首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Abstract: Galanin is a 29- or 30-amino acid peptide with wide-ranging effects on hormone release, feeding behavior, smooth muscle contractility, and somatosensory neuronal function. Three distinct galanin receptor (GALR) subtypes, designated GALR1, 2, and 3, have been cloned from the rat. We report here the cloning of the human GALR2 and GALR3 genes, an initial characterization of their pharmacology with respect to radioligand binding and signal transduction pathways, and a profile of their expression in brain and peripheral tissues. Human GALR2 and GALR3 show, respectively, 92 and 89% amino acid sequence identity with their rat homologues. Radioligand binding studies with 125I-galanin show that recombinant human GALR2 binds with high affinity to human galanin (KD = 0.3 nM). Human GALR3 binds galanin with less affinity (IC50 of 12 nM for porcine galanin and 75 nM for human galanin). Human GALR2 was shown to couple to phospholipase C and elevation of intracellular calcium levels as assessed by aequorin luminescence in HEK-293 cells and by Xenopus melanophore pigment aggregation and dispersion assays, in contrast to human GALR1 and human GALR3, which signal predominantly through inhibition of adenylate cyclase. GALR2 mRNA shows a wide distribution in the brain (mammillary nuclei, dentate gyrus, cingulate gyrus, and posterior hypothalamic, supraoptic, and arcuate nuclei), and restricted peripheral tissue distribution with highest mRNA levels detected in human small intestine. In comparison, whereas GALR3 mRNA was expressed in many areas of the rat brain, there was abundant expression in the primary olfactory cortex, olfactory tubercle, the islands of Calleja, the hippocampal CA regions of Ammon's horn, and the dentate gyrus. GALR3 mRNA was highly expressed in human testis and was detectable in adrenal gland and pancreas. The genes for human GALR2 and 3 were localized to chromosomes 17q25 and 22q12.2–13.1, respectively.  相似文献   

2.
A human BK-2 bradykinin receptor was cloned from the lung fibroblast cell line CCD-16Lu. The cDNA clone encodes a 364 amino acid protein that has the characteristics of a seven transmembrane domain G-protein coupled receptor. The predicted amino acid sequence of the human BK-2 receptor is 81% identical to the smooth muscle rat BK-2 receptor (1). Transfection of the human BK-2 receptor cDNA into COS-7 cells results in the expression of high levels of specific BK binding sites. Saturation binding analysis indicates that the human BK-2 receptor expressed in COS-7 cells binds BK with a KD of 0.13 nM. Pharmacological characterization of the expressed BK receptor is consistent with the cDNA encoding a receptor of the BK-2 subtype. The BK-2 receptor antagonist Hoe 140 (2), D-Arg0[Hyp3, Thi5, D-Tic7, Oic8]BK has a high affinity (IC50 = 65 pM) for the cloned human receptor. The tissue distribution of the human BK-2 receptor was analyzed by competitive PCR with human tissue cDNA and is similar to that determined for the BK-2 receptor in the rat.  相似文献   

3.
Galanin receptor and its ligands in the rat hippocampus   总被引:8,自引:0,他引:8  
Receptors for the 29-amino-acid peptide, galanin, in membranes from the rat ventral hippocampus were examined using chloramine-T-iodinated porcine galanin as ligand. The equilibrium binding of 125I-galanin showed the presence of a high-affinity binding site (Kd = 1.91 +/- 0.40 nM). The concentration of the high-affinity-binding sites was 107 +/- 15 fmol/mg membrane protein. The on rate constant was estimated to be 2.6 +/- 0.1 M-1 min-1 at 37 degrees C. The affinity of rat galanin (differing in three amino acid residues from the porcine protein) was equal to that of porcine galanin. The 125I--galanin-binding site is a trypsin-sensitive membrane protein, which is heat-denaturated at 60 degrees C within 5 min. The effect of GTP and its analogs and of pertussis-toxin-catalyzed ADP-ribosylation on the binding of 125I-galanin suggest that the galanin receptor is coupled to an inhibitory G protein (Gi protein). 127I-galanin was shown to be a ligand with affinity equal to that of galanin in displacing 125I-galanin. The 125I-galanin-binding site in the ventral hippocampus recognizes as a ligand the tryptic fragments 1-20 and 21-29 of rat galanin and the synthetic fragments 12-29, 18-29 and 21-29 of porcine galanin. None of these afforded full inhibition of the binding of fragment 1-29 of 125I-galanin at a concentration of 1 microM.  相似文献   

