首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Affinity labeling of pyridoxal kinase with adenosine polyphosphopyridoxal   总被引:3,自引:0,他引:3  
Pyridoxal kinase is inactivated by preincubation with the affinity label reagent adenosine tetraphosphate pyridoxal (AP4-PL) at a mixing molar ratio of 5:1 AP4-PL contains structural features of the substrates pyridoxal and ATP. The substrate ATP affords substantial protection against inactivation. The extent of chemical modification by the affinity label was determined by measuring the spectroscopic properties of AP4-pyridoxyl chromophores attached to the enzyme after reduction with NaBH4. The incorporation of 2 mol of the affinity label per enzyme dimer is needed for complete inactivation of the kinase. After chymotryptic digestion of the enzyme modified with AP4-PL and reduced with tritiated NaBH4, only one radioactive peptide absorbing at 325 nm was separated by reverse-phase high performance liquid chromatography. The amino acid sequence of the radioactive peptide, elucidated by Edman degradation, revealed that a specific lysyl residue of monomeric pyridoxal kinase has reacted with the affinity label reagent. It is postulated that the modified lysyl residue is involved in direct interactions with phosphoryl groups of ATP.  相似文献   

2.
After isolation and purification, the H+-ATPase from chloroplasts, CF0F1, contains one endogenous ADP at a catalytic site, and two endogenous ATP at non-catalytic sites. Incubation with 2-azido-[alpha-32P]ADP leads to tight binding of azidonucleotides. Free nucleotides were removed by three consecutive passages through centrifugation columns, and upon UV-irradiation most of the label was covalently bound. The labelled enzyme was digested by trypsin, the peptides were separated by ion exchange chromatography into nitreno-AMP, nitreno-ADP and nitreno-ATP labelled peptides, and these were then separated by reversed phase chromatography. Amino acid sequence analysis was used to identify the type of the nucleotide binding site. After incubation with 2-azido-[alpha-32P]ADP, the covalently bound label was found exclusively at beta-Tyr-362. Incubation conditions with 2-azido-[alpha-32P]ADP were varied, and conditions were found which allow selective binding of the label to different catalytic sites, designated as 1, 2 and 3 in order of decreasing affinity for ADP, and either catalytic site 1 or catalytic sites 1 and 2 together were labelled. For measurements of the degree of inhibition by covalent modification, CF0F1 was reconstituted into phosphatidylcholine liposomes, and the membranes were energised by an acid-base transition in the presence of a K+/valinomycin diffusion potential. The rate of ATP synthesis was 50-80 s(-1), and the rate of ATP hydrolysis was 15 s(-1) measured under multi-site conditions. Covalent modification of either catalytic site 1 or catalytic sites 1 and 2 together inhibited ATP synthesis and ATP hydrolysis equally, the degree of inhibition being proportional to the degree of modification. Extrapolation to complete inhibition indicates that derivatisation of catalytic site 1 leads to complete inhibition when 1 mol 2-nitreno-ADP is bound per mol CF0F1. Derivatisation of catalytic sites 1 and 2 together extrapolates to complete inhibition when 2 mol 2-nitreno-ADP are bound per CF0F1. The rate of ATP synthesis and the rate of ATP hydrolysis were measured as a function of the substrate concentration from multi-site to uni-site conditions with derivatised CF0F1 and with non-derivatised CF0F1. ATP synthesis and ATP hydrolysis under uni-site and under multi-site condition were inhibited by covalent modification of either catalytic site 1 or catalytic sites 1 and 2 together. The results indicate that derivatisation of site 1 inhibits activation of the enzyme and that cooperative interactions occur at least between the catalytic sites 2 and 3.  相似文献   

3.
The kinetic parameters for the hydrolysis by F1 of the photoreactive nucleotide analogue 2-azido-ATP were determined (Vmax, 105 U/mg F1; Km, 250 microM, in the presence of 1.0 mM SO2-3). In the absence of an activating anion, a non-linear relationship in a Lineweaver-Burk plot was found for the hydrolysis of 2-azido-ATP. The 2-azido-analogues of ATP and ADP proved to be good photoaffinity labels causing notable inactivation of the F1-ATPase activity upon irradiation at 360 nm. This inhibition was also used to demonstrate high-affinity binding of these analogues to a catalytic binding site on the F1. High-affinity binding proved to be an Mg2+-requiring process, occurring with both 2-azido-ATP and 2-azido-ADP but hardly or not occurring with 8-azido-AT(D)P. Covalent binding of 2-nitreno-ATP upon irradiation of F1 containing tightly bound [beta-32P]2-azido-ATP results in a proportional inhibition of ATPase activity, extrapolating to 0.92 mol of covalently bound label per mol of F1 needed for the complete inactivation of the enzyme. When the F1 was irradiated in the presence of excess [beta-32P]2-azido-AT(D)P, 3-4 mol of label were bound when the enzyme was fully inactivated. In all cases, all or most of the radioactivity was found on the beta subunits.  相似文献   

