首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Field pennycress (Thlaspi arvense L.) is a winter annual crucifer with a cold requirement for stem elongation and flowering. In the present study, the metabolism of exogenous [2H]-ent-kaurenoic acid (KA) and [14C]-gibberellin A12-aldehyde (GA12-aldehyde) was compared in thermo- and noninduced plants. Thermoinduction greatly altered both quantitative and qualitative aspects of [2H]-KA metabolism in the shoot tips. The rate of disappearance of the parent compound was much greater in thermoinduced shoot tips. Moreover, there was 47 times more endogenous KA in noninduced than in thermoinduced shoot tips as determined by combined gas chromatography-mass spectrometry (GC-MS). The major metabolite of [2H]-KA in thermoinduced shoot tips was a monohydroxylated derivative of KA, while in noninduced shoot tips, the glucose ester of the hydroxy KA metabolite was the main product. Gibberellin A9 (GA9) was the only GA in which the incorporation of deuterium was detected by GC-MS, and this was observed only in thermoinduced shoot tips. The amount of incorporation was small as indicated by the large dilution by endogenous GA9. In contrast, thermo- and noninduced leaves metabolized exogenous [2H]-KA into GA20 equally well, although the amount of conversion was also limited. These results are consistent with the suggestion (JD Metzger [1990] Plant Physiol 94: 000-000) that the conversion of KA in to GAs is under thermoinductive control only in the shoot tip, the site of perception for thermoinductive temperatures in field pennycress. There were essentially no differences in the qualitative or quantitative distribution of metabolites formed following the application of [14C]-GA12-aldehyde to the shoot tips of thermo- or noninduced plants. Thus, the apparent thermoinductive regulation of the KA metabolism into GAs is probably limited to the two metabolic steps involved in converting KA to GA12-aldehyde.  相似文献   

2.
Almost 50 years ago, it was shown that gibberellin (GA) applications caused flowering in species normally responding to cold (vernalization) and long day (LD). The implication that GAs are involved with vernalization and LD responses is examined here with the grass Lolium perenne. This species has an obligatory requirement for exposure to both vernalization and LD for its flowering (inflorescence initiation). Specific effects of vernalization or LD on GA synthesis, content, and action have been documented using four treatment pairs: nonvernalized or vernalized plants exposed to short days (SDs) or LDs. Irrespective of vernalization status, exposure to two LDs increased expression of L. perenne GA 20-oxidase-1 (LpGA20ox1), a critical GA biosynthetic gene, with endogenous GAs increasing by up to 5-fold in leaf and shoot. In parallel, LD led to degradation of a DELLA protein, SLENDER (within 48 h of LD or within 2 h of GA application). There was no effect on GA catabolism or abscisic acid content. Loss of SLENDER, which is a repressor of GA signaling, confirms the physiological relevance of increased GA content in LD. For flowering, applied GA replaced the need for LD but not that for vernalization. Thus, GAs may be an LD, leaf-sourced hormonal signal for flowering of L. perenne. By contrast, vernalization had little impact on GA or SLENDER levels or on SLENDER degradation following GA application. Thus, although vernalization and GA are both required for flowering of L. perenne, GA signaling is independent of vernalization that apparently impacts on unrelated processes.  相似文献   

3.
Vernalization of Thlaspi arvense L. results in the alteration of gibberellin (GA) metabolism such that the metabolism and turnover of the GA precursor ent-kaur-16-en-19-oic acid (kaurenoic acid) is dramatically increased. This cold-induced change in GA metabolism is restricted to the shoot tip, the site of perception of cold in this species (J.P. Hazebroek, J.D. Metzger [1990] Plant Physiol 94: 157-165). In the present report additional biochemical information about the nature of this low-temperature-regulated process is provided. The endogenous levels of kaurenoic acid in leaves and shoot tips of plants were estimated by combined gas chromatography-chemical ionization mass spectrometry at various times after 4 weeks of vernalization at 6[deg]C. The endogenous levels in shoot tips declined 10-fold by 2 d after the plants were returned to 21[deg]C; this decline continued such that there was nearly 50-fold less kaurenoic acid by 10 d after the end of vernalization. No effect of vernalization on the endogenous levels of kaurenoic acid in leaves was observed. An in vitro enzyme assay was developed to monitor changes in the ability of tissues to convert kaurenoic acid to ent-7[alpha]-hydroxykaur-16-en-19-oic acid (7-OH kaurenoic acid). The activity of this enzyme rapidly increased in microsomal extracts from shoot tips following the end of vernalization. No thermoinduced increase in activity was observed in leaves. The enzymic oxidation of ent-kaurene to ent-kaurenol was also induced in shoot tips by vernalization. However, this reaction does not appear to be rate limiting for GA biosynthesis, because substantial amounts of kaurenoic acid accumulated in noninduced shoot tips. These results corroborate our hypothesis that the conversion of kaurenoic acid to 7-OH kaurenoic acid is the primary step in GA metabolism regulated by vernalization in Thlaspi shoot tips.  相似文献   

