首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkylation of guanosine 5'-monophosphate (GMP) synthetase with the glutamine analogs L-2-amino-4-oxo-5-chloropentanoic acid (chloroketon) and 6-diazo-5-oxonorleucine (DON) inactivated glutamine- and NH3-dependent GMP synthetase. Inactivation exhibited second order kinetics. Complete inactivation was accompanied by covalent attachment of 0.4 to 0.5 equivalent of chloroketon/subunit. Alkylation of GMP synthetase with iodacetamide selectively inactivated glutamine-dependent activity. The NH3-dependent activity was relatively unaffected. Approximately 1 equivalent of carboxamidomethyl group was incorporated per subunit. Carboxymethylcysteine was the only modified amino acid hydrolysis. Prior treatment with chloroketone decreased the capacity for alkylation by iodacetamide, suggesting that both reagents alkylate the same residue. GMP synthetase exhibits glutaminase activity when ATP is replaced by adenosine plus PPi. Iodoacetamide inactivates glutaminase concomitant with glutamine-dependent GMP synthetase. Analysis of pH versus velocity and Km data indicates that the amide of glutamine remains enzyme bound and does not mix with exogenous NH3 in the synthesis of GMP.  相似文献   

2.
Properties of glutamine-dependent glutamate synthase have been investigated using homogeneous enzyme from Escherichia coli K-12. In contrast to results with enzyme from E. coli strain B (Miller, R. E., and Stadtman, E. R. (1972) J. Biol. Chem. 247, 7407-7419), this enzyme catalyzes NH3-dependent glutamate synthase activity. Selective inactivation of glutamine-dependent activity was obtained by treatment with the glutamine analog. L-2-amino-4-oxo-5-chloropentanoic acid (chloroketone). Inactivation by chloroketone exhibited saturation kinetics; glutamine reduced the rate of inactivation and exhibited competitive kinetics. Iodoacetamide, other alpha-halocarbonyl compounds, and sulfhydryl reagents gave similar selective inactivation of glutamine-dependent activity. Saturation kinetics were not obtained for inactivation by iodoacetamide but protection by glutamine exhibited competitive kinetics. The stoichiometry for alkylation by chloroketone and iodoacetamide was approximately 1 residue per protomer of molecular weight approximately 188,000. The single residue alkylated with iodo [1-14C]acetamide was identified as cysteine by isolation of S-carboxymethylcysteine. This active site cysteine is in the large subunit of molecular weight approximately 153,000. The active site cysteine was sensitive to oxidation by H2O2 generated by autooxidation of reduced flavin and resulted in selective inactivation of glutamine-dependent enzyme activity. Similar to other glutamine amidotransferases, glutamate synthase exhibits glutaminase activity. Glutaminase activity is dependent upon the functional integrity of the active site cysteine but is not wholly dependent upon the flavin and non-heme iron. Collectively, these results demonstrate that glutamate synthase is similar to other glutamine amidotransferases with respect to distinct sites for glutamine and NH3 utilization and in the obligatory function of an active site cysteine residue for glutamine utilization.  相似文献   

3.
Fluorescence energy transfer experiments were used to measure distances between three fluorescently labeled sulfhydryl sites on Escherichia coli carbamoyl-phosphate synthetase, an unsymmetrical dimer. When five different combinations of fluorescent donor-acceptor pairs are used, the distance between site 1, located on the large subunit, and site 2, located on the small subunit, is in the range of 27-33 A. Similarly, the distance between site 1 and site 3 (large subunit) was approximately 27 A and between site 2 and site 3 was approximately 21 A. A similar approach was employed to determine distances between each sulfhydryl group and the ATP site(s), and in all cases no fluorescence quenching was observed using Cr3+ATP or Co(NH3)4ATP as substrate analogues. A lower limit could be calculated from these data, resulting in a distance of greater than or equal to 21 A from each sulfhydryl site to the ATP site. Additional experiments were performed to evaluate if the substrates ATP, HCO3(-), or glutamine or the allosteric modifiers ornithine, IMP, and UMP altered the distance relationships among the sulfhydryl sites. IMP and UMP produced a slight decrease in fluorescence between sites while glutamine and ATP produced a slight increase in fluorescence.  相似文献   