4.
The complete amino acid sequence of 2-acetamido-2-deoxy-D-galactose-binding Cytisus scoparius seed lectin II (CSII) was determined using a protein sequencer. After digestion of CSII with endoproteinase Lys-C or Asp-N, the resulting peptides were purified by reversed-phase high performance liquid chromatography (HPLC) and then subjected to sequence analysis. Comparison of the complete amino acid sequence of CSII with the sequences of other leguminous seed lectins revealed regions of extensive homology. The amino acid residues of concanavalin A (Con A) involved in the metal binding site are highly conserved among those of CSII. A carbohydrate-binding peptide of CSII was obtained from the endoproteinase Asp-N digest of CSII by affinity chromatography on a column of GalNAc-Gel. This peptide was retained on the GalNAc-Gel column and was presumed to have affinity for the column. The amino acid sequence of the retarded peptide was determined using a protein sequencer. The retarded peptide was found to correspond to the putative metal-binding region of Con A. These results strongly suggest that this peptide represents the carbohydrate-binding and metal ion-binding sites of CSII.  相似文献   

5.
The nucleotide affinity label 5'-p-fluorosulfonylbenzoyl adenosine reacts at the active site of rabbit muscle pyruvate kinase, with irreversible inactivation occurring concomitant with incorporation of about 1 mol of reagent/mol of enzyme subunit (Annamalai, A. E., and Colman, R. F. (1981) J. Biol. Chem. 256, 10276-10283). Purified peptides have now been isolated from 70% inactivated enzyme containing 0.7 mol of reagent/mol of enzyme subunit. Rabbit muscle enzyme labeled with radioactive 5'-p-fluorosulfonylbenzoyl adenosine was digested with thermolysin. Nucleosidyl peptides were purified by chromatography on phenylboronate-agarose and reverse-phase high performance liquid chromatography. After amino acid and N-terminal analysis, the peptides were identified by comparison with the primary sequences of chicken and cat muscle enzyme. About 75% of the reagent incorporated was distributed equally among three O-(4-carboxybenzenesulfonyl)tyrosine-containing peptides: Leu-Asp-CBS-Tyr-Lys-Asn, Val-CBS-Tyr, and Leu-Asp-Asn-Ala-CBS-Tyr. These tyrosines are located in a 28-residue segment of the 530-amino acid sequence. The remainder of the incorporation was found in two N epsilon-(4-carboxybenzenesulfonyl)lysine-containing peptides. Leu-CBS-Lys and Ala-CBS-Lys-Gly-Asp-Tyr-Pro. Modification in the presence of MnATP or MnADP resulted in a marked decrease in labeling of these peptides in proportion to the decreased inactivation. It is suggested that these modified residues are located in the region of the catalytically functional nucleotide binding site of pyruvate kinase.  相似文献   

6.
The amino acid sequence -Gly-X-X-X-X-Gly-Lys- occurs in many, diverse, nucleotide-binding proteins, and there is evidence that it forms a flexible loop which interacts with one or other of the phosphate groups of bound nucleotide. This sequence occurs as -Gly-Gly-Ala-Gly-Val-Gly-Lys- in the beta-subunit of the enzyme F1-ATPase, where it is thought to form part of the catalytic nucleotide-binding domain. Mutants of Escherichia coli were generated in which residue beta-lysine 155, at the end of the above sequence, was replaced by glutamine or glutamate. Properties of the soluble purified F1-ATPase from each mutant were studied. The results showed: 1) replacement of lysine 155 by Gln or Glu decreased the steady-state rate of ATP hydrolysis by 80 and 66%, respectively. 2) Characteristics of ATP hydrolysis at a single site were not markedly changed in the mutant enzymes, implying that lysine 155 is not directly involved in bond cleavage during ATP hydrolysis or bond formation during ATP synthesis. 3) The binding affinity for MgATP was weakened considerably in the mutants (Lys much much greater than Gln greater than Glu), whereas the binding affinity for MgADP was affected only mildly (Lys = Gln greater than Glu), suggesting that lysine 155 interacts with the gamma-phosphate of ATP bound at a single high affinity catalytic site. 4) The major determinant of inhibition of steady-state ATPase turnover rate in the mutant enzymes was an attenuation of positive catalytic cooperativity. 5) The data are consistent with the idea that during multisite catalysis residue 155 of beta-subunit undergoes conformational movement which changes substrate and product binding affinities.  相似文献   