4.
Maki SL  Brenner ML 《Plant physiology》1991,97(4):1359-1366
Gibberellins (GAs) are either required for, or at least promote, the growth of the pea (Pisum sativum L.) fruit. Whether the pericarp of the pea fruit produces GAs in situ and/or whether GAs are transported into the pericarp from the developing seeds or maternal plant is currently unknown. The objective of this research was to investigate whether the pericarp tissue contains enzymes capable of metabolizing GAs from [14C]GA12-7-aldehyde ([14C]GA12ald) to biologically active GAs. The metabolism of GAs early in the biosynthetic pathway, [14C]GA12 and [14C]GA12ald, was investigated in pericarp tissue isolated from 4-day-old pea fruits. [14C]GA12ald was metabolized primarily to [14C]GA12ald-conjugate, [14C]GA12, [14C]GA53, and polar conjugate-like products by isolated pericarp. In contrast, [14C]GA12 was converted primarily to [14C]GA53 and polar conjugate-like products. Upon further investigations with intact 4-day-old fruits on the plant, [14C]GA12 was found to be converted to a product which copurified with endogenous GA20. Lastly, [2H]GA20 and [2H]GA1 were recovered 48 hours after application of [2H]- and [14C]GA53 to pericarp tissue of intact 3-day-old pea fruits. These results demonstrate that pericarp tissue metabolizes GAs and suggests a function for pericarp GA metabolism during fruit growth.  相似文献   

5.
6.
[3H]Gibberellin A20 (GA20) of high specific radioactivity (49.9 gigabecquerel per millimole) was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old gravistimulated and vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the [3H]GA20 to [3H]GA1 and [3H]GA29-like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of [3H]GA1, [3H]GA29, and [3H]GA8. The tentative identification of these putative [3H]GA glucosyl conjugates was further supported by the release of the free [3H]GA moiety after cleavage with cellulase. Within 12 hours of the [3H]GA20 feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheath pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of [3H]GA20, especially [3H]GA1, in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the `Tanginbozu' dwarf rice microdrop assay. Lower halves contained consistently higher total levels of GA-like activity. The qualitative elution profile of GA-like substances differed consistently, upper halves containing principally a GA20-like substance and lower halves containing mainly GA1-like and GA19-like substances. Gibberellins A1 (10 nanograms per gram) and A20 (5 nanograms per gram) were identified from these lower leaf sheath pulvini by capillary gas chromatography-selected ion monitoring. Results from all of these experiments are consistent with a role for GAs in the differential shoot growth that follows gravitropism, although the results do not eliminate the possibility that the redistribution of GAs results from the gravitropic response.  相似文献   

7.
Gibberellin A5 (GA5), a native GA of immature seeds of Pharbitis nil, was fed to Pharbitis nil cell suspension cultures as [C-l, 3H] GA5 (3.1 Ci/mmol), and its metabolism over a 48 hr period was investigated. Radioactivity in free GA metabolites was 13.1%, with 79.9% in GA glucosyl conjugate-like metabolites. Only 7.0% of the radioactivity remained as [3H] GA5. Tentative identifications were based on comparison with retention times of authentic free GAs and/or glucosyl conjugates after sequential chromatography on Si gel partition column → gradient-eluted C18 HPLC-radiocounting (RC) → isocratic-eluted C18 HPLC-RC, and showed that [3H] GA5 was converted to [3H] GA1 (2%), [3H] GA3 (4%), [3H] GA6 (2%), [3H] GA22 (1%) and their glucosyl conjugates, and also to [3H] GA8 glucoside, and [3H] GA5 glucosyl conjugates. The major conjugate-like substances were [3H] GA1 and [3H] GA3 glucosyl esters, at 15% and 34%, respectively, of the total extractable radioactivity.  相似文献   