4.
Carbamylphosphate synthetase was purified to homogeneity from a derepressed strain of Salmonella typhimurium by a procedure based on affinity chromatography employing immobilized glutamine. The enzyme catalyzes the synthesis of carbamylphosphate from either ammonia or glutamine together with ATP and bicarbonate. The ATP saturation curve of either nitrogen donor is sigmoidal (n equals 1.5) but the affinity for ATP is higher with ammonia. In addition to the feedback inhibition by UMP and activation by ornithine which we previously reported (1), the activity was found to be stimulated by IMP and phosphoribosyl-1-pyrophosphate. Evidence from pool measurements in enteric bacteria by others suggests that of the latter two compounds only phosphoribosyl-1-pyrophosphate is physiologically significant. All effectors regulate enzyme activity by altering its affinity for ATP. Glutamine also modulates the affinity for ATP; it is increased as glutamine concentratiions decrease, an effect that could serve to insulate the cell against major changes in carbamylphosphate synthesis in response to fluctuations in concentration of glutamine. The molecular weight of the holoenzyme was estimated to be 150,000 by sucrose density gradient centrifugation in triethanolamine and Tris-acetate buffers in which the enzyme is a monomer. In the presence of ornithine in potassium phosphate buffer, the enzyme is an oligomer with a molecular weight of 580,000. This transition has been exploited as an alternate route of purifying the enzyme to homogeneity using successive sucrose density centrifugation. Polyacrylamide gel electrophoresis of the enzyme in the presence of sodium dodecyl sulfate shows that the enzyme consists of two unequal subunits with molecular weights of 110,000 and 45,000. The two subunits were separated by gel filtration in the presence of 1 M potassium thiocyanate, ATP, MgCl2, glutamine, NH4Cl, ornithine, and UMP. The heavy subunit catalyzes the synthesis of carbamylphosphate from ammonia but not glutamine. The ATP saturation curve for the separated heavy subunit is still sigmoidal (n equals 1.4 and So.5 equals 0.3 mM). The ammonia dependent activity of the heavy subunit is stimulated by the activators ornithine, IMP, and phosphoribosyl-1-pyrophosphate but is only marginally inhibited by high concentrations of UMP. The addition of the light subunit restored full ability to utilize glutamine as well as normal sensitivity to UMP. Purified subunits were used for in vitro complementation studies with strains carrying mutations in pyrA, the structural gene encoding carbamylphosphate synthetase. The results indicate that the pyrA region encodes both subunits and that the structural genes for the two polypeptides are linked. A deletion mutant lacking both subunits of carbamylphosphate synthetase also lacked any ability to synthetize carbamylphosphate from ammonia. Hence, unlike certain other bacteria, S. typhimurium does not possess a carbamate kinase.  相似文献   

5.
Carbamoyl phosphate synthetase (CPS) from Escherichia coli catalyzes the formation of carbamoyl phosphate from 2 mol of ATP, bicarbonate, and glutamine. CPS was inactivated by the glutamine analog, acivicin. In the presence of ATP and bicarbonate the second-order rate constant for the inactivation of the glutamine-dependent activities was 4.0 x 10(4) m(-1) s(-1). In the absence of ATP and bicarbonate the second-order rate constant for inactivation of CPS was reduced by a factor of 200. The enzyme was protected against inactivation by the inclusion of glutamine in the reaction mixture. The ammonia-dependent activities were unaffected by the incubation of CPS with acivicin. These results are consistent with the covalent labeling of the glutamine-binding site located within the small amidotransferase subunit. The binding of ATP and bicarbonate to the large subunit of CPS must also induce a conformational change within the amidotransferase domain of the small subunit that enhances the nucleophilic character of the thiol group required for glutamine hydrolysis. The acivicin-inhibited enzyme was crystallized, and the three-dimensional structure was determined by x-ray diffraction techniques. The thiol group of Cys-269 was covalently attached to the dihydroisoxazole ring of acivicin with the displacement of a chloride ion.  相似文献   

