首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Excessive angiogenesis is involved in many human diseases, and inhibiting angiogenesis is an important area of drug development. There have been conflicting reports as to whether decorin could function as an angiogenic inhibitor when used as an extracellular soluble factor. In this study, we demonstrated that not only purified decorin but also the 26-residue leucine-rich repeat 5 (LRR5) of decorin core protein functions as angiogenesis inhibitor by inhibiting both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor-induced angiogenesis. Peptide LRR5 inhibited angiogenesis through multiple mechanisms, including inhibiting VEGF-stimulated endothelial cell (EC) migration, tube formation on Matrigel, cell attachment to fibronectin, as well as induction of EC apoptosis without significantly affecting their proliferation. We further demonstrated that different subregions of LRR5 inhibited different aspects of angiogenesis, with the middle region (LRR5M, 12 residues) inhibiting endothelial cell tube formation up to 1000 times more potently than LRR5. Although the C-terminal region (LRR5C) potently inhibited VEGF-stimulated endothelial cell migration, the N-terminal region (LRR5N) is as active as LRR5 in inhibiting endothelial cell attachment to fibronectin. Although both LRR5M and LRR5N induced EC apoptosis dose-dependently similar to LRR5 through a caspase-dependent pathway, LRR5C has no such function. We further showed that the inhibition of tube formation by LRR5 and LRR5M is linked with their ability to suppress VEGF-induced focal adhesion kinase phosphorylation and the assembly of focal adhesions and actin stress fibers in ECs, but not their ability to interfere with endothelial cell attachment to the matrix. Circular dichroism studies revealed that LRR5 undergoes an inter-conversion between 3(10) helix and beta-sheet structure in solution, a characteristic potentially important for its anti-angiogenic activity. Peptide LRR5 and its derivatives are therefore novel angiogenesis inhibitors that may serve as prototypes for further development into anti-angiogenic drugs.  相似文献   

2.
Induction of SPARC by VEGF in human vascular endothelial cells   总被引:7,自引:0,他引:7  
SPARC/osteonectin/BM-40 is a matricellular protein that is thought to be involved in angiogenesis and endothelial barrier function. Previously, we have detected high levels of SPARC expression in endothelial cells (ECs) adjacent to carcinomas of kidney and tongue. Although SPARC-derived peptide showed an angiogenic effect, intact SPARC itself inhibited the mitogenic activity of vascular endothelial growth factor (VEGF) for ECs by the inhibiting phosphorylation of flt-1 (VEGF receptor 1) and subsequent ERK activation. Thus, the role of SPARC in tumor angiogenesis, stimulation or inhibition, is still unclear. To clarify the role of SPARC in tumor growth and progression, we determined the effect of VEGF on the expression of SPARC in human microvascular EC line, HMEC-1, and human umbilical vein ECs. VEGF increased the levels of SPARC protein and steady-state levels of SPARC mRNA in serum-starved HMEC-1 cells. Inhibitors (SB202190 and SB203580) of p38, a mitogen-activated protein (MAP) kinase, attenuated VEGF-stimulated SPARC production in ECs. Since intact SPARC inhibits phosphorylation ERK MAP kinase in VEGF signaling, it was suggested that SPARC plays a dual role in the VEGF functions, tumor angiogenesis, and extravasation of tumors mediated by the increased permeability of endothelial barrier function.  相似文献   

