首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10−4 M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by α-adrenergic blockade with phenoxybenzamine. Epinephrine (4 · 10−5 M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the β-blocking agent, propranolol. Pure α-adrenergic stimulation with methoxamine (4 · 10−4 M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 · 10−6 M, isoproterenol (a β-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 · 10−5 M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cylcic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 · 10−6 M).These data strongly suggest that cholinergic muscarinic agonists and α-adrenergic agonist stimulate amylase output in rabbit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by α-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this issue to the effects of cholinergic stimuli.  相似文献   

2.
The effect of theophylline and isoproterenol on bovine tracheal smooth muscle tension and cyclic AMP levels was investigated. Concentrations of isoproterenol (4 × 10?6 M) and theophylline (10 mM) that relaxed carbachol-contracted tracheal muscle by 85–95% did not significantly elevate control levels of cyclic AMP. In the absence of carbachol, several-fold increases in cyclic AMP were caused by isoproterenol although no elevations by theophylline were measurable. However, when isoproterenol and theophylline were administered together, theophylline potentiated the rise in cyclic AMP caused by isoproterenol. Phosphodiesterase studies in tracheal muscle showed the presence of a high and a low Km enzyme which were inhibited by theophylline. Cyclic GMP levels were elevated in muscles contracted by carbachol as well as in carbachol-contracted muscles that had been relaxed by theophylline. In non-tension studies, in which the tracheal muscle was not under isometric tension, carbachol or theophylline alone increased cyclic GMP and together they synergistically elevated cyclic GMP. Atropine blocked the elevation caused by carbachol but not that caused by theophylline. In contrast to theophylline, isoproterenol did not elevate cyclic GMP, and in carbachol-contracted muscles that had been relaxed by isoproterenol, cyclic GMP levels were no different from control. Also, in non-tension studies, isoproterenol decreased basal cyclic GMP and antagonized the increase in cyclic GMP due to carbachol.The results indicate that whole-tissue levels of cyclic AMP and cyclic GMP do not correlate with the state of tracheal smooth muscle tension. Cyclic GMP levels do not clearly correlate with either contraction or relaxation. The inhibition by carbachol of increases in cyclic AMP due to isoproterenol and the inhibition by isoproterenol of increases in cyclic GMP due to carbachol provide evidence for a reciprocal cholinergic-adrenergic antagonism of cyclic AMP and cyclic GMP levels. The antagonism did not appear to be due to either cyclic nucleotide affecting the elevation of the other since the levels of both cyclic nucleotides were depressed.  相似文献   

3.
The undecapeptides, substance P and eledoisin, caused a rapid, concentration-dependent increase in K+ efflux and amylase release from parotid tissue slices. The effects were not blocked by beta-adrenergic, alpha-adrenergic, or cholinergic antagonists. Incubation buffer calcium was required for stimulation of K efflux and amylase release. The action of the undecapepides was independent of any effects on parotid cyclic AMP or cyclic GMP levels. Since the actions of the undecapeptides were Ca2+ dependent and no effects on cyclic nucleotide levels were discerned it was concluded that Ca2+ plays a primary role in agonist regulation of K+ efflux from the parotid.  相似文献   

4.
The effects of adrenergic and cholinergic agents, present singly or in combination, on the levels of cyclic AMP and cyclic GMP in slices of rat lung were studied. It was found that isoproterenol increased pulmonary cyclic AMP levels about 3-fold, and this increase was abolished by propranolol, but not by phenoxybenzamine. Acetylcholine increased the cyclic GMP levels also about 3-fold (thus raising its tissue content above that of cyclic AMP), and this increment was largely reduced by atropine, but not by hexamethonium. While without effects on the cyclic GMP levels when present alone, isoproterenol antagonized acetylcholine in increasing cyclic GMP levels. Acetylcholine, while lacking effects on the basal levels of cyclic AMP, on the other hand, depressed the augmented levels caused by isoproterenol.The data presented indicate that cyclic GMP may mediate the cholinergic action in lung and that the pulmonary cyclic GMP levels are also closely regulated by β-adrenergic receptor activation.  相似文献   

