首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibodies against human plasminogen activator urokinase have been produced. A G62 hybridoma-producing antibody (IgG) was purified on a DEAE-cellulose column, and it proved useful for the measurement, identification and purification of antigens that had approximate molecular weights of 55- and 33-Kdaltons. For immunochemical measurements and purification, a competitive enzyme-linked immunosorbent assay (ELISA) and affinity chromatography using antibody-immobilized Sepharose 4B were developed. The ELISA has sensitivity to 20 p mole antigen molecules. The binding capacity of the antigen on the affinity column was evaluated on SDS-polyacrylamide slab gels as well as by fibrin autography and ELISA. Results showed that there was quantitative purification with no loss of enzyme activity in the one-step procedure. Western blotting and affinity binding showed antigenic bands with apparent molecular weights of 55- and 33-Kdaltons. Because the 55-Kdalton form contains 33- and 22-Kdalton components connected by a disulfide bond, the epitope domain is present on the 33-Kdalton chain. Using this antibody, we examined human kidney sections by direct immunofluorescence to locate the antigen. It was found in epithelial cells convoluted segments, in glomerulus cells and in capillary endothelial cells, evidence that renal tubular cells synthesize the antigen which then is secreted in urine.  相似文献   

2.
In human endothelial cell conditioned medium a fast-acting inhibitor of tissue-type plasminogen activator and urokinase has been detected. Moreover, an inactive inhibitor of these plasminogen activators is present, that can be activated by denaturing agents such as sodium dodecyl sulphate (SDS). The mutual relationship between these inhibitors was studied. The fast-acting plasminogen activator inhibitor from human endothelial cell conditioned medium was purified in a complex with tissue-type plasminogen activator by immune adsorption, using an immobilized anti-tissue-type plasminogen activator antibody. With the complex as an antigen, specific antibodies were raised against this inhibitor in rabbits. The antiserum immunoreacted with both the inactive and the fast-acting plasminogen activator inhibitor. Endothelial cell conditioned medium (containing the inactive plasminogen activator inhibitor) was treated with SDS and the inhibitory activity that emerged was purified. The SDS-generated product formed complexes with tissue-type plasminogen activator with the same molecular mass as those formed with the fast-acting inhibitor. Moreover, the inhibitory activity generated by SDS treatment showed the same kinetic behaviour with tissue-type plasminogen activator as did the fast-acting inhibitor. These data show that the fast-acting and the inactive plasminogen activator inhibitor are immunologically and functionally related to each other, and probably represent different molecular forms of the same protein.  相似文献   

3.
The human 66 000 mol. wt. plasminogen activator (HPA66; tissue-type plasminogen activator) has been purified from melanoma cells by a one-step affinity method with a monoclonal antibody. HPA66 purified in this way consists mainly of a one-polypeptide chain form with small amounts (15%) of a form containing two polypeptide chains held together by one or more disulphide bridges. The one-chain form was converted to the two-chain form by catalytic amounts of plasmin. During the conversion, the enzyme activity of HPA66, as measured by an [125I]plasminogen conversion assay and with a chromogenic substrate, increased linearly with the percentage of the two-chain form. A linear regression analysis showed that all enzyme activity could be accounted for by the two-chain form, while the one-chain form had no measurable enzyme activity (detection limit approximately 5% of the activity of the two-chain form). Together with previous findings of inactive proenzymes to murine and human approximately 50 000 mol. wt. (urokinase-type) plasminogen activators, these findings indicate that plasminogen activators are generally formed from inactive one-chain proenzymes which are converted to active two-chain enzymes by limited proteolysis, thus demonstrating a third step in a cascade reaction leading to extracellular proteolysis.  相似文献   

