essential role in inducing the inflammatory response. Upon interaction with epithelial cells salmonellae are able to elicit transepithelial signalling to neutrophils. This signalling is recognized as a key virulence feature underlying Salmonella -induced enteritis. However, the nature and mechanism of such signalling has not been clarified to date. Here, we characterize SopB, a novel secreted effector protein of Salmonella dublin , and present data implying that SopB is translocated into eukaryotic cells via a sip -dependent pathway to promote fluid secretion and inflammatory responses in the infected ileum.  相似文献   

2.
This study investigates the Salmonella effector protein SopA. We show that in Salmonella enterica serovar Dublin-infected cells, SopA(1-347) fused to two carboxy-terminal hemagglutinin tags partially colocalized with mitochondria. Transfection of eukaryotic cells with a panel of constructs encoding truncated versions of SopA identified that amino acids 100 to 347 were sufficient to target SopA to the mitochondria.  相似文献   

3.
The entry of Salmonella into cultured epithelial cells is dependent on genes located in several adjacent chromosomal loci. One of these loci encodes the recently identified secretory proteins, denoted Sips ( Salmonella invasion proteins). SipB,C,D proteins are essential for the ability of the pathogen to invade epithelial cells. To examine if additional invasion-associated proteins were secreted by Salmonella dublin , the genes encoding already characterized secretory proteins were inactivated to facilitate this analysis. The proteins produced and secreted by a double fliM /polar sipB mutant of S. dublin were analysed; this revealed a set of novel secreted proteins. These proteins, which we denoted Sops ( Salmonella outer proteins), formed large filamentous aggregates in the medium of bacterial culture growing at 37°C. These aggregates contained five predominant proteins. Here we report the identification and characterization of one of these proteins, SopE, which is a novel invasion-associated secretory protein of S. dublin . A specific sopE mutant of S. dublin was found to be defective for invasion into epithelial cells. Upon interaction of Salmonella with HeLa cells, SopE was found to be translocated into the cytoplasm of the target cell by extracellular bacteria. The translocation of SopE was shown to be dependent on the Sip proteins because a polar sipB mutant did not translocate SopE across the HeLa cell membrane.  相似文献   

4.
Salmonella Typhimurium harbors two Salmonella pathogenicity islands (SPIs), each encoding a type three secretion system for virulence proteins. Although there is increasing evidence of postinvasion roles for SPI-1, it has been generally accepted that SPI-1 genes are downregulated following the invasion process. Here, we analyzed the expression and translocation of SopB in vitro, in cell culture and in vivo. To this end, a sopB-FLAG-tagged strain of Salmonella Typhimurium was obtained by epitope tagging. Tagged proteins were detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting with anti-FLAG antibodies. SopB expression was observed in vitro under cultured conditions that mimic the intestinal niche and different intracellular environments. In agreement, bacteria isolated from infected monolayers expressed and translocated SopB for at least 24?h postinoculation. For in vivo experiments, BALB/c mice were inoculated intraperitoneally with the tagged strain of Salmonella Typhimurium. Infecting bacteria and infected cells were recovered from mesenteric lymph nodes. Our results showed that SopB continues to be synthesized in vivo during 5 days after inoculation. Interestingly, translocation of SopB was detected in the cytosol of cells isolated from lymph nodes 1 day after infection. Altogether, these findings indicate that the expression and translocation of SopB during Salmonella infection is not constrained to the initial host-bacteria encounter in the intestinal environment as defined previously.  相似文献   