5.
Ten minutes after KCl-depolarization of rat myometrial strips, at which time the muscles were in a state of sustained contracture, tissue levels of adenosine 3',5'-cyclic monophosphate (cyclic AMP) were increased by approximately 40% over relaxed controls, and levels of guanosine 3',5'-cyclic monophosphate (cyclic GMP) were decreased by 40%. At this point both nitroglycerin (4 X 10(-4) M) and papaverine (2 X 10(-5) M) were capable of relaxing the depolarized muscles without significantly increasing cyclic AMP levels. Isoproterenol, in concentrations from 5 X 10(-9) M to 10(-6) M, relaxed the depolarized muscles and significantly increased tissue levels of cyclic AMP. However, the magnitudes of the cyclic AMP increases seen after the lower concentrations of isoproterenol were small relative to the increases observed during KCl-contracture alone. For example, the 40% elevation of cyclic AMP seen 10 min after KCl-depolarization did not cause the muscles to relax, whereas 5 X 10(-9) M isoproterenol caused relaxation with an increase in cyclic AMP levels of only 16% over depolarized controls. It was concluded that changes in total tissue levels of cyclic AMP were not responsible for the uterine relaxation caused by nitroglycerin, papaverine or isoproterenol in these experiments. Cyclic GMP levels in the depolarized muscles were not significantly changed by isoproterenol or papaverine but were increased approximately 80% by nitroglycerin. The above results are not consistent with the previously suggested roles for cyclic GMP and cyclic AMP as mediators of smooth muscle contraction and relaxation, respectively.  相似文献   

6.
Catecholamines induce unique growth and secretory responses in salivary glands. An analysis of three enzyme activities involved in cyclic AMP metabolism was carried out to identify the specificity of these responses for salivary glands. Although parotid adenylate cyclase has an unusually high specific activity, its kinetic properties and responses to NaF, guanine nucleotides, and isoproterenol are similar to other tissues not stimulated to grow after isoproterenol stimulation. Solubilized adenylate cyclase was separated from other membrane proteins by isoelectric focusing on polyacrylamide gels. There was a single broad peak of activity witha pI of 5.9. Parotid protein kinase has a subcellular distribution and substrate preference similar to hepatic protein kinase. Activation by cyclic AMP is also similar to that reported for other tissues, with a Ka of 1.2 - 10(-7) M. Parotid cyclic AMP and cyclic GMP phosphodiesterases are a heterogeneous group of enzymes with relatively low specific activity as compared with mouse pancreas, liver and brain. Isoelectric focusing of supernatant phosphodiesterases revealed at least sixpeaks of enzyme activity in the pI range of 4-6. Previous reports of a large increase in parotid cyclic AMP levels after in vivo administration of catecholamines and specific growth and secretion could be the result of a relatively high specific activity adenylate cyclase associated with low specific activity cyclic AMP phosphodiesterases.  相似文献   

7.
Cyclic GMP inhibits the slow inward Ca current of cardiac cells. This effect could be due to a cyclic GMP-mediated phosphorylation of the Ca channel (or some protein modifying Ca channel activity), or alternatively, to enhanced degradation of cyclic AMP owing to stimulation of a phosphodiesterase by cyclic GMP. To test the latter possibility, we examined the effect of extracellular 8-bromo-cyclic GMP on cyclic AMP levels in guinea pig papillary muscles, in parallel with electrophysiological experiments. Isoproterenol (10(-6) M) significantly increased the cyclic AMP levels and induced Ca-dependent slow action potentials. Superfusion with 8-bromo-cyclic GMP (10(-3) M) inhibited the slow action potentials induced by isoproterenol. However, muscles superfused with 8-bromo-cyclic GMP had cyclic AMP levels identical to those of muscles superfused with isoproterenol alone. Similarly, 8-bromo-cyclic GMP had no effect on the increase in cyclic AMP levels of muscles treated with forskolin (10(-6) M) or histamine (10(-6) M). We conclude that the inhibitory effect of cyclic GMP on slow Ca channels in guinea pig ventricular cells is not due to a decrease in the cyclic AMP levels. We hypothesize that a cyclic GMP-mediated phosphorylation is the most likely explanation for the Ca channel inhibition observed in this preparation.  相似文献   