4.
Urokinase-related proteins in human urine occur mainly as a 1:1 complex of urokinase with an inhibitor (Stump, D. C., Thienpont, M., and Collen, D. (1986) J. Biol. Chem. 261, 1267-1273). BALB/c mice were immunized with this urokinase-urokinase inhibitor complex and spleen cells fused with mouse myeloma cells, resulting in hybridomas producing monoclonal antibodies. Three antibodies reacting with the complex but not with urokinase were utilized to develop a sensitive (0.5 ng/ml) enzyme-linked immunosorbent assay for the urokinase inhibitor, which was used for monitoring its purification by chromatography on zinc chelate-Sepharose, concanavalin A-Sepharose, SP-Sephadex C-50, and Sephadex G-100. A homogenous glycoprotein of apparent Mr 50,000 was obtained with a yield of 40 micrograms/liter urine and a purification factor of 320. One mg of the purified protein inhibited 35,000 IU of urokinase within 30 min at 37 degrees C. This protein was immunologically related to both the purified urokinase-urokinase inhibitor complex and to the inhibitor portion dissociated from it by nucleophilic dissociation. It was immunologically distinct from all known protease inhibitors, including the endothelial cell-derived fast-acting inhibitor of tissue-type plasminogen activator, the placental inhibitor of urokinase and protease nexin. In electrophoresis the protein migrated with beta-mobility. Inhibition of urokinase occurred with a second order rate constant (k) of 8 X 10(3) M-1 s-1 in the absence and of 9 X 10(4) M-1 s-1 in the presence of 50 IU of heparin/ml. The urokinase inhibitor was inactive towards single-chain urokinase-type plasminogen activator and plasmin, but it inhibited two-chain tissue-type plasminogen activator with a k below 10(3) M-1 s-1 and thrombin with a k of 4 X 10(4) M-1 s-1 in the absence and 2 X 10(5) M-1 s-1 in the presence of heparin. The concentration of this urokinase inhibitor in plasma from normal subjects determined by immunoassay was 2 +/- 0.7 micrograms/ml (mean +/- S.D., n = 25). The protein purified from plasma by immunoabsorption had the same Mr, amino acid composition, and immunoreactivity as the urinary protein. Furthermore, when urokinase was added to plasma, time-dependent urokinase-urokinase inhibitor complex formation was observed at a rate similar to that observed for the inhibition of urokinase by the purified inhibitor from urine. This urokinase inhibitor, purified from human urine, most probably represents a new plasma protease inhibitor.  相似文献   

5.
Serum-free culture medium collected from primary monolayer cultures of human articular chondrocytes was found to inhibit human urokinase [EC 3.4.21.31] activity. Although chondrocyte culture medium contained a small amount of endothelial-type plasminogen activator inhibitor which could be demonstrated by reverse fibrin autography, most of the urokinase inhibitory activity of chondrocyte culture medium was shown to be due to a different molecule from endothelial-type inhibitor, since it did not react with a specific antibody to this type of inhibitor. The dominant urokinase inhibitor in chondrocyte culture medium was partially purified by concanavalin A-Sepharose affinity chromatography. The partially purified inhibitor inhibited high-Mr urokinase more effectively than low-Mr urokinase, but no obvious inhibition was detected against tissue-type plasminogen activator, plasmin, trypsin, and thrombin. The inhibitor had an apparent Mr of 43,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis, and it was unstable to sodium dodecyl sulfate, acid, and heat treatments. Inhibition of urokinase by the inhibitor was accompanied with the formation of a sodium dodecyl sulfate-stable high-Mr complex between them. Inhibition and complex formation required the active site of urokinase. The partially purified inhibitor was thought to be immunologically different from the known classes of plasminogen activator inhibitors, including endothelial-type inhibitor, macrophage/monocyte inhibitor, and protease nexin, since it did not react with specific antibodies to these inhibitors.  相似文献   