6.
P M Anderson 《Biochemistry》1977,16(4):587-593
The binding of ornithine and inosine 5'-monophosphate (IMP), positive allosteric effectors, and of uridine 5'-monophosphate (UMP), a negative allosteric effector, to carbamyl-phosphate synthetase from Escherichia coli was studied by the technique of equilibrium dialysis. The monomeric form of the enzyme has one binding site for each of the three allosteric ligands. The binding of UMP is inhibited by ornithine, IMP, MgATP, and ammonia (also a positive allosteric effector). Bicarbonate, L-glutamine, and adenosine 5'-triphosphate (ATP) (Mg2+ absent) had no effect on the binding of UMP. The affinity of the enzyme for UMP was increased if phosphate buffer was replaced by 2-amino-2-hydroxymethyl-1,3-propanediol (Tris) buffer. The binding of ornithine was inhibited by UMP and ammonia, enhanced by MgATP, MgADP, and IMP, and not affected by bicarbonate, L-glutamine, or ATP (Mg2+ absent). Ornithine and ammonia probably bind to the same site on the enzyme. The binding of IMP is facilitated by ornithine and ammonia, but is inhibited by MgATP or ATP, indicating that adenine nucleotides can also bind to the IMP binding site. The results of these binding studies are consistent with a scheme previously proposed in which the allosteric effectors function by stabilizing one or the other of two different conformational states of the enzyme which are in equilibrium with each other (Anderson, P.M., and Marvin, S.V. (1970), Biochemistry 9, 171). According to this scheme, binding of the substrate MgATP is greatly facilitated when the enzyme exists in the conformational state stabilized by the positive allosteric effectors.  相似文献   

7.
Escherichia coli carbamoylphosphate synthetase (CPSase) is a key enzyme in the pyrimidine nucleotides and arginine biosynthetic pathways. The enzyme harbors a complex regulation, being activated by ornithine and inosine 5'-monophosphate (IMP), and inhibited by UMP. CPSase mutants obtained by in vivo mutagenesis and selected on the basis of particular phenotypes have been characterized kinetically. Two residues, serine 948 and threonine 1042, appear crucial for allosteric regulation of CPSase. When threonine 1042 is replaced by an isoleucine residue, the enzyme displays a greatly reduced activation by ornithine. The T1042I mutated enzyme is still sensitive to UMP and IMP, although the effects of both regulators are reduced. When serine 948 is replaced by phenylalanine, the enzyme becomes insensitive to UMP and IMP, but is still activated by ornithine, although to a reduced extent. When correlating these observations to the structural data recently reported, it becomes clear that both mutations, which are located in spatially distinct regions corresponding respectively to the ornithine and the UMP/IMP binding sites, have coupled effects on the enzyme regulation. These results provide an illustration that coupling of regulatory pathways occurs within the allosteric subunit of E. coli CPSase.In addition, other mutants have been characterized, which display altered affinities for the different CPSase substrates and also slightly modified properties towards the allosteric effectors: P165S, P170L, A182V, P360L, S743N, T800F and G824D. Kinetic properties of these modified enzymes are also presented here and correlated to the crystal structure of E. coli CPSase and to the phenotype of the mutants.  相似文献   

