首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six species/subspecies of Asian high-mountain voles, genus Alticola, were studied cytogenetically via conventional staining and C- and G-banding. The karyotypes are very similar. The standard karyotype, as in A. strelzovi strelzovi, consists of 56 chromosomes. These are split into 25 acrocentric pairs, one large subtelocentric pair, one small metacentric pair, a large acrocentric X chromosome, and a small Y chromosome, which varies in shape. Constitutive heterochromatin is almost entirely restricted to small centromeric regions. A small submetacentric pair of autosomes in both subspecies of A. semicanus and a medium-sized Y chromosome in A. argentatus severtzovi are of importance in systematics. The data suggest that A. barakshin, A. semicanus, and A. argentatus are separate species.  相似文献   

2.
Some forms united under species Alticola tuvinicus s. lato (4 samples), A. semicanus (1 sample), A. argentatus (8 samples) are compared by 16 characters by means of principal component method and canonical analysis. Species distinctness of A. semicanus is confirmed. Specific status of the form olchonensis is supposed. The results concerning tuvinicus s. str. and kosogol are not clear-cut: these forms may be well differentiated subspecies within either A. tuvinicus s. lato or A. argentatus.  相似文献   

3.
The morphology of lateral preoptic (POL) and lateral hypothalamic (HLA) neurons was studied in 14- to 200-day-old rats with the chlorate-formaldehyde modification of the Golgi method. Drawings of 91 POL and HLA neurons revealed three distinct neuronal types within the MFB based on somatic size and shape and dendritic morphology. Class I neurons, which accounted for 75-80% of the neurons in the MFB, has fusiform or multipolar somata averaging 21 X 14 micron and 2-5 sparsely branched dendrites with a moderate number of sticklike spines. The extensive dendritic domains of Class I neurons ranged from 700 to 1,500 micron and were usually oriented perpendicular to the longitudinal fibers of the MFB. Both nonoriented and oriented Class I neurons were encountered. Nonoriented Class I neurons had expansive dendritic arbors which reached nearly all regions of the MFB in the coronal plane. Oriented Class I neurons had dendritic domains which were confined to specific regions (e.g., ventral-lateral) of the MFB. Class II neurons, which made up approximately 10% of the MFB neurons, had large multipolar somata averaging 30 X 17 micron and 2-5 stout dendrites which were densely covered with hairlike spines. Class II neurons also exhibited spines on their somata and proximal dendritic trunks and had dendritic domains of 700-1,000 micron. Class III neurons had small somata averaging 15 X 12 micron and restricted dendritic arbors of 500-700 micron in diameter. Class III neurons exhibited both spiny and spine-free dendrites and made up 10% of MFB neurons. Because of the parcellation of chemically coded fiber systems within the MFB, individual POL and HLA neurons may not be homogeneous in the type of afferents they receive from other brain areas.  相似文献   

4.
In the rat, fibrillar centers (nucleolar organizers) of neurons in superior cervical ganglia are small during light period whereas quite giant ones are observed during dark period. Stereological analysis demonstrates that mean volume of fibrillar centers which is 11.9 x 10(-2) micron 3 in light period increases up to 159 x 10(-2) micron 3 in dark period. So, the more or less development of fibrillar centers in these interphasic nuclei is a circadian phenomenon.  相似文献   

5.
Multidimensional factor analysis of liver mitochondrial activity was performed in two ecologically different species of voles from central regions and northern periphery of habitat. By example of mole vole Ellobius talpinus (a widely spread species), the key adaptive role of the system of oxidation of succinic acid was shown. Phenomena of minimization of mitochondrial activity are peculiar to a representative of the northern population of the mountain endemic flat-headed vole Alticola strelzovi. Differentiation of small mammals by liver bioenergetics parameters under conditions of pessimum of habitat is considered as manifestation of different strategy of energy supply of tissue adaptation, depending on species ecological plasticity.  相似文献   

6.
The volume of human red blood cells (RBC) was evaluated by means of the centrifugation method (hematocrit) and 131-J-labelled human serum albumin, respectively. Both of the methods yielded an identical volume of about 107 micron3 of the single RBC, provided the evaluation was performed in autologous plasma. Contrary to the 131-J-albumin method the results of which were found independent of various pretreatments of RBC, the centrifugation hematocrits of RBC previously washed with PBS and resuspended in PBS or saline protein media resulted in a mean cell volume of about 86 micron3. The decrease of the cell volume was associated with an efflux of K+ ions. If the RBC are centrifuged at 800 g instead of 15000 g, their volume will remain unchanged. The assessment of cytodeformability has shown, that RBC in PBS by loss of cell volume could enter a 2.3 micron micropipette completely. RBC in plasma, though traversing a 2.9 micron micropipette were incapable of entering a 2.3 micron channel completely. With pressures ranging from 300 to 350 mm H2O the processes of these cells undergo microspherulation.  相似文献   