6.
The endothelium may contribute to fibrinolysis through the binding of plasminogen activators or plasminogen activator inhibitors to the cell surface. Using a solid-phase radioimmunoassay, we observed that antibodies to recombinant tissue-type plasminogen activator (rt-PA) and plasminogen activator inhibitor type 1 (PAI-1) bound to the surface of cultured human umbilical vein endothelial cells (HUVEC). HUVEC also specifically bound added radiolabeled rt-PA with apparent steady-state binding being reached by 1 h at 4 degrees C. When added at low concentrations (less than 5 nM), rt-PA bound with high affinity mainly via the catalytic site, forming a sodium dodecyl sulfate-stable 105-kDa complex which dissociates from the cell surface over time and which could be immunoprecipitated by a monoclonal antibody to PAI-1. rt-PA bound to this high affinity site retained less than 5% of its expected plasminogen activator activity. At higher concentrations, binding did not require the catalytic site and was rapidly reversible. rt-PA initially bound to this site retained plasminogen activator activity. These studies suggest that tissue-type plasminogen activator and PAI-1 are expressed on the surface of cultured HUVEC. HUVEC also express unoccupied binding sites for exogenous tissue-type plasminogen activator. The balance between the expression of plasminogen activator inhibitors and these unoccupied binding sites for plasminogen activators on the endothelial surface may contribute to the regulation of fibrinolysis.  相似文献   

7.
1. Possible interactions between fibrin(ogen) and heparin in the control of plasminogen activation were studied in model systems using the thrombolytic agents tissue-type plasminogen activator (t-PA), urokinase and streptokinase.plasminogen activator complex and the substrates Glu- and Lys-plasminogen. 2. Both t-PA and urokinase activities were promoted by heparin and by pentosan polysulphate, but not by chondroitin sulphate or hyaluronic acid. The effect was on Km. 3. In the presence of soluble fibrin (and its mimic, CNBr-digested fibrinogen) the effect of heparin on t-PA was attenuated, although not abolished. In studies using a monoclonal antibody and 6-aminohexanoic acid, it was found that heparin and fibrin did not seem to share a binding site on t-PA. 4. The activity of t-PA B-chain was unaffected by heparin, so the binding site is located on the A-chain of t-PA (and urokinase). 5. Fibrin potentiated the activity of heparin on urokinase. The activity of streptokinase.plasminogen was unaffected by heparin whether or not fibrin was present. 6. If these influences of heparin and fibrin also occur in vivo, then, in the presence of heparin, the relative fibrin enhancement of t-PA will be diminished and the likelihood of systemic activation by t-PA is increased.  相似文献   

8.
On the basis of a fibrinolytic assay with 125I-fibrin, zymography, and immunoprobing with anti-human urokinase antibody, we have observed that the in vitro established NCTC human keratinocyte cell line releases into the culture medium a 54,000-Da plasminogen activator which is indistinguishable from human urokinase. Only the early release following the washing of keratinocyte monolayers is accounted for by secretion of preformed enzyme, while late secretory events require the de novo synthesis of urokinase. The released enzyme can interact by autocriny with its own receptor present on keratinocytes. The addition to the keratinocyte culture medium of the urokinase A chain can stimulate a concentration-dependent urokinase oversecretion, which is not paralleled by oversecretion of plasminogen activator inhibitor-1. Since stimulation of urokinase production can be obtained by an A chain concentration (5 ng/ml) which was previously shown to be efficient in inducing keratinocyte mobilization in an in vitro migration model system, we hypothesize that this mechanism may be important in vivo during the process of wound repair.  相似文献   

9.
Summary We studied the polarized secretion of tissue-type plasminogen activator in porcine thyroid cells cultured as a monolayer on porous bottom chambers. The presence of tissue-type plasminogen activator was detected by zymographic analysis on two independent media that were in contact either with the apical surface or with the basolateral membrane. The amount of tissue-type plasminogen activator was determined in both media by ELISA and enzyme assay. Measurable tissue-type plasminogen activator activity was found in the basal but not in the apical medium. However, on zymogram, a lytic zone corresponding to tissue-type plasminogen activator was visible in both media. In addition, a lytic band at 130 kDa suggested presence of a complex formed by tissue-type plasminogen activator and an inhibitor. Preferential basolateral tissue-type plasminogen activator antigen secretion (70%) has been observed, showing the possible relation between tissue-type plasminogen activator and extracellular matrix components. Neither tissue-type plasminogen activator level nor polarized secretion seemed to be regulated by thyrotropin (0.1 mU/ml).  相似文献   