3.
Recent studies indicate that angiogenesis depends, in part, on ligation of integrin alpha(5)beta(1) by fibronectin. Evidence is now provided that integrin alpha(5)beta(1) regulates the function of integrin alpha(v)beta(3) on endothelial cells during their migration in vitro or angiogenesis in vivo. Secretion of fibronectin by endothelial cells leads to the ligation of integrin alpha(5)beta(1), which potentiates alpha(v)beta(3)-mediated migration on vitronectin without influencing alpha(v)beta(3)-mediated cell adhesion. Endothelial cell attachment to vitronectin suppresses protein kinase A (PKA) activity, while addition of soluble anti-alpha(5)beta(1) restores this activity. Moreover, agents that activate intracellular PKA, such as forskolin, dibutyryl cAMP or alpha(5)beta(1) antagonists, suppress endothelial cell migration on vitronectin in vitro or angiogenesis in vivo. In contrast, inhibitors of PKA reverse the anti-migratory or anti-angiogenic effects mediated by alpha(5)beta(1) antagonists. Therefore, alpha(v)beta(3)-mediated endothelial cell migration and angiogenesis can be regulated by PKA activity, which depends on the ligation state of integrin alpha(5)beta(1).  相似文献   

4.
We have investigated the putative role and regulation of membrane type 1-matrix metalloproteinase (MT1-MMP) in angiogenesis induced by inflammatory factors of the chemokine family. The absence of MT1-MMP from null mice or derived mouse lung endothelial cells or the blockade of its activity with inhibitory antibodies resulted in the specific decrease of in vivo and in vitro angiogenesis induced by CCL2 but not CXCL12. Similarly, CCL2- and CXCL8-induced tube formation by human endothelial cells (ECs) was highly dependent on MT1-MMP activity. CCL2 and CXCL8 significantly increased MT1-MMP surface expression, clustering, activity, and function in human ECs. Investigation of the signaling pathways involved in chemokine-induced MT1-MMP activity in ECs revealed that CCL2 and CXCL8 induced cortical actin polymerization and sustained activation of phosphatidylinositol 3-kinase (PI3K) and the small GTPase Rac. Inhibition of PI3K or actin polymerization impaired CCL2-induced MT1-MMP activity. Finally, dimerization of MT1-MMP was found to be enhanced by CCL2 in ECs in a PI3K- and actin polymerization-dependent manner. In summary, we identify MT1-MMP as a molecular target preferentially involved in angiogenesis mediated by CCL2 and CXCL8, but not CXCL12, and suggest that MT1-MMP dimerization might be an important mechanism of its regulation during angiogenesis.  相似文献   

5.
Liu D  Dillon JS 《Steroids》2004,69(4):279-289
Dehydroepiandrosterone (DHEA) improves vascular function, but the mechanism of this effect is unclear. Since nitric oxide (NO) regulates vascular function, we hypothesized that DHEA affects the vasculature by increasing endothelial NO production. Physiological concentrations of DHEA stimulated NO release from intact bovine aortic endothelial cells (BAEC) within 5min. This effect was mediated by activation of endothelial nitric oxide synthase (eNOS) in BAEC and human umbilical vein endothelial cells (HUVEC). Dehydroepiandrosterone increased cyclic GMP (cGMP) levels in BAEC, consistent with its effect on NO production. Albumin-conjugated DHEA also stimulated NO release, suggesting that DHEA stimulates eNOS by a plasma membrane-initiated signal. Tamoxifen blocked estrogen-stimulated NO release from BAEC, but did not inhibit the DHEA effect. Pertussis toxin abolished the acute effect of DHEA on NO release. Dehydroepiandrosterone had no effect on intracellular calcium fluxes. However, inhibition of tyrosine kinases or the mitogen-activated protein (MAP) kinase kinase (MEK) blocked NO release and cGMP production in response to DHEA. These findings demonstrate that physiological concentrations of DHEA acutely increase NO release from intact vascular endothelial cells, by a plasma membrane-initiated mechanism. This action of DHEA is mediated by a steroid-specific, G-protein coupled receptor, which activates eNOS in both bovine and human cells. The release of NO is independent of intracellular calcium mobilization, but depends on tyrosine- and MAP kinases. This cellular mechanism may underlie some of the cardiovascular protective effects proposed for DHEA.  相似文献   