4.
Receptors for galanin in membranes from the rat gastric and jejunal smooth muscle were studied using [125I] radioiodinated synthetic porcine galanin. Specific binding was time and temperature dependent. At 32 degrees C radioligand was degraded in the presence of smooth muscle membranes in a time-dependent manner. At optimal experimental conditions, the equilibrium binding analyses showed the presence of a single population of high affinity binding sites in both the rat stomach and jejunum (Kd value of 2.77 +/- 0.78 nM and 4.93 +/- 1.74 nM for stomach and jejunal smooth muscle membranes, respectively). The concentration of the high affinity binding sites was 58.19 +/- 11.04 and 32.36 +/- 5.68 fmol/mg protein, for gastric and jejunal preparations, respectively. Specific binding was completely inhibited by 10(-6) M of nonradioactive galanin; was 75% blocked by 1 microM of galanin(9-29); it was 10% blocked by 1 microM of galanin(15-29). Galanin(1-15) at a concentration of 1 microM was ineffective for inhibiting [125I]galanin binding. Deletion of four C-terminal amino acid residues from galanin(9-29) to give galanin(9-25) also resulted in almost complete loss of affinity. Radioiodinated galanin and N-terminally deleted fragments had receptor binding potency in the following order: galanin(1-29) greater than galanin(9-29) greater than galanin(15-29). We conclude that the C-terminal part of the galanin chain is important for the rat gastric and jejunal smooth muscle membrane receptor recognition and binding and that N-terminal amino acid sequences are probably not so important, since galanin(1-15) was not active but galanin(9-29) retained most of the receptor binding activity.  相似文献   

5.
The neuropeptide galanin elicits a range of biological effects by interaction with specific G-protein-coupled receptors. Human and rat GALR1 galanin receptor cDNA clones have previously been isolated using expression cloning. We have used the human GALR1 cDNA in hybridization screening to isolate the gene encoding GALR1 in both human (GALNR) and mouse (Galnr). The gene spans approximately 15–20 kb in both species; its structural organization is conserved and is unique among G-protein-coupled receptors. The coding sequence is contained on three exons, with exon 1 encoding the N-terminal end of the receptor and the first five transmembrane domains. Exon 2 encodes the third intracellular loop, while exon 3 encodes the remainder of the receptor, from transmembrane domain 6 to the C-terminus of the receptor protein. The mouse and human GALR1 receptor proteins are 348 and 349 amino acids long, respectively, and display 93% identity at the amino acid level. The mouseGalnrgene has been localized to Chromosome 18E4, homoeologous with the previously reported localization of the humanGALNRgene to 18q23 in the same syntenic group as the genes encoding nuclear factor of activated T-cells, cytoplasmic 1, and myelin basic protein.  相似文献   

6.
Galanin, an ubiquitous neuropeptide, was recently shown to inhibit somatostatin release by the rat islet tumor cell line, Rin-m. By using the clonal pancreatic delta cell line Rin14B, originating from Rin-m cells, we were able to identify the presence of one type of specific galanin-binding site of high affinity (Kd = 1.6 nM; maximal binding capacity = 270 fmol/mg protein) and high specificity for the peptide. Binding of 125I-galanin to these receptors was time-dependent and highly sensitive to guanine nucleotides. Using the cross-linker disuccinimidyl tartrate, covalent linking of the galanin receptor to 125I-galanin in membranes from Rin14B cells, followed by SDS/PAGE analysis of membrane proteins, indicated that the galanin receptor is a protein of 54 kDa. 0.1-100 nM galanin also exerted a marked inhibitory effect on the cAMP-production system under basal conditions, as well as in the presence of the pancreatic peptide glucagon. At a maximal dose, galanin induces a 90-100% decrease of basal and glucagon-stimulated cAMP production levels, with a median inhibition concentration (IC50) of 3 nM galanin. The direct inhibitory effect of galanin on the adenylate cyclase activity in Rin14B cell membranes was also demonstrated (IC50 = 3 nM galanin). The inhibitory effect of galanin on the basal and glucagon-stimulated cAMP production in Rin14B cells was reversed by pertussis toxin. The toxin was also shown to specifically ADP-ribosylate a protein of 41 kDa in membranes from Rin14B cells. Taken together, these data show that the pancreatic delta cell line Rin14B expresses high affinity galanin receptors negatively coupled to a pertussis-toxin-sensitive cAMP-production system.  相似文献   