8.
The stepwise metabolism of gibberellin A12-aldehyde (GA12-aldehyde) to GA20 is demonstrated from seedling shoots of maize (Zea mays L.). The labeled substrates [13C,3H]GA12-aldehyde, [13C,3H]GA12, [14C4]GA53, [14C4/2H2]GA44, and [14C4/2H2]GA19 were fed individually to dwarf-5 vegetative shoots. Both [13C,3H]GA12-aldehyde and [13C,3H]GA12 were also added individually to normal shoots. The labeled metabolites were identified by full-scan gas chromatography-mass spectrometry and Kovats retention indices. GA12-aldehyde was metabolized to GA53-aldehyde, GA12, GA53, GA44, and GA19; GA12 was metabolized to 2[beta]-hydroxy-GA12, GA53, 2[beta]-hydroxyGA53, GA44, 2[beta]-hydroxyGA44, and GA19; GA53 was metabolized to GA44, GA19, GA20, and GA1; GA44 was metabolized to GA19; and GA19 was metabolized to GA20. These results, together with previously published data from this laboratory, document the most completely defined gibberellin pathway for the vegetative tissues of higher plants.  相似文献   

9.
Elongation growth and gibberellin (GA9) metabolism in excised hypocotyls of lettuce (Lactuca sativa L. cv. Arctic) were investigated. Exogenously supplied GA9 stimulates elongation of hypocotyl sections and this response is intermediate between that elicited by GA1 or GA20 and GA4/7 mixture. Although uptake of radioactivity from [3H]GA9 increases with time, this gibberellin does not accumulate in the tissue but is rapidly converted to a compound with HPLC properties resembling those of [3H]GA20. After 2 h incubation in [3H]GA9, the presumptive GA20 represents 90% of the acidic ethyl acetate-soluble radioactivity in the tissue. Radioactivity is also associated with an acidic butanol-soluble fraction containing two components resolvable by HVE. The major component is similar in electrophoretic properties to a GA-glucosyl ether while the other compares to a GA-glucosyl ester. Conversion of [3H]GA9 to its [3H]GA20-like metabolite is reduced by addition of carrier GA9 or GA4/7 at concentrations as low as 1 M, while GA1, GA3 and L-proline are without effect. Formation of the GA20-like compound can be blocked by the addition of 2,2-dipyridyl, and this inhibitory effect of dipyridyl can be reversed by addition of Fe2+. At 200 M dipyridyl, elongation growth as well as [3H]GA9 metabolism are reduced by 80%. The relationship of the metabolism of GA9 to the growth response is discussed.Abbreviations AB butanol-soluble - AE ethyl-acetate-soluble - GA gibberellin - GA1, GA4 gibberellin A1, gibberellin A4, etc. - TLC thin layer chromatography - HPLC high performance liquid chromatography - HVE high voltage electrophoresis  相似文献   

10.
Azospirillum species are plant growth-promotive bacteria whose beneficial effects have been postulated to be partially due to production of phytohormones, including gibberellins (GAs). In this work, Azospirillum brasilense strain Cd and Azospirillum lipoferum strain USA 5b promoted sheath elongation growth of two single gene GA-deficient dwarf rice (Oryza sativa) mutants, dy and dx, when the inoculated seedlings were supplied with [17,17-2H2]GA20-glucosyl ester or [17,17- 2H2]GA20-glucosyl ether. Results of capillary gas chromatography-mass spectrometry analysis show that this growth was due primarily to release of the aglycone [17,17-2H2]GA20 and its subsequent 3beta-hydroxylation to [17,17-2H2]GA1 by the microorganism for the dy mutant, and by both the rice plant and microorganism for the dx mutant.  相似文献   

11.
12.
The purpose of this study was to demonstrate the metabolism of gibberellin A20 (GA20) to gibberellin A1 (GA1) by tall and mutant shoots of rice (Oryza sativa L.) and Arabidopsis thaliana (L.) Heynh. The data show that the tall and dx mutant of rice and the tall and ga5 mutant of Arabidopsis metabolize GA20 to GA1. The data also show that the dy mutant of rice and the ga4 mutant of Arabidopsis block the metabolism of GA20 to GA1. [17-13C,3H]GA20 was fed to tall and the dwarf mutants, dx and dy, of rice and tall and the dwarf mutants, ga5 and ga4, of Arabidopsis. The metabolites were analyzed by high-performance liquid chromatography and full-scan gas chromatography-mass spectrometry together with Kovats retention index data. For rice, the metabolite [13C]GA, was identified from tall and dx seedlings; [13C]GA1 was not identified from the dy seedlings. [13C]GA29 was identified from tall, dx, and dy seedlings. For Arabidopsis, the metabolite [13C]GA1 was identified from tall, ga5, and ga4 plants. The amount of [13C]GA1 from ga4 plants was less than 15% of that obtained from tall and ga5 plants. [13C]GA29 was identified from tall, ga5, and ga4 plants. [13C]GA5 and [13C]GA3 were not identified from any of the six types of plant material.  相似文献   