6.
7.
Nitric oxide (NO) produced by the action of endothelial nitric oxide synthase (eNOS) plays an important role in the regulation of vascular tone, cell survival, and angiogenesis. Interaction of endothelial cells (ECs) with a fibronectin (FN) rich matrix is important in the regulation of EC function and survival during angiogenesis. The present study was carried out to examine if FN can regulate eNOS and thereby NO levels in ECs. The activity and the levels of mRNA and protein of eNOS were significantly low in HUVECs maintained in culture on FN. Inhibition of p38 MAPK and blocking the interaction of FN with α5β1 integrin using antibody caused the reversal of the FN effect. Immunoblot analysis of Ser/Thr phosphorylation of purified eNOS suggested that FN downregulates post-translational phosphorylation of eNOS at Ser residues. These results suggest that FN negatively modulates eNOS in an α5β1 integrin-p38 MAPK-dependent pathway.  相似文献   

8.
9.
Interactions between astrocytes and endothelial cells (ECs) are crucial for retinal vascular formation. Astrocytes induce migration and proliferation of ECs via their production of vascular endothelial growth factor (VEGF) and, conversely, ECs induce maturation of astrocytes possibly by the secretion of leukemia inhibitory factor (LIF). Together with the maturation of astrocytes, this finalizes angiogenesis. Thus far, the mechanisms triggering LIF production in ECs are unclear. Here we show that apelin, a ligand for the endothelial receptor APJ, induces maturation of astrocytes mediated by the production of LIF from ECs. APJ (Aplnr)- and Apln-deficient mice show delayed angiogenesis; however, aberrant overgrowth of endothelial networks with immature astrocyte overgrowth was induced. When ECs were stimulated with apelin, LIF expression was upregulated and intraocular injection of LIF into APJ-deficient mice suppressed EC and astrocyte overgrowth. These data suggest an involvement of apelin/APJ in the maturation process of retinal angiogenesis.  相似文献   

10.
MARCH5 is a critical regulator of mitochondrial dynamics, apoptosis and mitophagy. However, its role in cardiovascular system remains poorly understood. This study aimed to investigate the role of MARCH5 in endothelial cell (ECs) injury and the involvement of the Akt/eNOS signalling pathway in this process. Rat models of myocardial infarction (MI) and human cardiac microvascular endothelial cells (HCMECs) exposed to hypoxia (1% O2) were used in this study. MARCH5 expression was significantly reduced in ECs of MI hearts and ECs exposed to hypoxia. Hypoxia inhibited the proliferation, migration and tube formation of ECs, and these effects were aggravated by knockdown of MARCH5 but antagonized by overexpressed MARCH5. Overexpression of MARCH5 increased nitric oxide (NO) content, p-eNOS and p-Akt, while MARCH5 knockdown exerted the opposite effects. The protective effects mediated by MARCH5 overexpression on ECs could be inhibited by eNOS inhibitor L-NAME and Akt inhibitor LY294002. In conclusion, these results indicated that MARCH5 acts as a protective factor in ischaemia/hypoxia-induced ECs injury partially through Akt/eNOS pathway.  相似文献   

11.
Engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) is a bipartite guanine nucleotide exchange factor for the monomeric GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). Elmo1/Dock180 regulates Rac1 activity in a specific spatiotemporal manner in endothelial cells (ECs) during zebrafish development and acts downstream of the Netrin-1/Unc5-homolog B (Unc5B) signaling cascade. However, mechanistic details on the pathways by which Elmo1/Dock180 regulates endothelial function and vascular development remained elusive. In this study, we aimed to analyze the vascular function of Elmo1 and Dock180 in human ECs and during vascular development in zebrafish embryos. In vitro overexpression of Elmo1 and Dock180 in ECs reduced caspase-3/7 activity and annexin V-positive cell number upon induction of apoptosis. This protective effect of Elmo1 and Dock180 is mediated by activation of Rac1, p21-activated kinase (PAK) and AKT/protein kinase B (AKT) signaling. In zebrafish, Elmo1 and Dock180 overexpression reduced the total apoptotic cell and apoptotic EC number and promoted the formation of blood vessels during embryogenesis. In conclusion, Elmo1 and Dock180 protect ECs from apoptosis by the activation of the Rac1/PAK/AKT signaling cascade in vitro and in vivo. Thus, Elmo1 and Dock180 facilitate blood vessel formation by stabilization of the endothelium during angiogenesis.  相似文献   