7.
We present the molecular cloning and characterization of the human galanin receptor, hGALR2. hGALR2 shares 85%, 39%, and 57% amino acid identities to rGALR2, hGALR1, and hGALR3, respectively. hGALR2, along with rGALR2, can be distinguished from the other cloned galanin receptors by a tolerance for both N-terminal extension and C-terminal deletion of galanin, as well as by a primary signaling mechanism involving phosphatidyl inositol hydrolysis and calcium mobilization. By RT-PCR, GALR2 mRNA was abundant in human hippocampus, hypothalamus, heart, kidney, liver, and small intestine. A weak GALR2 mRNA signal was detected in human retina, and no signal was detected in cerebral cortex, lung, spleen, stomach, or pituitary.  相似文献   

8.
The overstimulation of excitatory amino acid receptors such as the glutamate AMPA receptor has been implicated in the physiopathogenesis of epilepsy as well as in acute and chronic neurodegenerative disorders. An original series of readily water soluble 4-oxo-10-substituted-imidazo[1,2-a]indeno[1,2-e]pyrazin-2-carboxylic acid derivatives was synthesized. The most potent derivative 6a exhibited nanomolar binding affinity (IC50 = 35nM) and antagonist activity (IC50 = 6nM) at ionotropic AMPA receptor. This compound also demonstrated potent anticonvulsant properties in MES in mice and rats with long durations of action with ED50 values in the 1-3 mg/kg dose range following ip and iv administration.  相似文献   

9.
The influence of structural changes at the 8alpha-amino position of 8alpha-amino-6-methyl-ergoline on the lipophilicity and affinity to the D2 receptor was studied. 8alpha-amino-6-methyl-ergoline (1) was converted into the derivatives (2a-f) by mercaptoacetylation of the amino group to make it possible to prepare the rhenium and technetium complexes (3, 4a,b). Binding tests on cloned human dopamine D2 receptors show that the affinities of the coordination compounds (IC50 values between 50 and 240 nM) are less than those of the derivatives 2a-f (IC50=3-50 nM) but more than those of the parent compound 1. Biodistribution studies of the Tc complexes 4a,b performed on Wistar rats show a slow blood clearance with substantial accumulation and retention in the liver and kidneys and low brain uptake.  相似文献   

10.
Systematic modification of a screening lead yielded a class of potent glycinamide based CCR2 antagonists. The best compound (55, (2S)-N-[3,5-bis(trifluoromethyl)benzyl]-2-{[2-(1-piperidinyl)ethyl]amino}-2-(3-thienyl)acetamide) displayed good binding affinity (IC50=30 and 39 nM) toward human monocytes and CHO cell expressing human CCR2b, respectively. Functionally, it blocked MCP-1 (CCL2)-induced calcium mobilization (IC50=50 nM) and chemotaxis mediated through the CCR2 receptor (9.6 nM). It is selective against other chemokine receptors tested.  相似文献   