8.
The effects of the allosteric ligands UMP, IMP, and ornithine on the partial reactions catalyzed by Escherichia coli carbamyl phosphate synthetase have been examined. Both of these reactions, a HCO3(-)-dependent ATP synthesis reaction and a carbamyl phosphate-dependent ATP synthesis reaction, follow bimolecular ordered sequential kinetic mechanisms. In the ATPase reaction, MgATP binds before HCO3- as established previously for the overall reaction catalyzed by carbamyl phosphate synthetase [Raushel, F. M., Anderson, P. M., & Villafranca, J. J. (1978) Biochemistry 17, 5587-5591]. The initial velocity kinetics for the ATP synthesis reaction indicate that MgADP binds before carbamyl phosphate in an equilibrium ordered mechanism except in the presence of ornithine. Determination of true thermodynamic linked-function parameters describing the impact of allosteric ligands on the binding interactions of the first substrate to bind in an ordered mechanism requires experiments to be performed in which both substrates are varied even if only one is apparently affected by the allosteric ligands. In so doing, we have found that IMP has little effect on the overall reaction of either of these two partial reactions. UMP and ornithine, which have a pronounced effect on the apparent Km for MgATP in the overall reaction, both substantially change the thermodynamic dissociation constant for MgADP from the binary E-MgADP complex, Kia, in the ATP synthesis reaction, with UMP increasing Kia 15-fold and ornithine decreasing Kia by 18-fold. By contrast, only UMP substantially affects the Kia for MgATP in the ATPase reaction, increasing it by 5-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Human asparagine synthetase was examined using a combination of chemical modifiers and specific monoclonal antibodies. The studies were designed to determine the topological relation between the nucleotide binding site and the glutamine binding site of the human asparagine synthetase. The purified recombinant enzyme was chemically modified at the glutamine binding site by 6-diazo-5-oxo-L-norleucine (DON), and at the ATP binding site by 8-azidoadenosine 5'-triphosphate (8-N3ATP). The effects of chemical modification with DON included a loss of glutamine-dependent reactions, but no effect on ATP binding as measured during ammonia-dependent asparagine synthesis. Similarly, modification with 8-N3ATP resulted in a loss of ammonia-dependent asparagine synthesis, but no effect on the glutaminase activity. A series of monoclonal antibodies was also examined in relation to their epitopes and the sites modified by the two covalent chemical modifiers. It was found that several antibodies were prevented from binding by specific chemical modification, and that the antibodies could be classified into groups correlating to their relative binding domains. These results are discussed in terms of relative positions of the glutamine and ATP binding sites on asparagine synthetase.  相似文献   

10.
Glutamine 5-phosphoribosylamine:pyrophosphate phosphoribosyltransferase (amidophosphoribosyl-transferase) has been purified to homogeneity from Escherichia coli. The molecular weight of the native enzyme was 194,000 by sedimentation equilibrium centrifugation and 224,000 by gel filtration. A subunit Mr = 57,000 was estimated by gel electrophoresis in sodium dodecyl sulfate. Cross-linking experiments gave species of Mr = 57,000, 117,000, and 177,000. A trimer or tetramer of identical subunits is indicated for the native enzyme. Highly active E. coli amidophosphoribosyl-transferase lacks significant nonheme iron. Enzyme activity was not enhanced by addition of iron salts and sulfide. Amidophosphoribosyltransferase exhibited both NH3- and glutamine-dependent activities. Glutaminase activity was detected in the absence of other substrates. Both glutamine- and NH3-dependent activities were subject to end product inhibition by purine 5'-ribonucleotides. AMP and GMP, in combination, gave synergistic inhibition. AMP and GMP exhibited positive cooperativity. In addition, GMP promoted cooperativity for saturation by 5-phosphoribosyl-1-pyrophosphate. Glutamine utilization was inhibited by NH3, suggesting that the amide of glutamine is transferred to the NH3 site prior to amination of 5-phosphoribosyl-1-pyrophosphate. The glutamine-dependent activity was selectively inactivated by the glutamine analogs L-2-amino-4-oxo-5-chloropentanoic acid and 6-diazo-5-oxo L-norleucine (DON) and by iodoacetamide. Incorporation of 1 eq of DON/subunit (Mr = 57,000) caused complete inactivation of the glutamine-dependent activity, thus providing evidence for one glutamine site per monomer and for the functional identity of the subunits. Following alkylation with iodoacetamide, carboxymethylcysteine was the only modified amino acid isolated from an acid hydrolysate. The glutamine-dependent activity was sensitive to oxidation. Inactivation by exposure to air was reversed by incubation with high concentrations of dithiothreitol.  相似文献   