13.
When the metabolism of [13C,3H]gibberellin (GA)20 in Pisum sativum L. was investigated using decapitated plants and stem sections, no evidence was obtained for the recently postulated inhibitor of GA20 3[beta]-hydroxylase (V.A. Smith [1992] Plant Physiol 99: 372-377). Instead, the results are consistent with the hypothesis that the mutation le reduces GA1 production by altering the structure or level of the 3[beta]-hydroxylase.  相似文献   

14.
Immature seeds of apricot (Prunus armeniaca L.) were fed the native gibberellin A5 (GA5) as 1- and 1,2-[3H]GA5 (5.3 Curies per millimole to 16 milliCuries per millimole) at doses (42 nanograms to 10.6 micrograms per seed) 2 to 530 times the expected endogenous level. After 4 days of incubation, seeds were extracted and free [3H]GA-like metabolites were separated from the highly H2O-soluble [3H]metabolites. For high specific activity feeds the retention times (Rts) of radioactive peaks were compared with Rts of authentic GAs on sequential gradient-eluted → isocratic eluted reversed-phase C18 high performance liquid chromatography (HPLC) -radiocounting (RC). From high substrate feeds (530 and 230 × expected endogenous levels) HPLC-RC peak groupings were subjected to capillary gas chromatography-selected ion monitoring (GC-SIM), usually six characteristic ions. The major free GA metabolites of [3H] GA5 were identified as GA1, GA3, and GA6 by GC-SIM. The major highly water soluble metabolite of [3H]GA5 at all levels of substrate GA5 had chromatographic characteristics similar to authentic GA1-glucosyl ester. Expressed as a percentage of recovered radioactivity, low substrate [3H]GA5 feeds (2 × expected endogenous level) yielded a broad spectrum of metabolites eluting at the Rts where GA1, GA3, GA5 methyl ester, GA6, GA22, GA29 (17, 14, 1.6, 7, 1.1, 0.5%, respectively) and GA glucosyl conjugates of GA1, GA3, GA5, and GA8 (33, 11, 1, 0.1%, respectively) elute. Metabolites were also present at Rts where GA glucosyl conjugates of GA6 and GA29 would be expected to elute (8 and 0.1%, respectively). Only 5% of the radioactivity remained as GA5. Increasing substrate GA5 levels increased the proportion of metabolites with HPLC Rts similar to GA1, GA6, and especially GA1 glucosyl ester, primarily at the expense of metabolites with HPLC Rts similar to GA3, GA3-glucosyl ester, and a postulated conjugate of GA6. There was evidence that high doses of substrate GA5 induced new metabolites which often, but not always, differed from GA1, GA3, and GA6 in HPLC Rt. These same metabolites, when analyzed by GC-SIM yielded m/e ions the same as the M+ and other characteristic m/e ions of the above GAs, albeit at differing GC Rt and relative intensities.  相似文献   

15.
Y L Xu  D A Gage    J A Zeevaart 《Plant physiology》1997,114(4):1471-1476
Arabidopsis thaliana (L.) Heynh. is a quantitative long-day (LD) rosette plant in which stem growth is mediated by gibberellins (CAs). Application of GAs to plants in short-day (SD) conditions resulted in rapid stem elongation and flower formation, with GA4 and GA9 being equally effective, and GA1 showing lower activity. The effects of photoperiod on the levels of endogenous GAs were measured by combined gas chromatography-mass spectrometry with selected ion monitoring. When plants were transferred from SD to LD conditions there was a slight decrease in the level of GA53 and an increase in the levels of C19-GAs, GA9, GA20, GA1, and GA8, indicating that GA 20-oxidase activity is stimulated in LD conditions. Expression of GA5, which encodes GA 20-oxidase, was highest in elongating stems and was correlated with the rate of stem elongation. By contrast, GA4, which encodes 3 beta-hydroxylase, showed low expression in stems and its expression was not correlated with the rate of stem elongation. We conclude that stem elongation in LD conditions is at least in part due to increased expression of GA5, whereas expression of GA4 is not under photoperiodic control.  相似文献   