8.
In dispersed acini from guinea-pig pancrease several pancreatic secretagogues increased calcium outflux, cyclic GMP and amylase secretion, whereas nitroprusside and hydroxylamide increased cyclic GMP but did not increase calcium outflux or amylase secretion and did not alter the action of secretagogues on calcium outflux or amylase secretion. Secretin and vasoactive intestinal peptide increased cyclic AMP and increased secretion but did not alter cyclic GMP. Nitroprusside and hydroxylamine did not alter cyclic AMP or the action of secretin or vasoactive intestinal peptide on cyclic AMP and enzyme secretion. Agents that increased cyclic GMP also caused release of the nucleotide into the extracellular medium; however, this release did not correlate with secretion of amylase into the extracellular medium. 8-Bromo cyclic AMP as well as 8-bromo cyclic GMP increased enzyme secretion and potentiated the increase in enzyme secretion caused by cholecystokinin or carbachol. The increase in amylase secretion caused by vasoactive intestinal peptide or secretin plus either of the cyclic nucleotide derivatives was the same as that caused by the peptide alone. These results indicate that cyclic GMP does not mediate the action of secretagogues on pancreatic enzyme secretion, that the release of cyclic GMP into the extracellular medium does not occur by exocytosis and that the increase in enzyme secretion caused by 8-bromo cyclic GMP results from its stability to mimic the action of endogenous cyclic AMP.  相似文献   

9.
Rat parotid cells were permeabilized with digitonin to examine their secretory dynamics. Cells were isolated by a modification of the method previously described by Hootman [1985). J. Biol. Chem. 260, 4186-4194) in which alpha-chymotrypsin was included. The final preparation consisted of approx. 40-60% single cells. The cells were 85-90% viable by trypan blue exclusion and secreted amylase when stimulated with isoproterenol. Digitonin (2 or 5 microM) was sufficient for permeabilization while 2 microM digitonin was somewhat more effective in maintaining cell integrity as indicated by lactate dehydrogenase release. Digitonin had minimal effects on intracellular granules in the whole cell and was, thus, relatively selective. The response of digitonin-permeabilized cells to calcium (without secretagogues) in the incubation medium was monitored by amylase release. For a wide range of applied free calcium concentrations (1 X 10(-7) M to 10(-4) M) a statistically significant increase in amylase secretion was observed. Control cells did not release amylase to a similar extent without secretagogue. Cyclic AMP (50 microM) significantly enhanced amylase secretion from digitonin-treated cells at all concentrations of free calcium tested. Neither calcium nor cyclic AMP alone was sufficient to stimulate maximal amylase release. Our results provide direct evidence for a model in which calcium and cyclic AMP work on separate pathways as interacting regulators of exocytosis.  相似文献   

10.
Adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) metabolism in rat renal cortex was examined. Athough the cyclic AMP and cyclic GMP phosphodiesterases are similarly distributed between the soluble and particulate fractions following differential centrifugation, their susceptibility to inhibition by theophylline, dl-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724), and 1-methyl-3-isobutylxanthine (MIX) are quite different. Ro 20-1724 selectively inhibited both renal cortical-soluble and particulate cyclic AMP degradation, but had little effect on cyclic GMP hydrolysis. Theophylline and MIX effectively inhibited degradation of both cyclic nucleotides, with MIX the more potent inhibitor. Effects of these agents on the cyclic AMP and cyclic GMP content of cortical slices corresponded to their relative potency in broken cell preparations. Thus, in cortical slices, Ro 20-1724 (2 mm) had the least effect on basal (without agonist), carbamylcholine, and NaN3-stimulated cyclic GMP accumulation, but markedly increased basal and (parathyroid hormone) PTH-mediated cyclic AMP accumulation, MIX (2 mm) which was as effective as Ro 20-1724 in potentiating basal and PTH-stimulated increases in cyclic AMP also mediated the greatest augmentation of basal, carbamylcholine, and NaN3-stimulated accumulation of cyclic GMP. By contrast, theophylline (10 mm) which was only 12% as effective as Ro 20-1724 in increasing the total slice cyclic AMP content in the presence of PTH was much more effective than Ro 20-1724 in potentiating carbamylcholine and NaN3-mediated increases in cyclic GMP. These results demonstrate selective inhibition of cyclic nucleotide phosphodiesterase activities in the rat renal cortex and support the possibility of multiple cyclic nucleotide phosphodiesterases in this tissue. Furthermore, both cyclic nucleotides appear to be rapidly degraded in the renal cortex.  相似文献   