11.
Carbamoyl phosphate (CP), the essential precursor of pyrimidines and arginine, is made in Escherichia coli by a single carbamoyl phosphate synthetase (CPS) consisting of 41.4 and 117.7 kDa subunits, which is feed-back inhibited by UMP and activated by IMP and ornithine. The large subunit catalyzes CP synthesis from ammonia in three steps, and binds the effectors in its 15 kDa C-terminal domain. Fifteen site-directed mutations were introduced in 13 residues of this domain to investigate the mechanism of allosteric modulation by UMP and IMP. Two mutations, K993A and V994A, decreased significantly or abolished enzyme activity, apparently by interfering with the step of carbamate synthesis, and one mutation, T974A, negatively affected ornithine activation. S948A, K954A, T974A, K993A and K993W/H995A abolished or greatly hampered IMP activation and UMP inhibition as well as the binding of both effectors, monitored using photoaffinity labeling and ultracentrifugation binding assays. V994A also decreased significantly IMP and UMP binding. L990A, V991A, H995A, G997A and G1008A had more modest effects or affected more the modulation by and the binding of one than of the other nucleotide. K993W, R1020A, R1021A and K1061A were without substantial effects. The results confirm the independence of the regulatory and catalytic centers, and also confirm functional predictions based on the X-ray structure of an IMP-CPS complex. They prove that the inhibitor UMP and the activator IMP bind in the same site, and exclude that the previously observed binding of ornithine and glutamine in this site were relevant for enzyme activation. K993 and V994 appear to be involved in the transmission of the regulatory signals triggered by UMP and IMP binding. These effectors possibly change the position of K993 and V994, and alter the intermolecular contacts mediated by the regulatory domain.  相似文献   

12.
Escherichia coli asparagine synthetase B (AS-B) catalyzes the formation of asparagine from aspartate in an ATP-dependent reaction for which glutamine is the in vivo nitrogen source. In an effort to reconcile several different kinetic models that have been proposed for glutamine-dependent asparagine synthetases, we have used numerical methods to investigate the kinetic mechanism of AS-B. Our simulations demonstrate that literature proposals cannot reproduce the glutamine dependence of the glutamate/asparagine stoichiometry observed for AS-B, and we have therefore developed a new kinetic model that describes the behavior of AS-B more completely. The key difference between this new model and the literature proposals is the inclusion of an E.ATP.Asp.Gln quaternary complex that can either proceed to form asparagine or release ammonia through nonproductive glutamine hydrolysis. The implication of this model is that the two active sites in AS-B become coordinated only after formation of a beta-aspartyl-AMP intermediate in the synthetase site of the enzyme. The coupling of glutaminase and synthetase activities in AS is therefore different from that observed in all other well-characterized glutamine-dependent amidotransferases.  相似文献   

13.
The large subunit of Escherichia coli carbamoyl phosphate synthetase (a polypeptide of 117.7 kDa that consists of two homologous halves) is responsible for carbamoyl phosphate synthesis from NH3 and for the binding of the allosteric activators ornithine and IMP and of the inhibitor UMP. Elastase, trypsin, and chymotrypsin inactivate the enzyme and cleave the large subunit at a site approximately 15 kDa from the COOH terminus (demonstrated by NH2-terminal sequencing). UMP, IMP, and ornithine prevent this cleavage and the inactivation. Upon irradiation with ultraviolet light in the presence of [14C]UMP, the large subunit is labeled selectively and specifically. The labeling is inhibited by ornithine and IMP. Cleavage of the 15-kDa COOH-terminal region by prior treatment of the enzyme with trypsin prevents the labeling on subsequent irradiation with [14C]UMP. The [14C]UMP-labeled large subunit is resistant to proteolytic cleavage, but if it is treated with SDS the resistance is lost, indicating that UMP is cross-linked to its binding site and that the protection is due to conformational factors. In the presence of SDS, the labeled large subunit is cleaved by trypsin or by V8 staphylococcal protease at a site located 15 or 25 kDa, respectively, from the COOH terminus (shown by NH2-terminal sequencing), and only the 15- or 25-kDa fragments are labeled. Similarly, upon cleavage of the aspartyl-prolyl bonds of the [14C]UMP-labeled enzyme with 70% formic acid, labeling was found only in the 18.5-kDa fragment that contains the COOH terminus of the subunit. Thus, UMP binds to the COOH-terminal domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ornithine is an allosteric activator of carbamoyl phosphate synthetase (CPS) from Escherichia coli. Nine amino acids in the vicinity of the binding sites for ornithine and potassium were mutated to alanine, glutamine, or lysine. The residues E783, T1042, and T1043 were found to be primarily responsible for the binding of ornithine to CPS, while E783 and E892, located within the carbamate domain of the large subunit, were necessary for the transmission of the allosteric signals to the active site. In the K loop for the binding of the monovalent cation potassium, only E761 was crucial for the exhibition of the allosteric effects of ornithine, UMP, and IMP. The mutations H781K and S792K altered significantly the allosteric properties of ornithine, UMP, and IMP, possibly by modifying the conformation of the K-loop structure. Overall, these mutations affected the allosteric properties of ornithine and IMP more than those of UMP. The mutants S792K and D1041A altered the allosteric regulation by ornithine and IMP in a similar way, suggesting common features in the activation mechanism exhibited by these two effectors.  相似文献   