11.
Human galanin is a 30 amino acid neuropeptide that elicits a range of biological activities by interaction with G protein-coupled receptors. We have generated a model of the human GALR1 galanin receptor subtype (hGALR1) based on the alpha carbon maps of frog rhodopsin and investigated the significance of potential contact residues suggested by the model using site-directed mutagenesis. Mutation of Phe186 within the second extracellular loop to Ala resulted in a 6-fold decrease in affinity for galanin, representing a change in free energy consistent with hydrophobic interaction. Our model suggests interaction between Phe186 of hGALR1 and Ala7 or Leu11 of galanin. Receptor subtype specificity was investigated by replacement of residues in hGALR1 with the corresponding residues in hGALR2 and use of the hGALR2-specific ligands hGalanin(2-30) and [D-Trp2]hGalanin(1-30). The His267Ile mutant receptor exhibited a pharmacological profile corresponding to that of hGALR1, suggesting that His267 is not involved in a receptor-ligand interaction. The mutation Phe115Ala resulted in a decreased binding affinity for hGalanin and for hGALR2-specific analogues, indicating Phe115 to be of structural importance to the ligand binding pocket of hGALR1 but not involved in direct ligand interaction. Analysis of Glu271Trp suggested that Glu271 of hGALR1 interacts with the N-terminus of galanin and that the Trp residue in the corresponding position in hGALR2 is involved in receptor subtype specificity of binding. Our model supports previous reports of Phe282 of hGALR1 interacting with Trp2 of galanin and His264 of hGALR1 interacting with Tyr9 of galanin.  相似文献   

12.
Three receptors for VIP and pituitary adenylate cyclase-activating peptide (PACAP) have been cloned and characterized: PAC(1), with high affinity for PACAP, and VPAC(1) and VPAC(2) with equally high affinity for VIP and PACAP. The existence of a VIP-specific receptor (VIP(s)) in guinea pig (GP) teniae coli smooth muscle was previously surmised on the basis of functional studies, and its existence was confirmed by cloning of a partial NH(2)-terminal sequence. Here we report the cloning of the full-length cDNAs of two receptors, a VPAC(2) receptor from GP gastric smooth muscle and VIP(s) from GP teniae coli smooth muscle. The cDNA sequence of the VIP(s) encodes a 437-amino acid protein (M(r) 49,560) that possesses 87% similarity to VPAC(2) receptors in rat and mouse and differs from the VPAC(2) receptor in GP gastric smooth muscle by only two amino-acid residues, F(40)F(41) in lieu of L(40)L(41). In COS-1 cells transfected with the GP teniae coli smooth muscle receptor, only VIP bound with high affinity (IC(50) 1.4 nM) and stimulated cAMP formation with high potency (EC(50) 1 nM). In contrast, in COS-1 cells transfected with the GP gastric smooth muscle receptor, both VIP and PACAP bound with equally high affinity (IC(50) 2.3 nM) and stimulated cAMP with equally high potency (EC(50) 1.5 nM). We conclude that the receptor cloned from GP teniae coli smooth muscle is a VIP(s) distinct from VPAC(1) and VPAC(2) receptors. The ligand specificity in this species is determined by a pair of adjacent phenylalanine residues (L(40)L(41)) in the NH(2)-terminal ligand-binding domain.  相似文献   

13.
Molecular cloning and expression of the murine interleukin-5 receptor   总被引:37,自引:11,他引:26       下载免费PDF全文
Murine interleukin-5 (IL-5) is known to play an essential role in Ig production of B cells and proliferation and differentiation of eosinophils. Here, we have isolated cDNA clones encoding a murine IL-5 receptor by expression screening of a library prepared from a murine IL-5 dependent early B cell line. A cDNA library was expressed in COS7 cells and screened by panning with the use of anti-IL-5 receptor monoclonal antibodies. The deduced amino acid sequence analysis demonstrates that the receptor is a glycoprotein of 415 amino acids (Mr 45,284), including an N-terminal hydrophobic region (17 amino acids), a glycosylated extracellular domain (322 amino acids), a single transmembrane segment (22 amino acids) and a cytoplasmic tail (54 amino acids). COS7 cells transfected with the cDNA expressed a 60 kd protein that bound IL-5 with a single class of affinity (KD = 2-10 nM). FDC-P1 cells transfected with the cDNA for murine IL-5 receptor showed the expression of IL-5 binding sites with both low (KD = 6 nM) and high affinity (KD = 30 pM) and acquired responsiveness to IL-5 for proliferation, although parental FDC-P1 cells did not show any detectable IL-5 binding. In addition, several cDNA clones encoding soluble forms of the IL-5 receptor were isolated. Northern blot analysis showed that two species of mRNAs (5.0 kb and 5.8 kb) were detected in cell lines that display binding sites for murine IL-5. Homology search for the amino acid sequence of the IL-5 receptor reveals that the IL-5 receptor contains a common motif of a cytokine receptor family that is recently identified.  相似文献   

