首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genes encoding virus-specific late proteins with molecular mass 36 kDa and 12 kDa were mapped in HindIII-P DNA fragment of vaccinia virus strain L-IVP by hybrid selection of RNA to cloned DNA fragments followed by in vitro translation. RNA origin site of the 36K protein was detected in HindIII-J fragment. Nucleotide sequences of these genes were determined. Amino acid sequences of the 36K and 12K polypeptides were compared with the protein bank PIR.  相似文献   

2.
Two genetics markers: the herpes simplex virus thymidine kinase and Escherichia coli beta-galactosidase genes were inserted into the 36K protein gene of vaccinia virus located in a HindIII-P DNA fragment. An unstability of recombinant viruses with Lac(+)-phenotype were discovered. A mechanism of viruses unstable variants formation was proposed, it was confirmed by the results of hybridisation analyses of virus recombinant genomes. The importance of a late nonstructural 36K protein gene for virus reproduction was demonstrated.  相似文献   

3.
The I5 gene from the HindIII-I-fragment of the vaccinia virus strain L-IVP DNA was cloned into bacterial vector pUC19. The monospecific antiserum to the expression product of this gene in E. coli was obtained. This antiserum was demonstrated to co-precipitate the virion protein p90. The vaccinia virus strain L-LVP DNA was shown to have only one ORF coding the p90 protein instead of two ORF H5 and H4 as known for vaccinia virus strain WR. This protein is associated with the core of vaccinia virion, but some of its antigenic determinants are exposed on the surface of the viral particles.  相似文献   

4.
The I6 gene from the HindIII-I-fragment of the vaccinia virus strain L-IVP DNA was cloned into bacterial vector pUC19. The monospecific antiserum to the expression product of this gene in E. coli was obtained. Using this antiserum the I6 gene was shown to code the viral protein of 34 kDa molecular weight estimated from SDS-PAGE. This protein is not included into the mature virion, but can be detected in the cytoplasm of the vaccinia virus infected cells.  相似文献   

5.
The HindIII DNA fragments of vaccinia virus strain L-IVP were cloned in pBR322 bacterial plasmid. A hybrid plasmids collection of pVHn series contains all fragments of virus genome except terminal HindIII-B and HindIII-G, and also a large HindIII-A. The latter was cloned in cosmid pHC79. The obtained collection of hybrid DNA molecules allows to carry out a wide range of molecular biological experiments on the vaccinia virus genome.  相似文献   

6.
The growth factor gene of the vaccinia virus LIVP strain has been primarily cloned in a 4.3 kbp long BamHI-EcoRI fragment and then subcloned in a 440 bp fragment. It was shown that clone 4 of the LIVP strain contains a single copy of this gene while the WR strain contains a repeat. The gene is located on a 4.3 kbp BamHI-EcoRI fragment but not on a 2.2 kbp fragment and has four nucleotide changes, three of which result in amino acid substitutions.  相似文献   

7.
The nucleotide sequence of a 5.1 kilobase-pair fragment from the central portion of the vaccinia virus genome has been determined. Within this region, five complete and two incomplete open reading frames (orfs) are tightly-clustered, tandemly-oriented, and read in the leftward direction. Late mRNA start sites for the five complete orfs and one incomplete orf were determined by S1 nuclease mapping. The two leftmost complete orfs correlated with late polypeptides of 65,000 and 32,000 molecular weight previously mapped to this region. When compared with each other and with sequences present in protein data banks, the five complete orfs showed no significant homology matches amongst themselves or any previously reported sequence. The six putative promoters were aligned with three previously sequenced late gene promoters. While all of the nine are A-T rich, the only apparent consensus sequence is TAA immediately preceeding the initiator ATG. Identification of this tandemly-oriented late gene cluster suggests local organization of the viral genome.  相似文献   

8.
9.
10.
Maturation of vaccinia virus (VV) core proteins is required for the production of infectious virions. The VV G1L and I7L gene products are the leading candidates for the viral core protein proteinase (vCPP). Using transient-expression assays, data were obtained to demonstrate that the I7L gene product and its encoded cysteine proteinase activity are responsible for vCPP activity.  相似文献   

11.
Previous studies have shown that at least three vaccinia virus (VV) late proteins (with apparent molecular asses of 37, 35, and 25 kDa) label with myristic acid. Time course labeling of VV-infected cells with [3H]myristic acid reveals at least three additional putative myristylproteins, with apparent molecular masses of 92, 17, and 14 kDa. The 25-kDa protein has previously been identified as that encoded by the L1R open reading frame, leaving the identities of the remaining proteins to be determined. Sequence analysis led to the preliminary identification of the 37-, 35-, and 17-kDa proteins as G9R, A16L, and E7R, respectively. Using synthetic oligonucleotides and PCR techniques, each of these open reading frames was amplified by using VV DNA as a template and then cloned individually into expression vectors behind T7 promoters. These plasmid constructs were then transcribed in vitro, and the resulting mRNAs were translated in wheat germ extracts and radiolabeled with either [35S]methionine or [3H]myristic acid. Each wild-type polypeptide was labeled with [35S]methionine or [3H]myristic acid in the translation reactions, while mutants containing an alanine in place of glycine at the N terminus were labeled only with [35S]methionine, not with myristic acid. This result provided strong evidence that the open reading frames had been correctly identified and that each protein is myristylated on a glycine residue adjacent to the initiating methionine. Subcellular fractionations of VV-infected cells suggested that A16L and E7R are soluble, in contrast to L1R, which is a membrane-associated protein.  相似文献   