7.
Inoue M  Hiratake J  Suzuki H  Kumagai H  Sakata K 《Biochemistry》2000,39(26):7764-7771
gamma-Glutamyltranspeptidase (EC 2.3.2.2) is the enzyme involved in glutathione metabolism and catalyzes the hydrolysis and transpeptidation of gamma-glutamyl compounds such as glutathione and its derivatives. The reaction is thought to proceed via a gamma-glutamyl-enzyme intermediate where a hitherto unknown catalytic nucleophile is gamma-glutamylated. Neither affinity labeling nor site-directed mutagenesis of conserved amino acids has succeeded so far in identifying the catalytic nucleophile. We describe here the identification of the catalytic nucleophile of Escherichia coli gamma-glutamyltranspeptidase by a novel mechanism-based affinity labeling agent, 2-amino-4-(fluorophosphono)butanoic acid (1), a gamma-phosphonic acid monofluoride derivative of glutamic acid. Compound 1 rapidly inactivated the enzyme in a time-dependent manner (k(on) = 4.83 x 10(4) M(-1) s(-1)). The inactivation rate was decreased by increasing the concentration of the substrate. The inactivated enzyme did not regain its activity after prolonged dialysis, suggesting that 1 served as an active-site-directed affinity label by phosphonylating the putative catalytic nucleophile. Ion-spray mass spectrometric analyses revealed that one molecule of 1 phosphonylated one molecule of the small subunit. LC/MS experiments of the proteolytic digests of the phosphonylated small subunit identified the N-terminal peptide Thr391-Lys399 as the phosphonylation site. Subsequent MS/MS experiments of this peptide revealed that the phosphonylated residue was Thr-391, the N-terminal residue of the small subunit. We conclude that the N-terminal Thr-391 is the catalytic nucleophile of E. coli gamma-glutamyltranspeptidase. This result strongly suggests that gamma-glutamyltranspeptidase is a new member of the N-terminal nucleophile hydrolase family.  相似文献   

8.
Catalytic residues and the mode of action of the exo-beta-D-glucosaminidase (GlcNase) from Amycolatopsis orientalis were investigated using the wild-type and mutated enzymes. Mutations were introduced into the putative catalytic residues resulting in five mutated enzymes (D469A, D469E, E541D, E541Q, and S468N/D469E) that were successfully produced. The four single mutants were devoid of enzymatic activity, indicating that Asp469 and Glu541 are essential for catalysis as predicted by sequence alignments of enzymes belonging to GH-2 family. When mono-N-acetylated chitotetraose [(GlcN)3-GlcNAc] was hydrolyzed by the enzyme, the nonreducing-end glucosamine unit was produced together with the transglycosylation products. The rate of hydrolysis of the disaccharide, 2-amino-2-deoxy-D-glucopyranosyl 2-acetamido-2-deoxy-D-glucopyranose (GlcN-GlcNAc), was slightly lower than that of (GlcN)2, suggesting that N-acetyl group of the sugar residue located at (+1) site partly interferes with the catalytic reaction. The time-course of the enzymatic hydrolysis of the completely deacetylated chitotetraose [(GlcN)4] was quantitatively determined by high-performance liquid chromatography (HPLC) and used for in silico modeling of the enzymatic hydrolysis. The modeling study provided the values of binding free energy changes of +7.0, -2.9, -1.8, -0.9, -1.0, and -0.5 kcal/mol corresponding, respectively, to subsites (-2), (-1), (+1), (+2), (+3), and (+4). When chitosan polysaccharide was hydrolyzed by a binary enzyme system consisting of A. orientalis GlcNase and Streptomyces sp. N174 endochitosanase, the highest synergy in the rate of product formation was observed at the molar ratio 2:1. Thus, GlcNase would be an efficient tool for industrial production of glucosamine monosaccharide.  相似文献   