5.
The Salmonella typhimurium protein tyrosine phosphatase SptP is a target of the centisome 63 type III protein secretion system. This system is essential for the interaction of these bacteria with host cells. We have shown here by a combination of biochemical and microscopy techniques that S . typhimurium directs the translocation of SptP into cultured epithelial cells. Translocation requires the function of the secreted proteins, SipB, SipC and SipD, as strains carrying mutations in any of the genes encoding these proteins fail to translocate SptP. Microinjection of purified GST–SptP into cultured cells results in the disruption of the actin cytoskeleton and the disappearance of stress fibres. These changes are reversible, as microinjected cells regain the normal appearance of their actin cytoskeleton upon prolonged incubation. Microinjection of the catalytically inactive GST–SptP(C481S) protein results in changes similar to those induced by the wild-type toxin. Furthermore, microinjection of a fusion protein between GST and the first 285 amino acids of SptP also leads to identical disruption of the host cell actin cytoskeleton, indicating that the amino-terminal half of SptP is sufficient to mediate this effect. However, microinjection of a fusion protein between GST and the last 259 amino acids of SptP also disrupted the normal appearance of the cytoskeleton. These results support the hypothesis that SptP is an effector protein arranged in modular domains that may co-operate with each other to exert related functions.  相似文献   

6.
The molecular mechanism of the presynaptic toxicity of secreted phospholipase A2 (sPLA2) neurotoxins, including that of ammodytoxin A (AtxA), has not been resolved. Here we report the action of AtxA on mouse motoneuron-like cells, on which it induced characteristic neurotoxic effects on synaptic vesicles and on the reorganization of F-actin. AtxA also released fatty acids from the plasmalemma. Its significantly less neurotoxic V31W mutant showed similar effects on cells but with a much higher rate of hydrolysis than the wild-type, indicating that high enzymatic activity alone is not sufficient for the observed effects. The neurotoxic action was observed by confocal microscopy of a fluorescently labelled AtxA and by electron microscopy of a nanogold-labelled toxin. The Atx-binding proteins were tagged by a photo-cross-linking reagent conjugated to the toxin. AtxA was taken up rapidly by the cells, where it interacted within minutes with calmodulin and 14-3-3 proteins in the cytosol. These data demonstrate, for the first time, the translocation of an sPLA2 from the extracellular space into the cytosol of a cell. Such an event may thus be important in explaining the action of a range of homologous endogenous sPLA2 enzymes in mammals whose roles in various cellular processes are not yet completely understood.  相似文献   

7.
Bordetella bronchiseptica infects a wide variety of mammals, and the type III secretion system (T3SS) is involved in long‐term colonization by Bordetella in the trachea and lung. T3SS translocates virulence factors (commonly referred to as effectors) into host cells, leading to alterations in the host's physiological function. The Bordetella effectors BopN and BteA are known to have roles in up‐regulation of IL‐10 and cytotoxicity, respectively. Nevertheless, the mechanism by which BopN is translocated into host cells has not been examined in sufficient detail. Therefore, to determine the precise mechanisms of the BopN translocation into host cells, we built truncated derivatives of BopN and evaluated the derivatives’ ability to translocation into host cells by adenylate cyclase‐mediated translocation assay. It was found that N‐terminal amino acid (aa) residues 1–200 of BopN are sufficient for its translocation into host cells. Interestingly, BopN translocation was completely blocked by deletion of the N‐terminal aa residues 6–50, indicating that the N‐terminal region is critical for BopN translocation. Furthermore, BopN appears to play an auxiliary role in BteA‐mediated cytotoxicity. Thus, BopN can apparently translocate into host cells and may facilitate activity of BteA.
  相似文献   

8.
Upon contact with intestinal epithelial cells, Salmonella enterica serovar spp. inject a set of bacterial proteins into host cells via the bacterial SPI-1 type III secretion system. SopE, SopE2 and SopB, activate CDC42 and Rac to initiate actin cytoskeleton rearrangements. SipA and SipC, two Salmonella actin-binding proteins, directly modulate host actin dynamics to facilitate bacterial uptake. SptP promotes the recovery of the actin cytoskeleton rearrangements by antagonizing CDC42 and Rac. Therefore, Salmonella-induced reversible actin cytoskeleton rearrangements are the result of two coordinated steps: (i) stimulation of host signal transduction to indirectly promote actin rearrangements and (ii) direct modulation of actin dynamics.  相似文献   