7.
Summary Oxygen consumption was measured over a range of ambient temperatures in 5 species of Mongolian small mammals:Microtus brandti, Alticola argentatus, Phodopus sungorus, Meriones unguiculatus, andOchotoma daurica (Tables 1 and 2). The measurements were made in the field, the animals being adjusted to natural environmental conditions. All the species studied coexist in the same arid steppe ecosystem. A variety of climatic adaptations was found.Abbreviations BMR basal metabolic rate - T a ambient temperature  相似文献   

8.
S Sugita  K Ohsawa 《Jikken dobutsu》1992,41(4):437-442
Morphometric and immunohistochemical analyses of the suprachiasmatic nucleus (SCN) were performed on hereditary microphthalmic rats. In normal rats, the number of cells and the volume of the SCN were 11, 631 and 6.7 x 10(-2) mm3 (an average taken from 12 SCNs). However, the neuronal population and volume of the SCN in hereditary microphthalmic rats were 7,450 and 4.5 x 10(-2) mm3 (an average taken from 14 SCNs), respectively. There were no significant differences in the size of neurons between normal and microphthalmic SCN neurons. Immunohistochemical studies showed that a considerable number of antivasopressin positive neurons were present in microphthalmic rats, despite their lack of the optic nerve. However, further detailed studies revealed that the number of antivasopressin positive neurons present in microphthalmic rats was only 68% of those found in normal rats. These findings suggest that the complete development of the SCN and vasopressin neurons depends on the visual input.  相似文献   

9.
The fat cells of the fascia areolaris and fascia lamellaris of men, women, and pregnant women (aged between 20 and 35a) were morphometrically studied. The cell volumes showed the following average values: 4.423 X 10(5) micron3 and 2.004 X 10(5) micron3 for the fasciae areolaris and lamellaris respectively, in men; 6.236 X 10(5) micron3 and 3.964 X 10(5) micron3 in women, and 10.114 X 10(5) micron3 and 4.635 X 10(5) micron3 in the pregnant women. The analysis of variance showed significant differences between both sexes, and fasciae areolaris and lamellaris. The differences between women and pregnant women as far as the cell volume is concerned, in both fasciae, were not significant. As to the fascia areolaris, not the lamellaris, the difference between the sexes was significant.  相似文献   

10.
The phylogenetic position of the Olkhon mountain vole (Alticola olchonensis Litvinov, 1960) was studied using the sequences of four nuclear (BRCA, GHR, LCAT, and IRBP) and one mitochondrial (cyt. b) gene. Until now multiple studies of the systematic position of this vole had been based exclusively on morphological data, while the major taxonomic references contain contradictory information regarding both the subgeneric and species status of this animal. It was established that the molecular data and morphology data allow us to concern the Lake Baikal vole unambiguously as a part of the nominative subgenus Alticola instead of Aschizomys.  相似文献   

11.
We have examined the morphology of fetal rat sympathetic neurons grown in serum-free medium in the absence of nonneuronal cells. Because cell density can affect phenotypic expression in vitro, the morphological analysis was subdivided into the study of isolated neurons (neurons whose somata were at least 150 micron from their nearest neighbor) and of more highly aggregated neurons. When isolated neurons were injected with intracellular markers, it was found that most (79%) had a single process emanating from their somata and that this unipolar state persisted for at least 8 weeks in vitro. The processes of unipolar sympathetic neurons had the appearance of axons in that they were thin and long, had a constant diameter, and were relatively unbranched. Cytochemical methods revealed that such processes had other axonal characteristics: (1) they were more reactive with a monoclonal antibody against phosphorylated forms of the M and H neurofilament subunits than with an antibody to nonphosphorylated forms of these proteins; (2) they also reacted with antibodies to the tau microtubule-associated protein and to the phosphorylated forms of the H neurofilament subunit; and (3) they contained only small amounts of RNA as determined by [3H]uridine autoradiography. These data indicate that neurons which normally form dendrites in vivo need not express this capacity in vitro and that axonal and dendritic growth can be dissociated under some conditions in culture. While most isolated neurons were unipolar, neurons in regions of high neuronal cell density were usually multipolar. In addition to axons, multipolar neurons had processes with some of the characteristics expected of rudimentary dendrites: they ended locally (usually within 100 micron), were often highly branched, and reacted with an antibody to nonphosphorylated forms of the M and H neurofilament subunits. The effects of density were most prominent when neurons were within aggregates in which the somata were in close apposition. Density-dependent changes in morphology were less frequently observed when neuronal somata were separated by greater distances (30-100 micron). These data indicate that the morphology of sympathetic neurons is subject to environmental regulation and that neuron-neuron interactions can promote the extension of rudimentary dendrites in vitro.  相似文献   