9.
A new affinity label, 8-(4-bromo-2,3-dioxobutylthio)guanosine 5'-triphosphate (8-BDB-TGTP), has been synthesized by initial reaction of GTP to form 8-Br-GTP, followed by its conversion to 8-thio-GTP, and finally coupling with 1,4-dibromobutanedione to produce 8-BDB-TGTP. 8-BDB-TGTP and its synthetic intermediates were characterized by thin-layer chromatography, UV, (31)P NMR spectroscopy, as well as by bromide and phosphorus analysis. Escherichia coli adenylosuccinate synthetase is inactivated by 8-BDB-TGTP at pH 7.0 at 25 degrees C. Pretreatment of the enzyme with N-ethylmaleimide (NEM) blocks the exposed Cys(291) and leads to simple pseudo-first-order kinetics of inactivation. The inactivation exhibits a nonlinear relationship of initial inactivation rate versus 8-BDB-TGTP concentration, indicating the reversible association of 8-BDB-TGTP with the enzyme prior to the formation of a covalent bond. The inactivation kinetics exhibit an apparent K(I) of 115 microM and a k(max) of 0.0262 min(-1). Reaction of the NEM-treated adenylosuccinate synthetase with 8-BDB-[(3)H]TGTP results in 1 mol of reagent incorporated/mol of enzyme subunit. Adenylosuccinate or IMP plus GTP completely protects the enzyme against 8-BDB-TGTP inactivation, whereas IMP or GTP alone provide partial protection against inactivation. AMP is much less effective in protection. The results of ligand protection studies suggest that E. coli adenylosuccinate synthetase may accommodate 8-BDB-TGTP as a GTP analog. The new affinity label may be useful for identifying catalytic amino acid residues of protein proximal to the guanosine ring.  相似文献   

10.
Pig heart NADP-dependent isocitrate dehydrogenase is 65% inactivated by 3-bromo-2-ketoglutarate (Ehrlich, R.S., and Colman, R.F., 1987, J. Biol. Chem. 262, 12,614-12,619) and 90% inactivated by 2-(4-bromo-2,3-dioxobutylthio)-1,N6- ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A-2',5'-DP) (Bailey, J.M., and Colman, R.F., 1987, J. Biol. Chem. 262, 12,620-12,626). Both inactivation reactions result in enzyme with an incorporation of 1.0 mol reagent/mol enzyme dimer and both modified enzymes bind only 1.0 mol manganous isocitrate or NADPH/mol enzyme dimer as compared to 2.0 mol manganous isocitrate or NADPH/mol enzyme dimer for unmodified enzyme. The inactivation reactions, which occur at or near the nucleotide binding site, are mutually exclusive. Reaction with either affinity reagent led to the isolation of the same modified triskaidekapeptide, DLAGXIHGLSNVK. We have isolated from isocitrate dehydrogenase a peptide, DLAGCIHGLSNVK, that had been modified by N-ethylmaleimide (NEM) with no loss of enzymatic activity. We now show that enzyme modified by NEM in the presence of isocitrate plus Mn2+ retains full catalytic activity but is not inactivated by either of the affinity reagents; thus, all three reagents appear to react at the same site. The analysis of HPLC tryptic maps of isocitrate dehydrogenase treated under denaturing conditions with iodo[3H]acetic acid or [3H]NEM demonstrates that both bromoketoglutarate and 2-BDB-T epsilon A-2',5'-DP react with the cysteine residue of DLAGCIHGLSNVK. We conclude that the cysteine of this triskaidekapeptide is close to the coenzyme binding site but is not essential for catalytic function.  相似文献   

11.
Psychrophilic phosphatase I from Shewanella sp. is a cold enzyme that was found as a novel protein-tyrosine-phosphatase (PTPase, EC 3. 1.3.48) with a histidine as its catalytic residue [Tsuruta and Aizono (1999) J. Biochem. 125, 690-695]. Here, we determined the nucleotide sequence of a DNA fragment (2,004 bp) containing the phosphatase I gene by cloning with polymerase chain reaction (PCR) and inverted PCR techniques. The deduced amino acid sequence, of the enzyme contained a conserved region of protein-serine/threonine-phosphatase (PPase). The 38.5 kDa-recombinant protein expressed in Escherichia coli was purified to homogeneity by glutathione-Sepharose 4B column chromatography, treatment with endoproteinase and Mono-Q column chromatography. The recombinant enzyme had a specific activity of 49.4 units and, like native psychrophilic phosphatase I, exhibited high catalytic activity at low temperature and PTPase activity.  相似文献   