10.
Purified approximately 54 kDa plasminogen activator inhibitor from human fibrosarcoma cells was converted to an inactive form with slightly higher electrophoretic mobility by incubation with catalytic amounts of urokinase-type or tissue-type plasminogen activator. Serine proteinase inhibitors and a monoclonal antibody against urokinase-type plasminogen activator inhibited the conversion, indicating that it was caused by plasminogen activator-catalyzed proteolysis. These findings represent the first demonstration of a well-defined protein apart from plasminogen, constituting a substrate for plasminogen activators.  相似文献   

11.
Plasminogen activator from conditioned medium of human embryonal lung fibroblasts was purified by phosphocellulose P11 chromatography, followed by p-aminobenzamidine-agarose chromatography. Two forms of plasminogen activators were separated by chromatography on the heparin-sepharose. The high molecular weight form (53 kDa) with specific activity 130 000 IU/mg consists of two polypeptide chains (31 kDa and 20 kDa) and exhibits strong affinity for fibrin-celite, lysine-sepharose and heparin-sepharose. The low molecular weight form (32 kDa, 190 000 IU/mg) also binds to these sorbents, but more weakly, and its properties are very similar to those of low molecular weight urokinase. Activity of both forms of plasminogen activators are inhibited by monoclonal antibodies against urokinase. A number of enzymological chromatographic and immunological properties indicates, that the plasminogen activator from lung fibroblasts is of urokinase type.  相似文献   

12.
Plasminogen activator secreted by lymphosarcoma (ascites) of mice was purified up to 163-fold by ammonium sulphate fractionation at 35% saturation and chromatography on p-aminobenzamidine-Sepharose 4B. The purified activator contained specific activity of 9980 IU/mg. The plasminogen activator displayed homogeneity by polyacrylamide slab gel electrophoresis and high performance liquid chromatography. The activator consisted of a single polypeptide chain with an apparent molecular weight of 66,000 daltons as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis under reducing conditions as well as gel filtration on Sephadex G-100. Distinct differences between this activator and urokinase were discernible in respect of specific activities, fibrin affinity and immunochemical properties. The lymphosarcoma activator appears to be of tissue-type origin since it showed gross similarity to standard tissue plasminogen activator in terms of modes of binding to fibrin and immunological attributes.  相似文献   

13.
The effects of purified soluble fibrin and of fibrinogen fragments (fibrin mimic) on the activation of Lys-plasminogen (i.e. plasminogen residues 77-790) to plasmin by streptokinase.plasminogen activator complex and by tissue-type plasminogen activator were studied. Dissociation constants of both activators were estimated to lie in the range 90-160 nM (fibrin) and 16-60 nM (CNBr-cleavage fragments of fibrinogen). The kinetic mechanism for both types of activator comprised non-essential enzyme activation via a Rapid Equilibrium Ordered Bireactant sequence. In order to relate the fibrin affinity of plasminogen activators to their fibrinolytic potency, the rate of lysis of supported human plasma clots formed in the presence of unmodified or active-centre-acylated precursors of plasminogen activators was studied as a function of the concentration of enzyme derivative. The concentrations of unmodified enzyme giving 50% lysis/h in this assay were 0.9, 2.0 and 11.0 nM for tissue-type plasminogen activator, streptokinase.plasmin(ogen) and urokinase respectively. However, the potencies of active-centre-acylated derivatives of these enzymes suggested that acylated-tissue plasminogen activator and streptokinase.plasminogen complexes of comparable hydrolytic stability were of comparable potency. Both types of acyl-enzyme were significantly more potent than acyl-urokinases.  相似文献   