12.
Purkinje strands from both ventricles of adult mongrel dogs were excised, and electrical properties were studied by the voltage-clamp technique. The strands were then examined with light and electron microscopy and structural properties were analysed by morphometric techniques. The canine Purkinje strand contains (by volume) about 28% myocyte and 55% dense outer connective tissue. The remainder of the volume is taken up by the inner shell of loosely packed connective tissue within 10 microns of a myocyte membrane. These volume fractions vary considerably from one strand to another. Clefts less than 10 microns wide occupy 18% of the myocyte volume and clefts less than 1 micron wide occupy 1%. The membrane surface area of the myocytes can be divided into three categories by reference to the size of the adjacent cleft. About 47.8% of the membrane surface area faces clefts wider than 1 micron, another 22.2% faces clefts between 0.1 and 1 micron wide, and the final 30% faces clefts less than 0.1 micron wide. The surface area facing the narrowest clefts (less than 0.1 micron wide) is divided between nexuses 3%, desmosomes 10%, and unspecialized membrane 17% (each figure is expressed as a percentage of the total surface area of myocyte membrane). The canine Purkinje strand has a more favourable anatomy than the sheep Purkinje strand for most physiological experiments. We expect that the complicating effects of series resistance and change in the concentration of extracellular ions will be much smaller than in sheep strands, but still not negligible.  相似文献   

13.
Variation of the cytochrome b gene fragment was examined in 27 flat-headed voles Alticola strelzowi from different parts of the species range. A total of 15 haplotypes were described, while the species as a whole was characterized by low levels of genetic differentiation and polymorphism. The haplotypes fell into three haplogroups, one of which corresponded to the subspecies A. s. strelzowi, and the other two, to A. s. desertorum. Based on different index values, the level of genetic polymorphism in the later subspecies was considered to be higher than in the first one. Phylogeographic analysis suggested post-glacial dispersal of flat-headed voles from a single refugium located in Western Altai. Using different techniques, relatively recent colonization of the Central Altai territory was demonstrated (subspecies A. s. strelzowi), which determined low level of genetic variation in this territory.  相似文献   

14.
Quantitative characteristics of nucleolus-organizing regions of chromosomes (NORs, or fibrillar centers, FCs) and some other nucleolar components have been studied with the aid of complete series of ultrathin sections of PK-cells. It has been found that: 1) the number of FCs per cell in the G0-period, in the G2-period and at metaphase is equal to 7.0, 33.7 and 8.0, respectively; 2) volumes of individual FCs in the G0-period (0.033 micron 3), G2-period (0.014 micron 3) and at metaphase (0.025 micron 3) are different; 3) the total volume of FCs, calculated for a haploid set of chromosomes, do not differ in the G0 (0.105 micron 3) and G2 (0.107 micron 3) periods, but exceed twice the FCs volume at metaphase (0.04-0.05 micron 3). These data show that the activation and inactivation of ribosomal genes in interphase PK-cells are not accompanied by a change in the total volumes of FCs and are probably connected with the "fragmentation" and fusion of FCs. Complete inactivation of ribosomal genes at mitosis leads to a decrease in the total volumes of FCs; 4) the nucleolus volume is proportional to the volume of the dense fibrillar RNP-component; in the G2-period the nucleolus volume also correlates with the number of FCs (r = 0.99); 5) the volume of the dense fibrillar component within individual fibrillar complexes--the structures corresponding to one nucleolus-organizing region--is not constant. This is an indirect evidence for the differences in the functional activity of NORs of different chromosomes.  相似文献   

15.
Results are reported on the temperature-dependence of intact-cell surface area, isotonic volume, hemolytic volume, and ghost steady-state surface area and volume, using several techniques of resistive pulse spectroscopy. Temperature was found not to alter the intact cell surface area permanently: the area remains constant at 130 +/- 1 micron 2, at temperatures ranging from 0 to 40 degrees C. Temperature does alter the steady-state volume of the cells, with a colder temperature inducing swelling by about 0.29 micron 3/deg. C. Such a temperature-induced volume change is sufficient to explain only approximately half of the fragility differences which result from temperature changes. The remainder was found to result from higher temperatures enabling a substantial transient increase in surface area of intact cells (up to at least 14% of 40 degrees C), with a corresponding increase in the cell's hemolytic volume (up to 21%). The hemolytic volume apparently increases linearly with temperature, since steady-state ghost volumes are found to increase linearly with the temperature at which the ghosts were produced. In the steady state (at high temperature), the membranes of electrically-impermeable resealed ghosts can remain extended by more than 10%, compared with membranes of the corresponding unhemolyzed, intact red cells.  相似文献   