14.
Several chimeric peptides were synthesized and found to be high-affinity ligands for both galanin and substance P receptors in membranes from the rat hypothalamus. The peptide galantide, composed of the N-terminal part of galanin and C-terminal part of substance P (SP), galanin-(1-12)-Pro-SP-(5-11) amide, which is the first galanin antagonist to be reported, recognizes two classes of galanin binding sites (KD(1) less than 0.1 nM and KD(2) approximately 6 nM) in the rat hypothalamus, while it appears to bind to a single population of SP receptors (KD approximately 40 nM). The chimeric peptide has higher affinity towards galanin receptors than the endogenous peptide galanin-(1-29) (KD approximately 1 nM) or its N-terminal fragment galanin-(1-13) (KD approximately 1 microM), which constitutes the N-terminus of the chimeric peptide. Galantide has also higher affinity for the SP receptors than the C-terminal SP fragment-(4-11) amide (KD = 0.4 microM), which constitutes its C-terminal portion. Substitution of amino acid residues, which is of importance for recognition of galanin by galanin receptors, such as [Trp2], in the galanin portion of the chimeric peptide or substitution of ([Phe7] or [Met11]-amide) in the SP portion of chimeric peptide both cause significant loss in affinity of the analogs of galantide for both the galanin- and the SP-receptors. These results suggest that the high affinity of the chimeric peptide, galantide, may in part be accounted for by simultaneous recognition/binding to both receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Chemical modification of the bicyclo[3.1.0]hexane ring C-3 position led to the discovery of 3-alkoxy-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid, 3-benzylthio-, and 3-benzylamino-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid derivatives, metabotropic glutamate receptor 2 (mGluR2) antagonists. In particular, 3-(3,4-dichlorobenzyloxy)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (15ae), (1R,2S,5R,6R)-2-amino-3-(3,4-dichlorobenzylthio)-6-fluorobicyclo[3.1.0]hexane-2,6-carboxylic acid (15at), and (1R,2S,5R,6R)-2-amino-3-(N-(3,4-dichlorobenzylamino))-6-fluorobicyclo[3.1.0]hexane-2,6-carboxylic (15ba) showed high affinity for the mGluR2 receptor (15ae: K(i) = 2.51 nM, 15at: K(i) = 1.96 nM, and 15ba: K(i) = 3.29 nM) and potent antagonist activity for mGluR2 (15ae; IC50 = 34.21 nM, 15at; IC50 = 13.34 nM, and 15ba; IC50 = 35.96 nM). No significant agonist activity for mGluR2 was observed with 15ae, 15at, or 15ba. This paper reports on the synthesis, in vitro pharmacological profile, and structure-activity relationships (SARs) of 3-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid.  相似文献   

17.
A novel series of 2- and 9-disubstituted heterocyclic-fused 4-oxo-indeno[1,2-e]pyrazin derivatives was synthesized. One of them, the 9-(1H-tetrazol-5-ylmethyl)-4-oxo-5,10-dihydroimidazo[1,2-a]indeno[1,2-e]pyrazin-2-yl phosphonic acid 4i exhibited a strong and a selective binding affinity for the AMPA receptor (IC50 = 13 nM) and demonstrated potent antagonist activity (IC50 = 6nM) at the ionotropic AMPA receptor. This compound also displayed good anticonvulsant properties against electrically-induced convulsions after ip and iv administration with ED50 values between 0.8 and 1 mg/kg. Furthermore, a strong increase in potency was observed when given iv 3 h before test (ED50 = 3.5 instead of 25.6 mg/kg for the corresponding 9-carboxymethyl-2-carboxylic acid analogue). These data confirmed that there is an advantage in replacing the classical carboxy substituents by their bioisosteres such as tetrazole or phosphonic acid groups.  相似文献   

