首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetic nephropathy, a lethal microvascular complication of diabetes mellitus, is characterized by progressive albuminuria, excessive deposition of extracellular matrix, thickened glomerular basement membrane, podocyte abnormalities, and podocyte loss. The G protein-coupled receptors (GPCRs) have attracted considerable attention in diabetic nephropathy, but the specific effects have not been elucidated yet. Likewise, abnormal signaling pathways are closely interrelated to the pathologic process of diabetic nephropathy, despite the fact that the mechanisms have not been explored clearly. Therefore, GPCRs and its mediated signaling pathways are essential for priority research, so that preventative strategies and potential targets might be developed for diabetic nephropathy. This article will give us comprehensive overview of predominant GPCR types, roles, and correlative signaling pathways in diabetic nephropathy.  相似文献   

2.
The molecular basis by which commonly used signaling pathways are able to elicit tissue-specific responses in multicellular organisms is an important yet poorly understood problem. In this review, we use the receptor tyrosine kinase (RTK)/RAS/MAP kinase signaling cascade as a model to discuss various hypotheses that have been proposed to explain signaling specificity. Specificity can arise at the level of the receptor, through the modulation of signaling kinetics, through the interaction of different signaling pathways, and at the level of downstream signaling components. Mechanisms of specificity used by the RTK/RAS/MAP kinase signaling pathway might apply to other signaling pathways as well, and might help explain how multicellular organisms are able to generate tissues of diverse forms and functions from a small set of common signaling pathways.  相似文献   

3.
Gan B  Guan JL 《Cellular signalling》2008,20(5):787-794
A central question in cell biology is how various cellular processes are coordinately regulated in normal cell and how dysregulation of the normal signaling pathways leads to diseases such as cancer. Recent studies have identified FIP200 as a crucial signaling component to coordinately regulate different cellular events by its interaction with multiple signaling pathways. This review will focus on the cellular functions of FIP200 and its interacting proteins, as well as the emerging roles of FIP200 in embryogenesis and cancer development. Further understanding of FIP200 function might provide novel therapeutic targets for human diseases such as cancer.  相似文献   

4.
Most proteins do not function on their own but as part of large signaling complexes that are arranged in every living cell in response to specific environmental cues. Proteins interact with each other either constitutively or transiently and do so with different affinity. When identifying the role played by a protein inside a cell, it is essential to define its particular cohort of binding partners so that the researcher can predict what signaling pathways the protein is engaged in. Once identified and confirmed, the information might allow the interaction to be manipulated by pharmacological inhibitors to help fight disease. In this review, we discuss protein-protein interactions and how they are essential to propagate signals in signaling pathways. We examine some of the high-throughput screening methods and focus on the methods used to confirm specific protein-protein interactions including; affinity tagging, co-immunoprecipitation, peptide array technology and fluorescence microscopy.  相似文献   

5.
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.  相似文献   

6.
There is increasing evidence that cell cycle transit is potentially lethal, with survival depending on the activation of metabolic pathways which block apoptosis. However, the identities of those pathways coupling cell cycle transit to survival remain undefined. Here we show that the eukaryotic translation initiation factor 4E (eIF4E) can mediate both proliferative and survival signaling. Overexpression of eIF4E completely substituted for serum or individual growth factors in preserving the viability of established NIH 3T3 fibroblasts. An eIF4E mutant (Ser-53 changed to Ala) defective in mediating its growth-factor-regulated functions was also defective in its survival signaling. Survival signaling by enforced expression of eIF4E did not result from autocrine release of survival factors, nor did it lead to increased expression of the apoptosis antagonists Bcl-2 and Bcl-XL. In addition, the execution apparatus of the apoptotic response in eIF4E-overexpressing cells was found to be intact. Increased expression of eIF4E was sufficient to inhibit apoptosis in serum-restricted primary fibroblasts with enforced expression of Myc. In contrast, activation of Ha-Ras, which is required for eIF4E proliferative signaling, did not suppress Myc-induced apoptosis. These data suggest that the eIF4E-activated pathways leading to survival and cell cycle progression are distinct. This dual signaling of proliferation and survival might be the basis for the potency of eIF4E as an inducer of neoplastic transformation.  相似文献   

7.
Autophagy has attracted a lot of attention in recent years. More and more proteins and signaling pathways have been discovered that somehow feed into the autophagy regulatory pathways. Regulation of autophagy is complex and condition-specific, and in several diseases, autophagic fluxes are changed. Here, we review the most well-established concepts in this field as well as the reported signaling pathways or components which steer the autophagy machinery. Furthermore, we will highlight how autophagic fluxes are changed in various diseases either as cause for or as response to deal with an altered cellular homeostasis and how modulation of autophagy might be used as potential therapy for such diseases.  相似文献   

8.
The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation   总被引:2,自引:0,他引:2  
The Ras-extracellular signal-regulated kinase (Ras-ERK) and phosphatidylinositol 3-kinase-mammalian target of rapamycin (PI3K-mTOR) signaling pathways are the chief mechanisms for controlling cell survival, differentiation, proliferation, metabolism, and motility in response to extracellular cues. Components of these pathways were among the first to be discovered when scientists began cloning proto-oncogenes and purifying cellular kinase activities in the 1980s. Ras-ERK and PI3K-mTOR were originally modeled as linear signaling conduits activated by different stimuli, yet even early experiments hinted that they might intersect to regulate each other and co-regulate downstream functions. The extent of this cross-talk and its significance in cancer therapeutics are now becoming clear.  相似文献   