12.
Bovine liver glutamate dehydrogenase reacts covalently with 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-monophosphate (2-BDB-TAMP) with incorporation of 1 mol reagent/mol enzyme subunit and loss of one of the two ADP sites of native enzyme [S. P. Batra and R. F. Colman, J. Biol. Chem. 261, 15565-15571 (1986)]. Incorporation of reagent is prevented specifically by ADP. The modified enzyme has now been digested with trypsin. The nucleotidyl peptide has been purified by chromatography on phenylboronate-agarose, followed by reverse-phase HPLC. On the basis of amino acid composition following acid hydrolysis, and gas-phase sequencing, the modified tryptic peptide was established as Ala-Gln-His-Ser-Gln-His-Arg, corresponding to amino acids 80-86 of the known glutamate dehydrogenase primary structure. The evidence presented indicates that the target amino acid attacked by 2-BDB-TAMP is histidine-82 and that this residue is located within the high-affinity ADP-activating site of glutamate dehydrogenase. In the course of this work, it was found that the positions of Gln84 and His85 had been reported as reversed in the revised sequence of bovine liver glutamate dehydrogenase [J. H. Julliard and E. L. Smith, J. Biol. Chem. 254, 3427-3438 (1979)]. Three additional corrections are here reported in the amino acid sequence of the native enzyme on the basis of gas-phase sequencing of other peptides purified by HPLC: Asp168 (not Asn); His221-Gly222 (not Gly-His); and Glu355 (not Gln).  相似文献   

13.
beta-Glucosidase A from bitter almonds was inhibited by the substrate analogue 6-bromo-3,4,5-trihydroxycyclo[2-3H]hex-1-ene oxide. Incorporation of 2 mol inhibitor/mol of dimeric enzyme resulted in total loss of activity. From tryptic digests of the labeled enzyme two radioactive peptides were isolated and their sequence determined (binding site of inhibitor underlined): peptide I, containing approx. 60% of the label: Ile-Thr-Glx-Glx-Gly-Val--Phe-Gly-Asp-Ser-Glx-(Ala, Asx2, Pro)-Lys and peptide II with approx. 30% of the label: Gly-Thr-Glx-Asp. The specifity of the reaction of beta-glucosidases (beta-D-glucoside glucohydrolase, EC 3.2.1.21) with substrate-related epoxides indicates that the aspartic acid labeled in peptide I participates in the catalytic process of beta-glucoside hydrolysis. The labeling of a second site is interpreted in terms of two, mutually exclusive, binding modes of the inhibitor.  相似文献   

14.
The H(+)-ATPase from chloroplasts, CF(0)F(1), was isolated and purified. The enzyme contained one endogenous ADP at a catalytic site, and two endogenous ATP at non-catalytic sites. Incubation with 2-azido-[alpha-(32)P]AD(T)P leads to a tight binding of the azido-nucleotides. Free nucleotides were removed by three consecutive passages through centrifugation columns, and after UV-irradiation, the label was covalently bound. The labelled enzyme was digested by trypsin, the peptides were separated by ion exchange chromatography into nitreno-AMP, nitreno-ADP and nitreno-ATP labelled peptides, and these were then separated by reversed phase chromatography. Amino acid sequence analysis was used to identify the type of the nucleotide binding site. After incubation with 2-azido-[alpha-(32)P]ADP, the covalently bound label was found exclusively at beta-Tyr-362, i.e. binding occurs only to catalytic sites. Incubation conditions with 2-azido-[alpha-(32)P]ADP were varied, and conditions were found which allow selective binding of the label to different catalytic sites, either to catalytic site 2 or to catalytic site 3. For measurements of the degree of inhibition by covalent modification, CF(0)F(1) was reconstituted into phosphatidylcholine liposomes, and the membranes were energised by an acid-base transition in the presence of a K(+)/valinomycin diffusion potential. The rate of ATP synthesis was 120 s(-1), and the rate of ATP hydrolysis was 20 s(-1), both measured under multi-site conditions. Covalent modification of either catalytic site 2 or catalytic site 3 inhibited both ATP synthesis and ATP hydrolysis, the degree of inhibition being proportional to the degree of modification. Extrapolation to complete inhibition indicates that modification of one catalytic site, either site 2 or site 3, is sufficient to completely block multi-site ATP synthesis and ATP hydrolysis. The rate of ATP synthesis and the rate of ATP hydrolysis were measured as a function of the substrate concentration from multi-site to uni-site conditions with covalently modified CF(0)F(1) and with non-modified CF(0)F(1). The result was that uni-site ATP synthesis and ATP hydrolysis were not inhibited by covalent modification of either catalytic site 2 or site 3. The results indicate cooperative interactions between catalytic nucleotide binding sites during multi-site catalysis, whereas neither uni-site ATP synthesis nor uni-site ATP hydrolysis require interaction with other sites.  相似文献   