11.
The effects of vasoactive intestinal polypeptide (VIP) on exocrine protein secretion were studied in enzymatically dispersed cell aggregates from rat parotid glands. VIP (10(-9) - 10(-7) M) stimulated secretion of alpha-amylase in a dose-dependent manner. The VIP-induced release of alpha-amylase was potentiated in the presence of a phosphodiesterase inhibitor. Basal levels of cyclic AMP of the dispersed cells were increased 6.7-fold after stimulation for 10 min by VIP (10(-7) M). The VIP-induced release of alpha-amylase was reduced by 40% when cells were incubated in a Ca2+-free medium in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA). Efflux of 45Ca2+ was significantly increased over basal levels by stimulation with VIP (10(-8) and 10(-7) M), but this increased efflux was approximately only half the increased efflux induced by carbachol (10(-5) M). VIP had no effect on the incorporation of [14C]leucine into protein by parotid cells, whereas incorporation was reduced to 30% of the control value by carbachol (10(-5) M). Thus, the VIP-ergic secretory response in the rat parotid gland is associated with a raised intracellular cyclic AMP level and the mobilisation of a different intracellular Ca2+ pool than that mobilised by carbachol. It is, therefore, closely analogous to the beta-adrenergic response.  相似文献   

12.
Carbachol antagonizes isoproterenol-stimulable cyclic AMP accumulation in mouse atria by direct activation of cardiac muscarinic receptors. Inhibition by carbachol occurs rapidly and is completely reversed when the drug is removed. Neither nitroprusside nor 8-bromo-cyclic GMP mimics the actions of carbachol and low concentrations of carbachol block cyclic AMP accumulation without increasing the intracellular cyclic GMP content. Carbachol does not block cyclic AMP accumulation by activating phosphodiesterase since it is fully effective in the face of marked phosphodiesterase inhibition, nor does it appear to inhibit the catalytic activity of adenylate cyclase since it does not decrease either basal or cholera toxin-stimulated cyclic AMP accumulation. The interaction between carbachol and isoproterenol is not competitive, since cholinergic inhibition cannot be surmounted by increasing concentrations of isoproterenol. The site of muscarinic action therefore appears to involve the mechanisms coupling the hormone-receptor complex to adenylate cyclase. This site is distinct from that of cholera toxin action since there is no antagonism between the effects of cholera toxin and carbachol on cyclic AMP metabolism in the atrium.  相似文献   

13.
ATP-dependent Ca2+ transport was studied in basolateral membrane vesicles prepared from rat parotid gland slices incubated without or with agents which increase cyclic AMP. Isoproterenol (10(-5) M), forskolin (2 X 10(-6) M) and 8-bromocyclic AMP (2 X 10(-3) M) all increased ATP-dependent 45Ca2+ uptake 1.5- to 3-fold. The effect of isoproterenol was concentration-dependent and blocked by the beta-adrenergic antagonist propranolol. Enhanced uptake did not appear an artifact of vesicle preparation as apparent vesicle sidedness, 45Ca2+ efflux rates, specific activity of marker enzymes and equilibrium Ca2+ content were identical in vesicle preparations from control and 8-bromocyclic AMP-treated slices. Kinetic studies showed the ATP-dependent Ca2+ transport system in vesicles from 8-bromocyclic AMP-treated slices displayed a approximately 50% increase in Vmax and in Km Ca2+, compared to controls. The data suggest that physiological secretory stimuli to rat parotid acinar cells, which involve cyclic AMP, result in a readjustment of the basolateral membrane ATP-dependent Ca2+ pump.  相似文献   