16.
Changes in ethylene production of vernalized plants   总被引:1,自引:0,他引:1  
Suge  Hiroshi 《Plant & cell physiology》1977,18(5):1167-1171
The rate of ethylene production (seed/day) in sprouted seedsof radish and pea increased during the first 9 and 13 days,respectively, after the start of low temperature treatment,and decreased thereafter. Ethylene production of vernalizedplants after transfer to high temperature was compared withthat of nonvernalized plants at nearly the same developmentalstage. In all three vernalizable plants, radish, pea and wheat,vernalized seedlings showed decreased rates of ethylene production.After vernalization, a new peak of an unidentified volatile,which was slightly slower than that of ethylene in its retentiontime on gas-chromatography, appeared in all three vernalizableplants. This new peak in radish appeared after about 6 daysof chilling which corresponds to the minimum chilling periodrequired for flower promotion. (Received February 8, 1977; )  相似文献   

17.
18.
Binding of [(3)H]gibberellin A(1) (GA(1)) to extracts of dwarf pea epicotyls was investigated using sliced pea epicotyls (0.5-1.0 millimeter thick) that had been incubated in a solution containing [(3)H]GA(1) at 0 C for 3 days. Gel filtration of a 100,000g supernatant indicated binding to a high (HMW) and an intermediate molecular weight (IMW) fraction with estimated molecular weights of 6 x 10(5) daltons and 4 to 7 x 10(4) daltons, respectively. The bound (3)H-activity was [(3)H]GA(1) and not a metabolite as deduced by thin layer chromatography. The bound label did not sediment during centrifugation at 100,000g for 2 hours; also, binding was not disrupted after treatment of a combined HMW and IMW fraction with DNase, RNase, or phospholipase A or C, but it was disrupted by protease or heat treatment. These facts suggest that binding of [(3)H]GA(1) was occurring to a soluble protein(s). [(3)H]GA(1) bound to a combined HMW and IMW fraction was not susceptible to changes in pH, nor could it be exchanged with a variety of GAs tested under in vitro conditions. Under in vivo equilibrium conditions, biologically active GAs, such as GA(1), GA(3), GA(4), GA(5), GA(7), and keto GA(1), could reduce the level of [(3)H]GA(1) binding, whereas inactive GAs, such as iodo GA(1) methyl ester, GA(8), GA(13), GA(26), and non-GAs, such as (+/-)abscisic acid, had no effect. By varying the concentration of [(3)H]GA(1) in the incubation medium, the specific binding of [(3)H]GA(1) appeared to be due to two classes of binding sites having estimated K(d) of 6 x 10(-8) molar and 1.4 x 10(-6) molar. The concentrations of the two sites were estimated to be 0.45 picomole per gram and 4.04 picomoles per gram on a fresh weight and 0.1 picomole per milligram and 0.9 picomole per milligram on a soluble protein basis, respectively.  相似文献   

19.
Dwarf mutants of pea (Pisum sativum), with impaired gibberellin (GA) biosynthesis in the shoot, were studied to determine whether the roots of these genotypes had altered elongation and GA levels. Mutations na, lh-2, and ls-1 reduced GA levels in root tips and taproot elongation, although in lh-2 and ls-1 roots the reduction in elongation was small (less than 15%). The na mutation reduced taproot length by about 50%. The roots of na plants elongated in response to applied GA(1) and recombining na with mutation sln (which blocks GA catabolism) increased GA(1) levels in root tips and completely restored normal root development. In shoots, Mendel's le-1 mutation impairs the 3beta-hydroxylation of GA(20) to the bioactive GA(1), resulting in dwarfism. However, GA(1) and GA(20) levels were normal in le-1 roots, as was root development. The null mutation le-2 also did not reduce root GA levels or elongation. The results support the theory that GAs are important for normal root elongation in pea, and indicate that a 3beta-hydroxylase gene other than LE operates in pea roots.  相似文献   

20.
Azospirillum spp. are endophytic bacteria with beneficial effects on cereals--effects partially attributed to gibberellin production by the microorganisms. Azospirillum lipoferum and Azospirillum brasilense inoculated to rice dy mutant reversed dwarfism in seedlings incubated with [17,17-2H2]GA20 with formation of [17,17-2H2]GA1, showing the in vivo capacity to perform the 3beta-hydroxylation. When prohexadione-Ca, an inhibitor of late steps in gibberellin biosynthesis, was added to the culture medium, no complementation was observed and no [17,17-2H2]GA1 was produced. The latter suggests that the bacterial operating enzyme may be a 2-oxoglutarate-dependent dioxygenase, similar to those of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号