15.
The role of the HELLGH (residues 450-455) motif in the sequence of rat dipeptidyl peptidase III (EC 3.4.14.4) was investigated by replacing Glu451 with an alanine or an aspartic acid residue and by replacing His450 and His455 with a tyrosine residue by site-directed mutagenesis. Mutated cDNAs were expressed three or four times in Escherichia coli, and the resulting proteins were purified to apparent homogeneity. None of the expressed mutated proteins exhibited DPP III activity. The mutants of Glu451 contained 1 mol of zinc per mole of protein, but mutants His450 and His455 did not contain significant amounts of zinc as determined by atomic absorption spectrometry. The Leu453-deleted enzyme (having the zinc aminopeptidase motif HExxH-18-E) had almost the same order of binding affinity (for Arg-Arg-2-naphthylamide) as the wild-type enzyme, but the specificity constant was about 10%. These results provide evidence that the suitable number of amino acids included between Glu451 and His455 is three residues for the enzyme activity and confirm that residues His450, His455, and Glu451 are involved in zinc coordination and catalytic activity.  相似文献   

16.
Acetyl-CoA carboxylase (EC 6.4.1.2) has been isolated from rat liver by an avidin-affinity chromatography technique. This preparation has a specific activity of 1.17 +/- 0.06 U/mg and appears as a major (240,000 dalton) and minor (140,000 dalton) band on SDS-polyacrylamide gel electrophoresis. Enzyme isolated by this technique can incorporate 1.09 +/- 0.07 mol phosphate per mol enzyme (Mr = 480,000) when incubated with the catalytic subunit of the cyclic AMP-dependent protein kinase at 30 degrees C for 1 h. The associated activity loss under these conditions is 57 +/- 4.0% when the enzyme is assayed in the presence of 2.0 mM citrate. Less inactivation is observed when the enzyme is assayed in the presence of 5.0 mM citrate. The specific protein inhibitor of the cyclic AMP-dependent protein kinase blocks both the protein kinase stimulated phosphorylation and inactivation of acetyl-CoA carboxylase. The phosphorylated, inactivated rat liver carboxylase can be partially dephosphorylated and reactivated by incubation with a partially purified protein phosphatase. Preparations of acetyl-CoA carboxylase also contained an endogenous protein kinase(s) which incorporated 0.26 +/- 0.11 mol phosphate per mol carboxylase (Mr = 480,000) accompanied by a 26 +/- 9% decline in activity. We have additionally confirmed that the rat mammary gland enzyme, also isolated by avidin affinity chromatography, can be both phosphorylated and inactivated upon incubation with the cyclic AMP-dependent kinase.  相似文献   