16.
Retrograde transport of cholera toxin conjugated with horseradish peroxidase in the postnatal rat has revealed remarkable features of dendritic fields of vagal motor neurons in the medulla oblongata and cervical spinal cord during the period of early development (0-10 days). At birth, vagal motor neurons in the dorsal motor nucleus of the vagus, nucleus ambiguus, nucleus retroambigualis, nucleus dorsomedials and the spinal nucleus of the accessory nerve are small with relatively few, unbranched processes. The span of the dendritic tree is much smaller than that found in adult animals. By the postnatal Day 2 there are marked changes in the soma as well as in the dendritic tree of these neurons. There is dispersion of the cell bodies within the neuropil as well as an expansion of the total area of the brain stem occupied by these motor neurons and their dendritic processes which show extensive growth and branching. By postnatal Day 3 the most extensive proliferation of these neurons is seen and appears to represent the peak of dendritic growth of vagal motor neurons such that the area occupied by the dendritic tree of a single neuron is three times that seen in an adult rat. This proliferation gradually decreased during the subsequent seven days of early development (i.e. Days 4-10) so that by Day 10 the dendritic span of vagal motor neurons was reduced to about twice the adult size. This growth progressively decreased from Days 10 to 30 at which time adult levels were reached. Ultrastructural examination of these horseradish peroxidase labeled dendrites showed a positive correlation between the number of dendritic processes and the number of axo-dendritic synapses. This was accompanied by an increase in the number of identifiable synaptic junctions. These morphological complexities observed during the period of early development of vagal motor neurons indicate that the vagus nerve undergoes dramatic changes during the period of early development including the establishment of numerous synaptic contacts between vagal afferents and efferents in the brainstem. A number of these changes occur in developing dendritic fields of vagal motor neurons during the first three days of neonatal life. It is reasonable to assume that developmental abnormalities during this "critical period" could produce significant functional changes in the pattern of respiration as well as in the control of airway smooth muscle.  相似文献   

17.
OBJECTIVE: To quantitate, in a stereologic manner, changes in bile canalicular morphology before and after choleretic infusion of total parenteral nutrition (TPN) and to determine whether TPN produces changes in localized regions within the hepatic lobule. STUDY DESIGN: Livers were obtained from sham-operated on normal adult male rats (control) and from rats that received intravenous TPN solution containing 20% glucose and 3.5% Molipron F. The tissues, obtained by a rigorous sampling procedure, were systematically subjected to stereologic analysis. Measurements were made on electron micrographs at two levels of magnification by point, intersection and profile counts, and then volume, surface area and length were estimated per unit parenchymal volume. RESULTS: The surface area of the canalicular wall per parenchymal volume increased significantly (from 5.33 x 10(-2) to 6.73 x 10(-2) microns 2/micron 3) after TPN treatment, as did the length of microvilli (from 0.241 to 0.267 microns/micron 3). However, the volume of bile canalicular lumina per parenchymal volume (0.306% and 0.320%), total length of bile canaliculi (1.05 x 10(-2) and 1.06 x 10(-2) microns/micron 3) and diameter of microvilli (8.73 x 10(-2) and 8.94 x 10(-2) microns) remained constant. CONCLUSION: These results indicate that changes in canalicular shape and microvillus hypertrophy may cause lowering efficiency of the bile flow rate.  相似文献   