14.
The generation of the proteolytic enzyme plasmin from its inactive precursor plasminogen, mediated by so called plasminogen activators, is the essential step in thrombolytic therapy. Plasmin is responsible for the degradation of the insoluble fibrin, the major component of a thrombus, to soluble fibrin degradation products. So far, the use of the more recently developed thrombolytic agents single-chain urokinase-type plasminogen activator (scu-PA) and tissue-type plasminogen activator (t-PA) were disappointing, mainly due to some of their negative propertiesin vivo, i.e., rapid inhibition and/or hepatic clearance. Besides some background information on the haemostatic balance; t-PA and scu-PA structure; and mechanisms of action, we here review some reported attempts to improve on these agents for thrombolytic therapy following various strategies. One of the more potential strategies, antibody-targeted thrombolytic therapy using bispecific monoclonal antibodies, is discussed somewhat more extensively, as are the several procedures that can befollowed for bispecific antibody preparation.  相似文献   

15.
Seven murine monoclonal antibodies produced against tissue plasminogen activator (tPA) were evaluated by means of enzyme-linked immunosorbent assays (ELISAs), and their effects on the enzymatic activities of tPA towards a synthetic substrate (S-2288) and plasminogen were investigated. One of the antibodies, TPA1-70, strongly inhibited the enzymatic activity of tPA in a fibrin agarose plate assay, while it did not affect the enzymatic activity towards the synthetic substrate or plasminogen. The antibody is directed to an epitope on the B-chain of tPA, which is necessary for the formation of a ternary complex of tPA, fibrin and plasminogen, but probably not to the active site. Another antibody, TPA2-14, partially inhibited the enzymatic activities of tPA towards the synthetic substrate and plasminogen, but it was not able to bind to the inactive tPA complexed with plasminogen activator inhibitor-1 (PAI-1). The antibody is directed to an epitope on the second kringle region, which is probably one of the PAI-1 binding sites. This property of the antibody enabled us to develop an ELISA for selective quantitation of free tPA in culture media conditioned with several human cell lines. The results indicate that tPA in these media exists either partially or almost entirely in a complex with PAI-1.  相似文献   

16.
Purification of epidermal plasminogen activator inhibitor   总被引:1,自引:0,他引:1  
T Hibino  S Izaki  M Izaki 《FEBS letters》1986,208(2):273-277
A plasminogen activator inhibitor was purified from human cornified cell extract by DEAE-Sepharose, Sephacryl S-200, and high-performance liquid chromatographies on hydroxyapatite HPHT and anion-exchanger Mono Q at pH 7.2 and 8.0. The purified inhibitor showed Mr 43,000 and pI 5.2 50% inhibition of fibrinolytic activity (1.5 IU) of urokinase and tissue-type plasminogen activator was attained by 0.60 ng and 11.0 ng purified inhibitor, respectively. Synthetic substrate assay demonstrated slow tight-binding inhibition to both urokinase and tissue-type plasminogen activator. The inhibitor did not inactivate plasmin, thrombin, glandular kallikrein or trypsin.  相似文献   

17.
The kinetics of the activation of plasminogen by tissue-type plasminogen activator were studied in the presence and the absence of CNBr-digested fibrinogen as a soluble cofactor. Michaelis-Menten kinetics applied and the kinetic parameters obtained were very similar to those previously reported for the activation in the presence of solid phase fibrin (Hoylaerts, M., Rijken, D. C., Lijnen, H. R., and Collen, D. (1982) J. Biol. Chem. 257, 2912-2919). The affinity of the enzyme for plasminogen dramatically increases in the presence of the soluble cofactor while the catalytic rate constant does not change significantly (KM drops from 83 to 0.18 microM and kcat increases from 0.07 to 0.28 s-1 for tissue-type plasminogen activator of melanoma origin). Fragments containing the lysine-binding sites of plasminogen compete with plasminogen for interaction with CNBr-digested fibrinogen. The dissociation constant of this interaction was found to be 4.5 microM for the high affinity lysine-binding site. No difference was found in the kinetic parameters for the activation of plasminogen by either tissue-type plasminogen activator of melanoma origin or by glycosylated forms of tissue-type plasminogen activator obtained by recombinant DNA technology. The present findings obtained in a homogenous liquid milieu support the previously proposed mechanism of the activation of plasminogen by tissue-type plasminogen activator in the presence of fibrin. This mechanism involves binding of both tissue-type plasminogen activator and plasminogen to fibrin.  相似文献   