15.
The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked inhibition.  相似文献   

16.
Citrulline synthesis from ammonia by hepatic mitochondria in elasmobranchs involves intermediate formation of glutamine as the result of the presence of high levels of glutamine synthetase and a unique glutamine- and N-acetyl-glutamate-dependent carbamoyl phosphate synthetase, both of which have properties unique to the function of glutamine-dependent synthesis of urea, which is retained in the tissues of elasmobranchs at high concentrations for the purpose of osmoregulation [P.M. Anderson and C.A. Casey (1984) J. Biol. Chem. 259, 456-462; R.A. Shankar and P.M. Anderson (1985) Arch. Biochem. Biophys. 239, 248-259]. The objective of this study was to determine if ornithine carbamoyl transferase, which catalyzes the last step of mitochondrial citrulline synthesis and which has not been previously isolated from any species of fish, also has properties uniquely related to this function. Ornithine carbamoyl transferase was highly purified from isolated liver mitochondria of Squalus acanthias, a representative elasmobranch. The purified enzyme is a trimer with a subunit molecular weight of 38,000 and a native molecular weight of about 114,000. The effect of pH is significantly influenced by ornithine concentration; optimal activity is at pH 7.8 when ornithine is saturating. The apparent Km values for ornithine and carbamoyl phosphate at pH 7.8 are 0.71 and 0.05 mM, respectively. Ornithine displays considerable substrate inhibition above pH 7.8. The activity is not significantly affected by physiological concentrations of the osmolyte urea or trimethylamine-N-oxide or by a number of other metabolites. The results of kinetic studies are consistent with a steady-state ordered addition of substrates (carbamoyl phosphate binding first) and rapid equilibrium random release of products. Except for an unusually low specific activity, the properties of the purified elasmobranch enzyme are similar to the properties of ornithine carbamoyl transferase from mammalian ureotelic and other species and do not appear to be unique to its role in glutamine-dependent synthesis of urea for the purpose of osmoregulation.  相似文献   

17.
Asparagine synthetase B (AsnB) catalyzes the formation of asparagine in an ATP-dependent reaction using glutamine or ammonia as a nitrogen source. To obtain a better understanding of the catalytic mechanism of this enzyme, we report the cloning, expression, and kinetic analysis of the glutamine- and ammonia-dependent activities of AsnB from Vibrio cholerae. Initial velocity, product inhibition, and dead-end inhibition studies were utilized in the construction of a model for the kinetic mechanism of the ammonia- and glutamine-dependent activities. The reaction sequence begins with the ordered addition of ATP and aspartate. Pyrophosphate is released, followed by the addition of ammonia and the release of asparagine and AMP. Glutamine is simultaneously hydrolyzed at a second site and the ammonia intermediate diffuses through an interdomain protein tunnel from the site of production to the site of utilization. The data were also consistent with the dead-end binding of asparagine to the glutamine binding site and PP(i) with free enzyme. The rate of hydrolysis of glutamine is largely independent of the activation of aspartate and thus the reaction rates at the two active sites are essentially uncoupled from one another.  相似文献   