14.
The effect of Ca2+ and putative neurotransmitters on formation of cyclic AMP and cyclic GMP has been studied in incubated slices of brain tissue. Cyclic AMP levels in cerebellar slices after about 90 min of incubation ranged from 10 pmol/mg protein in rabbit, to 25 in guinea pig, to 50 in mouse and 200 in rat. Cyclic GMP levels in the same four species showed no correlation with cyclic AMP levels and were, respectively, 1.3, 20, 5 and 30 pmol/mg protein. The absence of calcium during the prolonged incubation of cerebellar slices had little effect on final levels of cyclic AMP, while markedly decreasing final levels of cyclic GMP. Reintroduction of Ca2+ resulted in a rapid increase in cerebellar levels of cyclic GMP which was most pronounced for guinea pig where levels increased nearly 7-fold within 5 min. Prolonged incubation of guinea pig cerebral cortical slices in calcium-free medium greatly elevated cyclic AMP levels apparently through enhanced formation of adenosine, while having little effect on final levels of cyclic GMP. Norepinephrine and adenosine elicited accumulations of cyclic AMP and cyclic GMP in both guinea pig cerebral cortical and cerebellar slices. Glutamate, γ-aminobutyrate, glycine, carbachol, and phenylephrine at concentrations of 1 mM or less had little or noe effect on cyclic nucleotide levels in guinea pig cerebellar slices. Prostaglandin E1 and histamine slightly increased cerebellar levels of cyclic AMP. Isoproterenol increased both cyclic AMP and cyclic GMP. The accumulation of cyclic AMP and cyclic GMP elicited by norepinephrine in cerebellar slices appeared, baed on dose vs. response curves, agonist-antaganonist relationships and calcium dependency, to involve in both cases activation of a similar set of ß-adrenergic receptors. In cerebellar slices accumulations of cyclic AMP and cyclic GMP elicted by norepinephrine and by a depolarizing agent, veratridine, were strongly dependent on the presence of calcium. The stimulatory effects of adenosine on cyclic AMP and cyclic GMP formation were antagonized by theophylline. The lack of correlations between levels of cyclic AMP and cyclic GMP under the various conditions suggested independent activation of cyclic AMP- and cyclic GMP-generating systems in guinea pig cerebellar slices by interactions with Ca2+, norephinephrine and adenosine.  相似文献   

15.
In rat pancreatic fragments, stimulation of amylase and labeled protein release by carbachol, caerulein, and ionophore A 23187 results within minutes in a short rise in cyclic GMP levels. Cyclic AMP levels do not change significantly. The secretory response elicited by each secretagogue is not modified when combined in pairs. Under intracellular calcium depleting conditions, both the cyclic GMP and the secretory responses to secretagogues are inhibited in parallel, suggesting a good correlation between both processes. Furthermore, 8-Bromocyclic GMP induces pancreatic secretion, but to a lesser extent, and fails to alter the increase in secretion caused by the various secretagogues. However, other agents such as imidazole, ascorbic acid, phenylhydrazine, and sodium azide also increase cyclic GMP levels but fail to stimulate pancreatic secretion. On the other hand, dibutyryl cyclic AMP also stimulates amylase and labeled protein discharge and potentiates the increase caused by cabachol, caerulein, and ionophore A 23187. These results do not permit conclusions regarding a cause and effect relationship between cyclic GMP and secretion. A role for calcium seems to be the most likely.  相似文献   