12.
13.
In this study, we developed a methodology to improve the survival, vascular differentiation and regenerative potential of umbilical cord blood (UCB)-derived hematopoietic stem cells (CD34(+) cells), by co-culturing the stem cells in a 3D fibrin gel with CD34(+)-derived endothelial cells (ECs). ECs differentiated from CD34(+) cells appear to have superior angiogenic properties to fully differentiated ECs, such as human umbilical vein endothelial cells (HUVECs). Our results indicate that the pro-survival effect of CD34(+)-derived ECs on CD34(+) cells is mediated, at least in part, by bioactive factors released from ECs. This effect likely involves the secretion of novel cytokines, including interleukin-17 (IL-17) and interleukin-10 (IL-10), and the activation of the ERK 1/2 pathway in CD34(+) cells. We also show that the endothelial differentiation of CD34(+) cells in co-culture with CD34(+)-derived ECs is mediated by a combination of soluble and insoluble factors. The regenerative potential of this co-culture system was demonstrated in a chronic wound diabetic animal model. The co-transplantation of CD34(+) cells with CD34(+)-derived ECs improved the wound healing relatively to controls, by decreasing the inflammatory reaction and increasing the neovascularization of the wound.  相似文献   

14.
Peroxisome proliferator-activated receptor (PPAR)δ is known to be expressed ubiquitously and involved in lipid and glucose metabolism. Recent studies have demonstrated that PPARδ is expressed in endothelial cells (ECs) and plays a potential role in endothelial survival and proliferation. Although PPARα and PPARγ are well recognized to play anti-inflammatory, antiproliferative, and antiangiogenic roles in ECs, the general effect of PPARδ on angiogenesis in ECs remains unclear. Thus, we investigated the effect of the PPARδ ligand L-165041 on vascular EC proliferation and angiogenesis in vitro as well as in vivo. Our data show that L-165041 inhibited VEGF-induced cell proliferation and migration in human umbilical vein ECs (HUVECs). L-165041 also inhibited angiogenesis in the Matrigel plug assay and aortic ring assay. Flow cytometric analysis indicated that L-165041 reduced the number of ECs in the S phase and the expression levels of cell cycle regulatory proteins such as cyclin A, cyclin E, CDK2, and CDK4; phosphorylation of the retinoblastoma protein was suppressed by pretreatment with L-165041. We confirmed whether these antiangiogenic effects of L-165041 were PPARδ-dependent using GW501516 and PPARδ siRNA. GW501516 treatment did not inhibit VEGF-induced angiogenesis, and transfection of PPARδ siRNA did not reverse this antiangiogenic effect of L-165041, suggesting that the antiangiogenic effect of L-165041 on ECs is PPARδ-independent. Together, these data indicate that the PPARδ ligand L-165041 inhibits VEGF-stimulated angiogenesis by suppressing the cell cycle progression independently of PPARδ. This study highlights the therapeutic potential of L-165041 in the treatment of many disorders related to pathological angiogenesis.  相似文献   

15.
16.
Angiogenesis, a formation of neo-vessels from pre-existing ones, is regulated by the local balance between its stimulators and inhibitors. Vasohibin-1 (VASH1) was originally identified as an endothelium-derived vascular endothelial growth factor (VEGF)-inducible angiogenesis inhibitor that acts in a negative feedback manner. The expression of VASH1 has been shown in endothelial cells (ECs) in both physiological and pathological conditions associated with angiogenesis. However, recent reports indicate that VASH1 is expressed not only in ECs but also in other cell types including haematopoietic cells. The function of VASH1 may not be restricted to angiogenesis inhibition.  相似文献   