12.
13.
S Lin  W Chen    S S Broyles 《Journal of virology》1992,66(5):2717-2723
The nucleotide sequence of the vaccinia virus open reading frame B1 predicts a polypeptide with significant sequence similarity to the catalytic domain of known protein kinases. To determine whether the B1R polypeptide is a protein kinase, we have expressed it in bacteria as a fusion with glutathione S-transferase. Affinity-purified preparations of the fusion protein were found to undergo autophosphorylation and also phosphorylated the exogenous substrates casein and histone H1. Mutation of lysine 41 to glutamine within the conserved kinase catalytic domain II abrogated protein kinase activity on all three protein substrates, supporting the notion that the protein kinase activity is inherent to the B1R polypeptide. Casein and histone H1 were phosphorylated on serine and threonine residues. The B1R fusion protein was phosphorylated on a threonine residue(s) by an apparently intramolecular mechanism. The autophosphorylation reaction resulted in phosphorylation of the glutathione S-transferase portion of the fusion and not the protein kinase domain. The protein kinase activity of B1R was specific for ATP as the phosphate donor; GTP was not utilized to a detectable extent. Immunoblotting experiments with anti-B1R antiserum showed that the protein kinase is located in the virion particle. Chromatography of virion extracts resulted in separation of the B1R protein kinase from the bulk of the total protein kinase activity, indicating that multiple protein kinases are present in the virion particle and that B1R is distinct from the previously described vaccinia virus-associated protein kinase.  相似文献   

14.
15.
16.
17.
18.
The vaccinia virus I3L gene encodes a single-stranded DNA-binding protein which may play a role in viral replication and genetic recombination. We have purified native and recombinant forms of gpI3L and characterized both the DNA-binding reaction and the structural properties of DNA-protein complexes. The purified proteins displayed anomalous electrophoretic properties in the presence of sodium dodecyl sulfate, behaving as if they were 4-kDa larger than the true mass. Agarose gel shift analysis was used to monitor the formation of complexes composed of single-stranded DNA plus gpI3L protein. These experiments detected two different DNA binding modes whose formation was dependent upon the protein density. The transition between the two binding modes occurred at a nucleotide to protein ratio of about 31 nucleotides per gpI3L monomer. S1 nuclease protection assay revealed that at saturating protein densities, each gpI3L monomer occludes 9.5 +/- 2.5 nucleotides. In the presence of magnesium, gpI3L promoted the formation of large DNA aggregates from which double-stranded DNA was excluded. Electron microscopy showed that, in the absence of magnesium and at low protein densities, gpI3L forms beaded structures on DNA. At high protein density the complexes display a smoother and less compacted morphology. In the presence of magnesium the complexes contained long fibrous and tangled arrays. These results suggest that gpI3L can form octameric complexes on DNA much like those formed by Escherichia coli single-stranded DNA protein. Moreover, the capacity to aggregate DNA may provide an environment in which hybrid DNA formation could occur during DNA replication.  相似文献   

19.
In previous communications we reported that the eight RNA segments of influenza A/PR/8/34 (HON1) virus could be distinguished from corresponding segments of influenza A/Hong Kong/8/68 (H3N2) virus by migration on polyacrylamide-urea gels. Examination of the RNA patterns of the two parent viruses and recombinants derived from them in concert with serological identification of surface proteins and analysis of the other proteins on sodium dodecyl sulfate gradient gels permitted the identification of the genes coding for hemagglutinin, neuraminidase, and the P1, P2, and P3 proteins (Palese and Schulman, 1976; P. Palese et al., Virology, in press). In the present report we have extended these observations using similar techniques to examine other recombinants and have identified the genes coding for the remaining virus-specific moving RNA segment as 1) and segment 6 of Hong Kong virus coding for the respective nucleoproteins, and that segment 7 of both viruses codes for the membtane protein and RNA segment 8 codes for the nonstructural protein. This completes the mapping of the influenza A virus genome.  相似文献   

20.
Interferon resistance of vaccinia virus is mediated by specific inhibition of phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) by the double-stranded-RNA-activated (DAI) protein kinase. Vaccinia virus encodes a homolog of eIF-2 alpha, K3L, the deletion of which renders the virus sensitive to interferon treatment. We have studied the mechanism by which this protein product elicits interferon resistance in a transient DNA transfection system designed to evaluate regulators of eIF-2 alpha phosphorylation. In this system, translation of a reporter gene mRNA is inefficient because of eIF-2 phosphorylation mediated by the DAI protein kinase. Cotransfection of the K3L gene enhances translation of the reporter mRNA in this system. The K3L protein inhibits eIF-2 alpha phosphorylation and DAI kinase activation, apparently without being phosphorylated itself. Inhibition of protein synthesis, elicited by expression of a mutant Ser-51----Asp eIF-2 alpha designed to mimic a phosphorylated serine, is not relieved by the presence of K3L, suggesting that K3L cannot bypass a block imposed by eIF-2 alpha phosphorylation. The results suggest that K3L acts as a decoy of eIF-2 alpha to inhibit DAI kinase autophosphorylation and activation. Another vaccinia virus gene product, K1L, which is required for growth of vaccinia virus on human cells, does not enhance translation in this assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号