16.
S Narumi  Y Nagai  Y Saji  Y Nagawa 《Life sciences》1984,34(22):2177-2184
Effects of TRH or its analog DN-1417 (gamma-butyrolactone-gamma-carbonyl-L-histidyl-L- prolinamide ) and pentobarbital, alone or in combination, on oxygen consumption and cyclic AMP formation in rat cerebral cortex slices were investigated. The oxygen consumption of rat cerebral cortex slices as measured with a Warburg apparatus, increased linearly over time (0 to 60-min incubation at 37C). Addition of pentobarbital (1 to 7 x 10-4M) inhibited oxygen consumption, in a concentration-dependent manner, up to 45% of control. A concomitant application of DN-1417 (10-5M) or TRH (10-4M) and pentobarbital (5 x 10-4M) led to a partial recovery of the pentobarbital effect. The similar anti-pentobarbital effects were observed with the addition of carbachol (10-4M) or dibutyryl cyclic AMP (10-3M), but not norepinephrine (10-4M) or dopamine (10-4M). DN-1417, TRH, carbachol, norepinephrine or dopamine at 10-4M stimulated cyclic AMP formation in the cerebral cortex slices. Addition of pentobarbital (1 to 7 x 10-4M) inhibited the cyclic AMP formation, in a concentration-dependent manner. DN-1417, TRH or carbachol at 10-4M but not norepinephrine or dopamine at 10-4M significantly reversed the reduction of cyclic AMP formation induced by pentobarbital (5 x 10-4M). Atropine (10-4M) almost completely abolished DN-1417-, TRH- and carbachol-induced cyclic AMP formation in the presence and absence of pentobarbital.  相似文献   

17.
Carbamylcholine, caerulein and cholecystokinin octapeptide rapidly increased the cyclic GMP concentration and amylase secretion in isolated guinea pig pancreatic slices. The cyclic GMP concentration was increased eight-fold over the basal concentration in 30 s, with concomitant increase in the rate of amylase secretion. The tissue concentration of cyclic GMP then rapidly declined to a plateau value of approx. 16% of the peak level within 10 min and was maintained at that concentration for the duration of the experiment. We have shown earlier (Kapoor, C.L. and Krishna, G. (1977) Science 196, 1003–1005) that the decrease of tissue cyclic GMP was due mainly to the secretion of cyclic GMP into the medium. The cyclic AMP concentration in the tissue was not changed, nor was it secreted into the medium.There was a correlation between the concentration response to various agents for the increase in cyclic GMP concentration and amylase secretion in pancreatic slices. Carbamylcholine increased both the cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 1.5 μM concentration. Caerulein and cholecystokinin octapeptide were 5000 times more potent than carbamylcholine in increasing cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 0.3 nM concentration. Atropine, which completely inhibited the increase in cyclic GMP and amylase secretion induced by carbamylcholine, did not block the effects of caerulein or cholecystokinin octapeptide. These results suggest that various secretagogues induced amylase secretion by increasing the cyclic GMP concentration, but the mechanism by which cyclic GMP caused amylase secretion remains to be elucidated.  相似文献   

18.
Catecholamines increased guanosine 3':5'-monophosphate (cyclic GMP) accumulation by isolated rat liver cells. The increases in cyclic GMP due to 1.5 muM epinephrine, isoproterenol, or phenylephrine were blocked by phenoxybenzamine but not by propranolol. The possibility that cyclic GMP is involved in the glycogenolytic action of catecholamines seems unlikely since cyclic GMP accumulation is also elevated by carbachol, insulin, A23187, and to a lesser extent by glucagon. Furthermore, carbachol had little effect on glycogenolysis while insulin actually inhibited hepatic glycogenolysis. The rise in cyclic GMP due to carbachol was abolished by atropine and that due to all agents was markedly reduced by the omission of extracellular calcium. However, the glycogenolytic action of glucagon and catecholamines was only slightly inhibited by the omission of calcium. The only agent which was unable to stimulate glycogenolysis in calcium-free buffer was the divalent cation ionophore A23187. There was a drop in ATP content of liver cells during incubation in calcium-free buffer which was accompanied by an inhibition of glucagon-activated adenosine 3':5'-monophosphate (cyclic AMP) accumulation. The presence of calcium inhibited the rise in adenylate cyclase activity of lysed rat liver cells due to glucagon or isoproterenol but not that due to fluoride. These results suggest that the stimulation by catecholamines and glucagon of glycogenolysis is not mediated through cyclic GMP nor does it depend on the presence of extracellular calcium. Cyclic GMP accumulation was increased in liver cells by agents which either inhibit, have little affect, or accelerate glycogenolysis. The significance of elevations of cyclic GMP in rat liver cells remains to be established.  相似文献   