18.
M Rizzi  C Nessi  A Mattevi  A Coda  M Bolognesi    A Galizzi 《The EMBO journal》1996,15(19):5125-5134
NAD+ synthetase catalyzes the last step in the biosynthesis of nicotinamide adenine dinucleotide. The three-dimensional structure of NH3-dependent NAD+ synthetase from Bacillus subtilis, in its free form and in complex with ATP, has been solved by X-ray crystallography (at 2.6 and 2.0 angstroms resolution, respectively) using a combination of multiple isomorphous replacement and density modification techniques. The enzyme consists of a tight homodimer with alpha/beta subunit topology. The catalytic site is located at the parallel beta-sheet topological switch point, where one AMP molecule, one pyrophosphate and one Mg2+ ion are observed. Residue Ser46, part of the neighboring 'P-loop', is hydrogen bonded to the pyrophosphate group, and may play a role in promoting the adenylation of deamido-NAD+ during the first step of the catalyzed reaction. The deamido-NAD+ binding site, located at the subunit interface, is occupied by one ATP molecule, pointing towards the catalytic center. A conserved structural fingerprint of the catalytic site, comprising Ser46, is very reminiscent of a related protein region observed in glutamine-dependent GMP synthetase, supporting the hypothesis that NAD+ synthetase belongs to the newly discovered family of 'N-type' ATP pyrophosphatases.  相似文献   

19.
The synthetase subunit of Escherichia coli carbamyl phosphate synthetase has two catalytic nucleotide-binding domains, one involved in the activation of HCO3- and the second in phosphorylation of carbamate. Here we show that a Glu841----Lys841 substitution in a putative ATP-binding domain located in the carboxyl half of the synthetase abolishes overall synthesis of carbamyl phosphate with either glutamine or NH3 as the nitrogen source. Measurements of partial activities indicate that while HCO3(-)-dependent ATP hydrolysis at saturating concentrations of substrate proceeds at higher than normal rates, ATP synthesis from ADP and carbamyl phosphate is nearly completely suppressed by the mutation. These results indicate Glu841 to be an essential residue for the phosphorylation of carbamate in the terminal step of the catalytic mechanism. The Lys841 substitution also affects the kinetic properties of the HCO3- activation site. Both kcat and Km for ATP increase 10-fold, while Km for HCO3- is increased 100-fold. Significantly, NH3 decreases rather than stimulates Pi release from ATP in the HCO3(-)-dependent ATPase reaction. The increase in kcat of the HCO3(-)-dependent ATPase reaction, and an impaired ability of the Lys841 enzyme to catalyze the reaction of NH3 with carboxy phosphate, strongly argues for interactions between the two catalytic ATP sites that couple the formation of enzyme-bound carbamate with its phosphorylation.  相似文献   

20.
Photoaffinity labeling with IMP was used to attach covalently this activator to its binding site of Escherichia coli carbamoyl phosphate synthetase. We now identify histidine 995 of the large enzyme subunit as the amino acid that is cross-linked with IMP. The identification was carried out by comparative peptide mapping in two chromatographic systems of peptides differentially labeled with [3H]IMP and with the labeled inhibitor [14C]UMP, followed by automated Edman degradation and radiosequence analysis. Site-directed substitution of His995 by alanine confirmed His995 to be the only amino acid in the protein forming a covalent adduct with IMP. The His995Ala mutant protein was soluble and active and exhibited normal kinetics for the activator ornithine and for the substrates in the presence of ornithine. However, the mutation selectively induced changes in the activation by IMP and the inhibition by UMP, and it abolished the photolabeling of the enzyme by IMP without affecting the photolabeling by the inhibitor UMP. Since UMP is cross-linked to Lys993 [Cervera, J., et al. (1996) Biochemistry 35, 7247-7255] only two residues upstream of the site of IMP labeling, the results provide structural evidence for earlier proposals which suggested that UMP and IMP bind in a single or overlapping site. The two residues are within the region previously proposed as the binding fold for the nucleotide effectors. In the crystal structure of the enzyme, Lys993 and His995 are exposed and line a crevice where a Pi molecule was found [Thoden, J. B., et al. (1997) Biochemistry 36, 6305-6316]. UMP and IMP appear to bind in this crevice, possibly toward the C-side of the beta-sheet in a Rossman fold. Their binding in this site is consistent with the selectivity of adduct formation of UMP with Lys993 and of IMP with His995. It is also consistent with the nonessentiality of His995 for the binding, since the interactions with other residues that line the crevice must contribute a large part of the binding energy. The lack of an effect of the mutation on the activation by ornithine is consistent with the binding of this activator in a separate site in the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号