9.
Homologs of the Yersinia virulence factor YopJ are found in both animal and plant bacterial pathogens, as well as in plant symbionts. The conservation of this effector family indicates that several pathogens may use YopJ-like proteins to regulate bacteria-host interactions during infection. YopJ and YopJ-like proteins share structural homology with cysteine proteases and are hypothesized to functionally mimic small ubiquitin-like modifier (SUMO) proteases in eukaryotic cells. Strains of the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria are known to possess four YopJ-like proteins, AvrXv4, AvrBsT, AvrRxv, and XopJ. In this work, we have characterized AvrXv4 to determine if AvrXv4 functions like a SUMO protease in planta during Xanthomonas-plant interactions. We provide evidence that X. campestris pv. vesicatoria secretes and translocates the AvrXv4 protein into plant cells during infection in a type III-dependent manner. Once inside the plant cell, AvrXv4 is localized to the plant cytoplasm. By performing AvrXv4 deletion and mutational analysis, we have identified amino acids required for type III delivery and for host recognition. We show that AvrXv4 recognition by resistant plants requires a functional protease catalytic core, the domain that is conserved in all of the putative YopJ-like cysteine proteases. We also show that AvrXv4 expression in planta leads to a reduction in SUMO-modified proteins, demonstrating that AvrXv4 possesses SUMO isopeptidase activity. Overall, our studies reveal that the YopJ-like effector AvrXv4 encodes a type III SUMO protease effector that is active in the cytoplasmic compartment of plant cells.  相似文献   

10.
11.
Salmonella typhimurium is a facultative intracellular pathogen that utilizes two type III secretion systems to deliver virulence proteins into host cells. These proteins, termed effectors, alter host cell function to allow invasion into and intracellular survival/replication within a vacuolar compartment. Here we describe SopD2, a novel member of the Salmonella translocated effector (STE) family, which share a conserved N-terminal type III secretion signal. Disruption of the sopD2 gene prolonged the survival of mice infected with a lethal dose of Salmonella typhimurium , demonstrating a significant role for this effector in pathogenesis. Expression of sopD2 was induced inside host cells and was dependent on functional ssrA/B and phoP/Q, two component regulatory systems. HA-tagged SopD2 was delivered into HeLa cells in a SPI-2-dependent manner and associated with both the Salmonella -containing vacuole and with swollen endosomes elsewhere in the cell. Subcellular fractionation confirmed that SopD2 was membrane associated in host cells, while the closely related effector SopD was localized to the cytosol. A SopD2 fusion to GFP associated with small tubular structures and large vesicles containing late endocytic markers, including Rab7. Surprisingly, expression of N-terminal amino acids 1–150 of SopD2 fused to GFP was sufficient to mediate both binding to late endosomes/lysosomes and swelling of these compartments. These findings demonstrate that the N-terminus of SopD2 is a bifunctional domain required for both type III secretion out of Salmonella as well as late endosome/lysosome targeting following translocation into host cells .  相似文献   

12.
Shiga toxin-producing Escherichia coli (STEC), enteropathogenic E . coli (EPEC) and some strains of Hafnia alvei are capable of inducing attaching and effacing (A/E) lesions, characterized by tight apposition of the bacteria to the eukaryotic membrane and formation of actin-based pedestals. In this study, we report on the identification of EspE, a novel secreted 80 kDa protein of A/E bacteria. During infection, EspE is delivered into the cytoplasm of the infected host cell, where it is detected as a higher-molecular-weight form of 90 kDa. We present evidence that translocated EspE becomes tyrosine phosphorylated and that this modified form of EspE may be identical to Hp90, the putative receptor of EPEC intimin. Bacteria of the classic enterohaemorrhagic E . coli (EHEC) serotype O157:H7 fail to induce a tyrosine phosphorylation of EspE and differ in this respect from other A/E bacteria. Translocated EspE, whether tyrosine phosphorylated or not, becomes incorporated into the bacteria-induced cytoskeletal structures, where it normally colocalizes with filamentous actin. EPEC are also able to induce 'pseudopods', elongated pedestals that have recently been implicated in a novel kind of actin-based motility. EspE is enriched at the tip of these structures, suggesting its involvement in the process of actin dynamics, which is triggered during the attaching and effacing process.  相似文献   