9.
T Chiba  H Yamaza    I Shimokawa 《Current Genomics》2007,8(7):423-428
Insulin/insulin-like growth factor-I (IGF-I) pathways are recognized as critical signaling pathways involved in the control of lifespans in lower organisms to mammals. Caloric restriction (CR) reduces plasma concentration of insulin, growth hormone (GH), and IGF-I. CR retards various age-dependent disorders such as nuerodegenerative diseases and extends lifespan in laboratory rodents. These beneficial effects of CR are partly mimicked in spontaneous or genetically engineered rodent models of reduced insulin and GH/IGF-I axis. Most of these long-living rodents show increased insulin sensitivity; however, recent study has revealed that some other rodents show normal or reduced insulin sensitivity. Thus, increased insulin sensitivity might be not prerequisite for lifespan extension in insulin/GH/IGF-I altered longevity rodent models. These results highlighted that, for lifespan extension, the intracellular signaling molecules of insulin/GH/IGF-I pathways might be more important than actual peripheral or systemic insulin action.  相似文献   

10.
γ-aminobutyric acid or GABA is an amino acid that functionally acts as a neurotransmitter and is critical to neurotransmission. GABA is also a metabolite in the Krebs cycle. It is therefore unsurprising that GABA and its receptors are also present outside of the central nervous system, including in immune cells. This observation suggests that GABAergic signaling impacts events beyond brain function and possibly human health beyond neurological disorders. Indeed, GABA receptor subunits are expressed in pathological disease states, including in disparate cancers. The role that GABA and its receptors may play in cancer development and progression remains unclear. If, however, those cancers have functional GABA receptors that participate in GABAergic signaling, it raises an important question whether these signaling pathways might be targetable for therapeutic benefit. Herein we summarize the effects of modulating Type-A GABA receptor signaling in various cancers and highlight how Type-A GABA receptors could emerge as a novel therapeutic target in cancer.  相似文献   

11.
12.
13.
14.
Early studies of glycogen synthase kinase 3 (GSK-3) in mammalian systems focused on its pivotal role in glycogen metabolism and insulin-mediated signaling. It is now recognized that GSK-3 is central to a number of diverse signaling systems. Here, we show that the major form of the kinase Shaggy (Sgg), the GSK-3 fly ortholog, is negatively regulated during insulin-like/phosphatidylinositol 3-kinase (PI3K) signaling in vivo. Since genetic studies of Drosophila melanogaster had previously shown that Wingless (Wg) signaling also acts to antagonize Sgg, we investigate how the kinase might integrate, or else discriminate, signaling inputs by Wg and insulin. Using Drosophila cell line assays, we found, in contrast to previous reports, that Wg induces accumulation of its transducer Armadillo (Arm)/beta-catenin without significant alteration of global Sgg-specific activity. In agreement with a previous study using human GSK-3beta, Wg did not cause phosphorylation changes of the Ser9 or Tyr214 regulatory phosphorylated sites of Sgg. Conversely, as shown in mammalian systems, insulin-induced inhibition of Sgg-specific activity by phosphorylation at the N-terminal pseudosubstrate site (Ser9) did not induce Arm/beta-catenin accumulation, showing selectivity in response to the different signaling pathways. Interestingly, a minigene bearing a Ser9-to-Ala change rescued mutant sgg without causing abnormal development, suggesting that the regulation of Sgg via the inhibitory pseudosubstrate domain is dispensable for many aspects of its function. Our studies of Drosophila show that Wg and insulin or PI3K pathways do not converge on Sgg but that they exhibit cross-regulatory interactions.  相似文献   

15.
16.
17.
Growth, differentiation, and apoptosis of eukaryotic cells are mediated by extremely complex signaling pathways and a high degree of coordination is required for regulating cell proliferation.In multicellular organisms homeostasis is achieved through signal transduction events. If these homeostatic mechanisms are interrupted, a disease, such as cancer, may ensue. Lipid second messengers, particularly those derived from polyphosphoinositide cycle, play a pivotal role in several cell signaling networks. Evidence accumulated over the past 15 years has highlighted the presence of an autonomous nuclear inositol lipid metabolism, and suggests that lipid signaling molecules are important components of signaling pathways operating within the nucleus. Recent findings are starting to elucidate how the nuclear phosphoinositide cycle is regulated and what down-stream molecules are targeted through this cycle. In this review, we shall summarize the most updated data about inositol lipid-dependent nuclear signaling pathways that might have a relevance for the development of cancer. In the near future, this knowledge might also prove to have relevance for the diagnosis and treatment of the neoplastic disease.  相似文献   

18.
The Yersinia virulence factor YopJ inhibits the host immune response and induces apoptosis by blocking multiple signaling pathways, including the MAPK and NFkappaB pathways in the infected cell. YopJ is a cysteine protease that cleaves a reversible post-translational modification in the form of ubiquitin or a ubiquitin-like protein. Homologues of YopJ are expressed in animal and plant pathogens, as well as a plant symbiont, suggesting a universal mechanism of regulating or modulating a variety of signaling pathways. The ability of YopJ to block the innate immune response, its activity as a ubiquitin-like protein protease and its activity with respect to mammalian signalling pathways are discussed in this review.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号