17.
Dehydroquinase, the third enzyme of the shikimate biosynthetic pathway, is inactivated by iodoacetate. Iodoacetate behaves as an affinity label for the Escherichia coli enzyme with a Ki of 30 mM and a limiting inactivation rate of 0.014 min-1 at pH 7.0 and 25 degrees C. Affinity labeling is mediated by the negative charge of the reagent since iodoacetamide does not inactivate the enzyme. 2.1-2.3 mol of carboxymethyl groups are incorporated per mol of protein monomer resulting in 90% inactivation of enzymic activity. The majority of the bound label (80%) is split equally between 2 methionine residues, Met-23 and Met-205, which were identified by sequencing radiolabelled peptide fragments isolated after proteolytic digestion. An equilibrium mixture of the substrate (dehydroquinate) and product (dehydroshikimate) substantially reduces the inactivation rate and specifically decreases the incorporation of label at both of these site, implicating them as being in or near the active site of the enzyme. Sequence alignments with other biosynthetic dehydroquinases show that of the 2 methionine residues only Met-205 is conserved. N-terminal alignments of all the available dehydroquinase sequences (both catabolic and biosynthetic classes) revealed that Met-23, although itself not conserved, resides within a cluster of conserved sequence which may constitute part of the dehydroquinate binding site. A consensus sequence was derived from these alignments and used to probe the protein sequence data banks. A related sequence was found in dehydroquinate synthase, the enzyme which precedes dehydroquinase in the shikimate pathway. These results suggest that we have identified part of the dehydroquinate binding site in both enzymes.  相似文献   

18.
A tissue carboxypeptidase-A-like enzyme was purified to apparent homogeneity from terminally differentiated epidermal cells of 2-day-old rats by potato inhibitor affinity chromatography followed by FPLC Mono Q column chromatography. The enzyme has an Mr of 35,000 as determined by SDS-polyacrylamide gel electrophoresis and HPLC gel filtration. It has a pH optimum of 8.5 for hydrolysis of benzyloxycarbonyl-Phe-Leu (Km = 0.22 mM, kcat = 57.9 s-1). The enzyme does not hydrolyze substrates with Arg, Lys and Pro at the C-terminal and Pro at the penultimate position. Angiotensin I was effectively hydrolyzed (Km = 0.06 mM, kcat = 6.48 s-1) and produced both des-Leu10-angiotensin I and angiotensin II. The enzyme activity, relatively stable at 4 degrees C and pH 8.0-10.5, was inactivated at pH values higher than 12.0 and lower than 5.0 or at 65 degrees C for 10 min. Inhibitor profiles of the epidermal enzyme also differed slightly from those of tissue carboxypeptidase A of pancreatic or mast cell origin.  相似文献   

19.
The culture filtrate of Bacillus intermedius 3-19 was used for isolation by chromatography on CM-cellulose and Mono S columns of a proteinase that is secreted during the late stages of growth. The enzyme is irreversibly inhibited by the inhibitor of serine proteinases diisopropyl fluorophosphate, has two pH optima (7.2 and 9.5) for casein hydrolysis and one at pH 8.5 for Z-Glu-pNA hydrolysis. The molecular weight of the enzyme is 26.5 kD. The K(m) for Z-Glu-pNA hydrolysis is 0.5 mM. The temperature and pH dependences of the stability of the proteinase were studied. The enzyme was identified as glutamyl endopeptidase 2. The N-terminal sequence (10 residues) and amino acid composition of the enzyme were determined. The enzyme hydrolyzes Glu4-Gln5, Glu17-Asp18, and Cys11-Ser12 bonds in the oxidized A-chain of insulin and Glu13-Ala14, Glu21-Arg22, Cys7-Gly8, and Cys19-Gly20 bonds in the oxidized B-chain of insulin.  相似文献   

20.
Human placental estradiol-17beta dehydrogenase is rapidly inactivated upon treatment with 3-bromoacetoxyestrone. Pseudo-first order kinetic data are obtained and inactivation is accompanied by incorporation of 1 mol of 3-acetoxyestrone/mol of subunit (Mr =34,000). Treatment of the inactivated enzyme with (4S)-[4-2H]DPNH results in the formation of covalently bound [17alpha-2H]estradiol-17beta, which can be released by hydrolysis and identified by gas chromatography-mass sepctrometry. When (4R)-[4-2H]DPNH was used, deuterium was not transferred. Thus, the normal stereochemistry of hydridetransfer is preserved for both partners. After treatment with p-mercuribenzoate, affinity-labeled estradiol-17beta dehyrogenase is no longer able to caralyze reduction its covalently bound estrone; in the presence of DPNH and native enzyme, however, reduction occurs, demonstrating that affinity-labeled enzyme can itself serve as subtrate for native estradiol-17beta dehydrogenase. The reversible enzymatic interconversion of covalently bound estrone was demonstrated using a transhydrogenase assay. The ability of an enzyme to catalyze its normal reaction with a covalently bound substrate is termed catalytic competence, and is considered to be a new criterion for affinity labeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号