13.
The bacterial plant pathogen Pseudomonas syringae depends on a type III protein secretion system and the effector proteins that it translocates into plant cells to cause disease and to elicit the defense-associated hypersensitive response on resistant plants. The availability of the P. syringae pv. tomato DC3000 genome sequence has resulted in the identification of many novel effectors. We identified the hopPtoV effector gene on the basis of its location next to a candidate type III chaperone (TTC) gene, shcV, and within a pathogenicity island in the DC3000 chromosome. A DC3000 mutant lacking ShcV was unable to secrete detectable amounts of HopPtoV into culture supernatants or translocate HopPtoV into plant cells, based on an assay that tested whether HopPtoV-AvrRpt2 fusions were delivered into plant cells. Coimmunoprecipitation and Saccharomyces cerevisiae two-hybrid experiments showed that ShcV and HopPtoV interact directly with each other. The ShcV binding site was delimited to an N-terminal region of HopPtoV between amino acids 76 and 125 of the 391-residue full-length protein. Our results demonstrate that ShcV is a TTC for the HopPtoV effector. DC3000 overexpressing ShcV and HopPtoV and DC3000 mutants lacking either HopPtoV or both ShcV and HopPtoV were not significantly impaired in disease symptoms or bacterial multiplication in planta, suggesting that HopPtoV plays a subtle role in pathogenesis or that other effectors effectively mask the contribution of HopPtoV in plant pathogenesis.  相似文献   

14.
Salmonella enterica encodes a type III secretion system (TTSS) within a pathogenicity island located at centisome 63 (SPI-1), which is essential for its pathogenicity. This system mediates the transfer of a battery of bacterial proteins into the host cell with the capacity to modulate cellular functions. The transfer process is dependent on the function of protein translocases SipB, SipC, and SipD. We report here that Salmonella protein InvE, which is also encoded within SPI-1, is essential for the translocation of bacterial proteins into host cells. An S. enterica serovar Typhimurium mutant carrying a loss-of-function mutation in invE shows reduced secretion of SipB, SipC, and SipD while exhibiting increased secretion of other TTSS effector proteins. We also demonstrate that InvE interacts with a protein complex formed by SipB, SipC, and their cognate chaperone, SicA. We propose that InvE controls protein translocation by regulating the function of the Sip protein translocases.  相似文献   

15.
Salmonella translocate bacterial effectors into host cells to confer bacterial entry and survival. It is not known how the host cells cope with the influx of these effectors. We report here that the Salmonella effector, SopA, interacts with host HsRMA1, a ubiquitin E3 ligase with a previously unknown function. SopA is ubiquitinated and degraded by the HsRMA1-mediated ubiquitination pathway. A sopA mutant escapes out of the Salmonella-containing vacuoles less frequently to the cytosol than wild type Salmonella in HeLa cells in a HsRMA1-dependent manner. Our data suggest that efficient bacterial escape into the cytosol of epithelial cells requires HsRMA1-mediated SopA ubiquitination and contributes to Salmonella-induced enteropathogenicity.  相似文献   

16.
A number of bacterial pathogens have evolved sophisticated strategies to subvert host-cell signal-transduction pathways for their own benefit. These bacteria produce and export proteins capable of specific interactions with key mammalian cell regulatory molecules in order to derail the normal functions of the cells. In this study, we describe the identification of a modular effector protein secreted by the bacterial pathogen Salmonella typhimurium that is required for its full display of virulence. Sequence analysis revealed that a carboxy-terminal region of this protein, which we have termed SptP, is homologous to the catalytic domains of protein tyrosine phosphatases. Purified SptP protein efficiently dephosphorylated peptide substrates phosphorylated on tyrosine. An engineered mutant of SptP in which a critical Cys residue in the catalytic domain was changed to Ser was devoid of phosphatase activity, indicating a catalytic mechanism similar to that of other tyrosine phosphatases. In addition, an amino-terminal region of SptP exhibited sequence similarity to the ribosyltransferase exo-enzyme S from Pseudomonas aeruginosa and the cytotoxin YopE from Yersinia spp. The modular nature of this effector protein may allow multiple interactions with host-cell signalling functions.  相似文献   