18.
X L Dai  J Triepel  C Heym 《Histochemistry》1986,85(4):327-334
The immunohistochemical localization of neuropeptide Y (NPY) was correlated with those of dopamine-beta-hydroxylase (DBH) and vasoactive intestinal polypeptide (VIP) by mapping serial 7 micron paraffin sections at three levels of the guinea pig lower brainstem: a) area postrema, b) dorsal motor nucleus of the vagus, and c) nucleus prepositus of the hypoglossal nerve. Based on differences in transmitter expression, three populations of NPY-immunoreactive (IR) neurons were distinguished: NPY-IR catecholaminergic cells (NPY/CA), NPY-IR VIP-ergic cells (NPY/VIP), and NYP-IR cells which were not reactive to either DBH or VIP. Within these populations, size differences among neurons in characteristic locations allowed differentiation among the following subpopulations: NPY/CA neurons in the lateral reticular nucleus--magnocellular part (mean neuronal size 538 micron2) and parvocellular part (318 micron2)-, in the vagus-solitarius complex (433 micron2), and in the dorsal strip (348 micron2); NPY/VIP neurons in the vagus-solitarius complex (368 micron2) and in the nucleus ovalis (236 micron2). Apart from scattered NPY-IR cell bodies in the regions listed above, NPY-IR cell bodies in the lateral portion of the nucleus solitarius and in the caudal part of the spinal nucleus of the trigeminal nerve did not exhibit IR to either DBH or VIP. NPY-IR neurons in the area postrema occurred too infrequently for co-localization studies. The differential distribution of heterogeneous NPY-IR cell subpopulations may reflect the involvement of NPY in a variety of neuronal functions.  相似文献   

19.
The quantitative characteristics of chromosomal nucleolus-organizing regions (NORs) and some other nucleolar components were studied on ultra-thin sections of pig embryo kidney cells (PK cells). It was shown that: 1) nucleoli-per-cell volumes were 3 times smaller in the G0 period than in the G2 period; 2) the number of fibrillar centers (FCs) per cell in the G0 period, the G2 period, and at metaphase was equal to 7, 33.7, and 8, respectively; 3) mean volumes of individual FCs in the G0 period (0.033 +/- 0.005 micron3), G2 period (0.014 +/- 0.001 micron3), and at metaphase (0.025 +/- 0.002 micron3) were significantly different; 4) the total volumes of FCs calculated per haploid set of chromosomes were practically the same in the G0 (0.105 micron3) and G2 (0.107 micron3) periods, but were twice as large as those at metaphase (0.04-0.05 micron3). These data show that partial activation and inactivation of ribosomal genes in interphase PK cells are not accompanied by a considerable change in the total volume of FCs and may be due to the fragmentation and fusion of individual FCs. Complete inactivation of ribosomal genes in mitosis results in a decrease of total volumes of FCs per cell; 5) in G0 and G2 periods the total volume of the dense fibrillar component per nucleolus is practically proportional to the nucleolus volume (r = 0.99); 6) in the G2 period, the nucleolus volume is also proportional to the number of FCs (r = 0.99; 7) the volume of the dense fibrillar component within individual fibrillar complexes is not a constant one.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Central Asian mountain voles Alticola is one of the least known groups of voles both in evolution and life history. This genus includes three subgenera Alticola s.str., Aschizomys and Platycranius, and belongs to the tribe Clethrionomyini comprising also red‐backed voles Clethrionomys and oriental voles Eothenomys. In order to elucidate the phylogenetic relationships within Alticola and to examine its position within the tribe, mitochondrial cytochrome b (cyt b) gene variation was estimated, and the results were compared with morphological and palaeontological data. Maximum likelihood (ML), neighbor‐joining (NJ), maximum parsimony (MP) and Bayesian phylogenetic analyses show that the genus Alticola does not appear to be a monophyletic group since the representatives of Aschizomys branch within Clethrionomys, whereas two other subgenera (Alticola and Platycranius) form a separate monophyletic clade. Flat‐headed vole Alticola (Platycranius) strelzowi is nested within the nominative subgenus showing close association with A. (Alticola) semicanus. Surprisingly, the two species of Aschizomys do not form a monophyletic group. The results of the relaxed‐clock analysis suggest that the Alticola clade splits from the Clethrionomys stem in early Middle Pliocene while basal cladogenetic events within Alticola s.str. dates back to the late Middle to early Late Pliocene. A scenario of evolution in Clethrionomyini is put forward implying rapid parallel morphological changes in different lineages leading to the formation of Alticola‐like biomorphs adapted to mountain and arid petrophilous habitats. Corresponding author: Vladimir S. Lebedev, Zoological Museum, Moscow State University, B. Nikitskaya 6, 125009 Moscow, Russia. E‐mail: wslebedev@hotmail.com Anna A. Bannikova, Lomonosov Moscow State University, Vorobievy Gory, 119992 Moscow, Russia. E‐mail: hylomys@mail.ru Alexey S. Tesakov, Geological Institute RAS, Pyzhevsky 7, 119017 Moscow, Russia. E‐mail: tesak@ginras.ru Natalia I. Abramson, Zoological Institute RAS, Universitetskaya nab. 1, 199034 St Petersburg, Russia. E‐mail: lemmus@zin.ru  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号