17.
ATP induces Ca(2+) influx across the cell membrane and activates release from intracellular Ca(2+) pools in vascular endothelial cells (ECs). Ca(2+) signaling leads to the modification of a variety of EC functions, including the production of vasoactive substances such as nitric oxide and prostacyclin. However, the molecular mechanisms for ATP-induced Ca(2+) influx in ECs have not been thoroughly clarified. Here we demonstrate evidence that a P2X(4) receptor for an ATP-gated cation channel is predominantly expressed in human ECs and is involved in the ATP-induced Ca(2+) influx. Northern blot analysis distinctly showed the expression of P2X(4) mRNA in human ECs cultured from the umbilical vein, aorta, pulmonary artery, and skin microvessels. Competitive PCR revealed that P2X(4) mRNA expression was much higher in ECs than was the expression of other subtypes, including P2X(1), P2X(3), P2X(5), and P2X(7). Treatment of ECs with antisense oligonucleotides designed to target the P2X(4) receptor decreased the P2X(4) mRNA and protein levels to approximately 25% of control levels and markedly prevented the ATP-induced Ca(2+) influx.  相似文献   

18.
Apelin is a bioactive peptide with diverse physiological actions on many tissues mediated by its interaction with its specific receptor APJ. Since the identification of apelin and APJ in 1998, pleiotropic roles of the apelin/APJ system have been elucidated in different tissues and organs, including modulation of the cardiovascular system, fluid homeostasis, metabolic pathway and vascular formation. In blood vessels, apelin and APJ expression are spatiotemporally regulated in endothelial cells (ECs) during angiogenesis. In vitro analysis revealed that the apelin/APJ system regulates angiogenesis by the induction of proliferation, migration and cord formation of cultured ECs. Moreover, apelin seems to stabilize cell-cell junctions of ECs. In addition, genetically engineered mouse models suggest that apelin/APJ regulates vascular stabilization and maturation in physiological and pathological angiogenesis. In this review, we summarize the current understanding of the apelin/APJ system for vascular formation and maturation.  相似文献   

19.
Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC) and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human skin endothelial cells might induce their growth and ultimately lead to bacillary angiomatosis formation.  相似文献   

20.
Li XW  Wang H 《Life sciences》2006,78(16):1863-1870
Alpha 7 nicotinic acetylcholine receptor (alpha7 nAChR) is widely expressed in the central and peripheral nervous systems, and is also found in several non-neuronal tissues, such as endothelial cells (ECs), bronchial epithelial cells, skin keratinocytes and vascular smooth muscle cells. Recent evidence suggests that alpha7 nAChR is involved in angiogenesis. Here, we investigated the feasibility of alpha7 nAChR for revascularization in ischemic heart disease. RT-PCR and immunohistochemistry were used to examine the expression of alpha7 nAChR in human umbilical vein endothelial cell (HUVECs). The cellular function was examined using MTT, fluorescence confocal microscopy and angiogenesis assay in vitro. The capillary density in the rat model of myocardial infarction (MI) was investigated using immunohistochemistry. The results showed that alpha7 nAChR agonists choline increased the expression of alpha7 nAChR mRNA and protein, the intracellular Ca 2+ concentration, proliferation and tube formation of ECs. Reverse effects were observed by using alpha7 nAChR antagonist alpha-BTX. Furthermore, in the rat model of MI, alpha7 nAChR agonist enhanced the capillary density in ischemic tissues, whereas antagonist mecamylamine and alpha-BTX inhibited the effect. Our results suggest that alpha7 nAChR is involved in the regulation of cellular function in ECs, and capillary formation in MI, which are the important steps of angiogenesis. Therefore, alpha7 nAChR on ECs may be a new endothelium target for revascularization in therapeutic angiogenesis of ischemic heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号