19.
The role of cyclic AMP in stimulus-secretion coupling with investigated in rat parotid tissue slices in vitro. Isoproterenol and norepinephrine stimulated a rapid intracellular accumulation of cyclic AMP, which reached a maximum level of 20-30 times the control value by 5 to 10 min after addition of the drug. Isoproterenol was approximately ten times more potent in stimulating both alpha-amylase release and cyclic AMP accumulation than were norepinephrine and epinephrine, which had nearly equal effects on these two parameters. Salbutamol and phenylephrine were less effectivema parallel order of potency and sensitivity was observed for the stimulation of adenylate cyclase activity in a washed particulate fractionmthe results suggest that these drugs are acting on a parotid acinar cell through a beta1-adrenergic mechanismmat the lowest concentrations tested, each of the adrenergic agonists stimulated significant alpha-anylase release with no detectable stimulation of cyclic AMP accumulationmeven in the presence of theophylline, phenylephrine at several concentrations increased alpha-amylase release without a detectable increase in cyclic AMP levels. However, phenylephrine did stimulate adenylate cyclase. These data suggest that, under certain conditions, large increases in the intra-cellular concentration of cyclic AMP may not be necessary for stimulation of alpha-amylase release by adrenergic agonists. Also consistent with this idea was the observation that stimulation of cyclic AMP accumulation by isoproterenol was much more sensitive to inhibition by propranolol than was the stimulation of alpha-amylase release by isoproterenol. Stimulation of alpha-amylase release by phenylephrine was only partially blocked by either alpha- or beta-adrenergic blocking agents, whereas stimulation of adenylate cyclase by phenylephrine was blocked by propranolol and not by phentolaminemphenoxybenzamine and phentolamine potentiated the effects of norepinephrine and isoproterenol on both cyclic AMP accumulation and alpha-amylase release by N-6,O-2'-dibutyryl adenosine 3',5'-monophosphate; These observations may indicate a non-specific action of phenoxybenzamine, and demonstrate the need for caution in interpreting evidence obtained using alpha-adrenergic blocking agents as tools for investigation of alpha- and beta-adrenergic antagonism.  相似文献   

20.
Catecholamines induce unique growth and secretory responses in salivary glands. An analysis of three enzyme activities involved in cyclic AMP metabolism was carried out to identify the specificity of these responses for salivary glands.Although parotid adenylate cyclase has an unusually high specific activity, its kinetic properties and responses to NaF, guanine nucleotides, and isoproterenol are similar to other tissues not stimulated to grow after isoproterenol stimulation. Solubilized adenylate cyclase was separated from other membrane proteins by isoelectric focusing on polyacrylamide gels. There was a single broad peak of activity with a pI of 5.9. Parotid protein kinase has a subcellular distribution and substrate preference similar to hepatic protein kinase. Activation by cyclic AMP is also similar to that reported for other tissues, with a Ka of 1.2·10?7 M. Parotid cyclic AMP and cyclic GMP phosphoriesterases are a heterogeneous group of enzymes with relatively low specific activity as compared with mouse pancreas, liver and brain. Isoelectric focusing of supernatant phosphodiesterases revealed at least six peaks of enzyme activity in the pI range of 4–6.Previous reports of a large increase in parotid cyclic AMP levels after in vivo administration of catecholamines and specific growth and secretion could be the result of a relatively high specific activity adenylate cyclase associated with low specific activity cyclic AMP phosphodiesterases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号