18.
The neuropeptide galanin (1-29) binds with high affinity to hypothalamic receptors (KD approximately 0.9 nM) and regulates feeding behavior. The N-terminal fragments (1-16), (1-16)NH2 are high affinity (KD approximately 6 nM) full agonists in vivo and in vitro. L-Ala substitutions show that amino acid residues Gly1, Trp2, Asn5, Tyr9, and Gly12 are important for the high affinity binding of galanin (1-16). Shortening the fragment (1-16) to galanin (1-7) causes a gradual drop of affinity: galanin (1-15), (1-14), and (1-13) have submicromolar KD values and galanin (1-12) has KD approximately 3 microM. Cyclic analogs of galanin (1-12) of different ring size were synthesized by condensing Gly1 and Gly12 without or with spacer groups. These analogs, independent of ring size, had a lower affinity than the linear galanin (1-12). Derivatization of the N-terminus of galanin (1-29), (1-16), and (1-12) all resulted in a large drop of affinity for the receptors, suggesting again the importance of the free N-terminal Gly.  相似文献   

19.
Abstract: The diverse physiological actions of galanin are thought to be mediated through activation of galanin receptors (GalRs). We report the genomic and cDNA cloning of a mouse GalR that possesses a genomic structure distinct from that of GalR1 and encodes a functional galanin receptor. The mouse GalR gene consists of two exons separated by a single intron within the protein-coding region. The splicing site for the intron is located at the junction between the third transmembrane domain and the second intracellular loop. The cDNA encodes a 370-amino acid putative G protein-coupled receptor that is markedly different from human GalR1 and rat GalR3 (38 and 57%) but shares high homology with rat GalR2 (94%). In binding studies utilizing membranes from COS-7 cells transfected with mouse GalR2 cDNA, the receptor displayed high affinity ( K D = 0.47 n M ) and saturable binding with 125I-galanin ( B max = 670 fmol/mg). The radioligand binding can be displaced by galanin and its analogues in a rank order: galanin ⋍ M40 ⋍ M15 ⋍ M35 ⋍ C7 ⋍ galanin (2–29) ⋍ galanin (1–16) ≫ galanin (10–29) ⋍ galanin (3–29), which resembles the pharmacological profile of the rat GalR2. Receptor activation by galanin in COS-7 cells stimulated phosphoinositide metabolism, which was not reversed by pertussis toxin. Thus, the galanin receptor encoded in the cloned mouse GalR gene is the type 2 galanin receptor and is active in both ligand binding and signaling assays.  相似文献   

20.
Investigation of cannabinoid pharmacology in a vertebrate with a phylogenetic history distinct from that of mammals may allow better understanding of the physiological significance of cannabinoid neurochemistry. Taricha granulosa, the roughskin newt, was used here to characterize an amphibian cannabinoid receptor. Behavioral experiments demonstrated that the cannabinoid agonist levonantradol inhibits both newt spontaneous locomotor activity and courtship clasping behavior. Inhibition of clasping was dose-dependent and potent (IC(50) = 1.2 microgram per animal). Radioligand binding studies using [(3)H]CP-55940 allowed identification of a specific binding site (K(D) = 6.5 nM, B(max) = 1,853 fmol/mg of protein) in brain membranes. Rank order of affinity of several ligands was consistent with that reported for mammalian species (K(D), nM) : CP-55940 (3.8) > levonantradol (13.0) > WIN55212-2 (25.7) > anandamide (1,665) approximately anandamide 100 microM phenylmethylsulfonyl fluoride (2,398). The cDNA encoding the newt CB1 cannabinoid receptor was cloned, and the corresponding mRNA of 5.9 kb was found to be highly expressed in brain. A nonclonal Chinese hamster ovary cell line stably expressing the newt CB1 cannabinoid receptor was prepared that allowed demonstration of cannabinoid-mediated inhibition of adenylate cyclase (EC 4.6.1.1) activity. This inhibition was dose-dependent and occurred at concentrations consistent with affinities determined through radioligand binding experiments. The behavioral, pharmacological, and molecular cloning results demonstrate that a CB1 cannabinoid receptor is expressed in the CNS of the roughskin newt. This amphibian CB1 is very similar in density, ligand binding affinity, ligand binding specificity, and amino acid sequence to mammalian CB1. The high degree of evolutionary conservation of cannabinoid signaling systems implies an important physiological role in vertebrate brain function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号