18.
Twelve amino acid sequences of kringle-forming polypeptides were compiled from the known sequences of urokinase A-chain (human), a tissue-type plasminogen activator (human), prothrombin (human and bovine), and plasminogen (human). Their sequence homologies with maximum match were examined by a computer program. A homology alignment and graphic matrix analyses did show that they had a great degree of homology. All the cysteine residues responsible for the kringle structures of urokinase and the tissue-type plasminogen activator were confidently preserved as well as other proteins. A phylogenetic tree was then reconstructed, and the A- and S-chain of bovine and human prothrombins were accounted for the measurement of the evolutionary time span. It was found that urokinase had a larger time span, as much as 60 million years (MY), than the tissue-type plasminogen activator. A common ancestral element of the kringle-related serine proteases was placed at around 500 MY ago, as old as the diversion of the alpha- and beta-chains of hemoglobin. Thus, the kringle-families have undergone a substantial evolutionary divergence. Moreover, they can be subgrouped into three subfamilies: plasminogen activators, plasminogen, and prothrombin A-chains, the last being the most distantly diverged prothrombin S-chains.  相似文献   

19.
Novel properties of human monocyte plasminogen activator   总被引:2,自引:0,他引:2  
Human peripheral monocytes stimulated by either muramyl dipeptide [N-acetyl-muramoyl-L-alanyl-D-isoglutamine], bacterial lipopolysaccharide or lymphokine-containing supernatants of human lymphocytes, could be shown to produce and secrete appreciable activities of a 52 000-Mr plasminogen activator. This enzyme was suppressed in control and stimulated cultures by dexamethasone (0.1 microM). Monocyte plasminogen activator could only be assayed under conditions of low ionic strength and had no detectable activity at 0.15 M NaCl. Intracellular enzyme was present as a proenzyme, requiring activation by preincubation with plasminogen containing traces of plasmin, before its activity could be seen on sodium dodecyl sulphate/polyacrylamide gel electrophoresis by a fibrin overlay method. Secreted enzyme was in the active form. Further incubation of lysate or supernatant plasminogen activator with plasminogen did not produce any active enzyme species of Mr 36 000, unlike incubations of urokinase with plasminogen. Moreover, comparisons with other plasminogen activators of Mr 52 000 from transformed cell lines showed that the monocyte activator was unique in its resistance to monocyte minactivin, a specific inactivator of urokinase-type plasminogen activators, and in its sensitivity to human alpha 2-macroglobulin. It was therefore concluded that human monocyte plasminogen activator, although sharing an Mr of 52 000 in common with other such activators, is not identical to the high Mr form of urokinase or the plasminogen activators of transformed cells. On present evidence it is the least likely of these enzymes to be active extracellularly under normal physiological conditions.  相似文献   

20.
Complexes between 125I-labeled urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) bound to purified alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein (LRP). No binding was observed when using uPA. The magnitude of uPA.PAI-1 binding was comparable with that of the alpha 2MR-associated protein (alpha 2MRAP). Binding of uPA.PAI-1 was blocked by natural and recombinant alpha 2MRAP, and about 80% inhibited by complexes between tissue-type plasminogen activator (tPA) and PAI-1, and by a monoclonal anti-PAI-1 antibody. In human monocytes, uPA.PAI-1, like uPA and its amino-terminal fragment, bound to the urokinase receptor (uPAR). Degradation of uPAR-bound 125I-uPA.PAI-1 was 3-4-fold enhanced as compared with uncomplexed uPAR-bound uPA. The inhibitor-enhanced uPA degradation was blocked by r alpha 2MRAP and inhibited by polyclonal anti-alpha 2MR/LRP antibodies. This is taken as evidence for mediation of internalization and degradation of uPAR-bound uPA.PAI-1 by alpha 2MR/LRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号