17.
18.
The direct transport of virulence proteins from bacterium to host has emerged as a common strategy employed by Gram-negative pathogens to establish infections. Specialized secretion systems function to facilitate this process. The delivery of 'effector' proteins by these secretion systems is currently confined to two functionally similar but mechanistically distinct pathways, termed type III and type IV secretion. The type III secretion pathway is ancestrally related to the multiprotein complexes that assemble flagella, whereas the type IV mechanism probably emerged from the protein complexes that support conjugal transfer of DNA. Although both pathways serve to transport proteins from the bacterium to host, the recognition of the effector protein substrates and the secretion information contained in these proteins appear highly distinct. Here, we review the mechanisms involved in the selection of substrates by each of these transport systems and secretion signal information required for substrate transport.  相似文献   

19.
The mechanism of binding of thyroid hormones by the transport protein transthyretin (TTR) in vertebrates is structurally well characterised. However, a homologous family of transthyretin-like proteins (TLPs) present in bacteria as well as eukaryotes do not bind thyroid hormones, instead they are postulated to perform a role in the purine degradation pathway and function as 5-hydroxyisourate hydrolases. Here we describe the 2.5 Angstroms X-ray crystal structure of the TLP from the Gram-negative bacterium Salmonella dublin, and compare and contrast its structure with vertebrate TTRs. The overall architecture of the homotetramer is conserved and, despite low sequence homology with vertebrate TTRs, structural differences within the monomer are restricted to flexible loop regions. However, sequence variation at the dimer-dimer interface has profound consequences for the ligand binding site and provides a structural rationalisation for the absence of thyroid hormone binding affinity in bacterial TLPs: the deep, negatively charged thyroxine-binding pocket that characterises vertebrate TTR contrasts with a shallow and elongated, positively charged cleft in S. dublin TLP. We have demonstrated that Sdu_TLP is a 5-hydroxyisourate hydrolase. Furthermore, using site-directed mutagenesis, we have identified three conserved residues located in this cleft that are critical to the enzyme activity. Together our data reveal that the active site of Sdu_TLP corresponds to the thyroxine binding site in TTRs.  相似文献   

20.
Carey KL  Jongco AM  Kim K  Ward GE 《Eukaryotic cell》2004,3(5):1320-1330
Many intracellular pathogens are separated from the cytosol of their host cells by a vacuole membrane. This membrane serves as a critical interface between the pathogen and the host cell, across which nutrients are imported, wastes are excreted, and communication between the two cells takes place. Very little is known about the vacuole membrane proteins mediating these processes in any host-pathogen interaction. During a screen for monoclonal antibodies against novel surface or secreted proteins of Toxoplasma gondii, we identified ROP4, a previously uncharacterized member of the ROP2 family of proteins. We report here on the sequence, posttranslational processing, and subcellular localization of ROP4, a type I transmembrane protein. Mature, processed ROP4 is localized to the rhoptries, secretory organelles at the apical end of the parasite, and is secreted from the parasite during host cell invasion. Released ROP4 associates with the vacuole membrane and becomes phosphorylated in the infected cell. Similar results are seen with ROP2. Further analysis of ROP4 showed it to be phosphorylated on multiple sites, a subset of which result from the action of either host cell protein kinase(s) or parasite kinase(s) activated by host cell factors. The localization and posttranslational modification of ROP4 and other members of the ROP2 family of proteins within the infected cell make them well situated to play important roles in vacuole membrane function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号