首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Norepinephrine and epinephrine, in the presence of the beta-adrenergic antagonist propranolol (10(-5) M), stimulated adipocyte pyruvate dehydrogenase at low concentrations but inhibited the enzyme at higher concentrations. The alpha-adrenergic agonist, phenylephrine, rapidly stimulated pyruvate dehydrogenase activity in a dose-dependent manner with maximal stimulation observed at 10(-6) M. The stimulation of pyruvate dehydrogenase by phenylephrine was mediated via alpha 1-receptors. Inhibition of pyruvate dehydrogenase by catecholamines was mediated via beta-adrenergic receptors, since the beta-agonist, isoproterenol, and dibutyryl cAMP produced similar effects. Like insulin, alpha-adrenergic agonists increased the active form of pyruvate dehydrogenase without changing the total enzyme activity and cellular ATP concentration. The effects induced by maximally effective concentrations of insulin and alpha-adrenergic agonists were nonadditive. The ability of phenylephrine and methoxamine to stimulate pyruvate dehydrogenase and phosphorylase and to inhibit glycogen synthase was not affected by the removal of extracellular Ca2+. Similarly, the stimulation of pyruvate dehydrogenase and glycogen synthase by insulin was also observed under the same conditions. However, when intracellular adipocyte Ca2+ was depleted by incubating cells in a Ca2+-free buffer containing 1 mM ethylene glycol bis(beta-amino-ethyl ether)-N,N,N' -tetraacetic acid, the actions of alpha-adrenergic agonists, but not insulin, on pyruvate dehydrogenase were completely abolished. Vasopressin and angiotensin II also stimulated pyruvate dehydrogenase in a dose-dependent manner with enhancement of glucose oxidation and lipogenesis. Our results demonstrate that the Ca2+ -dependent hormones stimulate pyruvate dehydrogenase and lipogenesis in isolated rat adipocytes, and the action is dependent upon intracellular, but not extracellular, Ca2+.  相似文献   

2.
The aim of this study was to define the role of the alpha-adrenergic receptor in the regulation of lipolysis by human adipocytes. Glycerol production by isolated human adipocytes was stimulated by the pure beta-adrenergic agonist isoproterenol in a dose-dependent fashion. This stimulation of lipolysis was inhibited by the alpha-adrenergic agonists methoxamine, phenylephrine, and clonidine. Epinephrine-stimulated lipolysis was potentiated by the alpha-adrenergic antagonists, dihydroergocryptine, phentolamine, phenoxybenzamine, and yohimbine. Whereas the attenuation of beta-adrenergic agonist-stimulated lipolysis by alpha-adrenergic agonists was reversed completely by the alpha 2-adrenergic antagonist yohimbine, the alpha 1-antagonist prazosin did not reverse such attenuation. It is concluded that alpha-adrenergic agonists act as antilipolytic agents in human adipocytes and that this action may result from the interaction of these compounds with a population of alpha 2-adrenergic receptors.  相似文献   

3.
In the chicken pineal gland, norepinephrine, released at sympathetic nerve endings, plays a role in synchronizing the circadian rhythm of melatonin synthesis. This effect appears to be exerted via an adrenergic inhibition of arylalkylamine N-acetyltransferase, the melatonin rhythm-generating enzyme. The present study indicates that the nighttime peak of N-acetyltransferase activity developed by organ-cultured chick pineal glands is inhibited by adrenergic agonists with a potency order characterizing alpha 2-adrenergic receptors: UK 14,304 greater than clonidine greater than alpha-methylnorepinephrine = epinephrine greater than cirazoline greater than phenylephrine greater than isoproterenol. The mechanism of this alpha 2-adrenergic response was further analyzed in organ cultures, by studying the ability of clonidine to block the cyclic AMP-dependent and the depolarization-dependent stimulations of N-acetyltransferase activity. Clonidine prevented the rise in N-acetyltransferase activity evoked by the adenylate cyclase activators forskolin and cholera toxin or by the phosphodiesterase inhibitor Ro 20,1724. The stimulatory effect of dibutyryl cyclic AMP was also blocked by clonidine. Activation of pineal alpha 2-adrenergic receptors effectively prevented the stimulation of N-acetyltransferase by depolarizing concentrations of KCl. The possibility that the alpha 2-adrenergic effect might be exerted at a step distal to cyclic AMP production is discussed.  相似文献   

4.
The role of Ca2+ ions in alpha-adrenergic activation of hepatic phosphorylase was studied using isolated rat liver parenchymal cells. The activation of glucose release and phosphorylase by the alpha-adrenergic agonist phenylephrine was impaired in cells in which calcium was depleted by ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid (EGTA) treatment and restored by calcium addition, whereas the effects of a glycogenolytically equivalent concentration of glucagon on these processes were unaffected. EGTA treatment also reduced basal glucose release and phosphorylase alpha activity, but did not alter the level of cAMP or the protein kinase activity ratio (-cAMP/+cAMP) or impair viability as determined by trypan blue exclusion, ATP levels, or gluconeogenic rates. The effect of EGTA on basal phosphorylase and glucose output was also rapidly reversed by Ca2+, but not by other ions. Phenylephrine potentiated the ability of low concentrations of calcium to reactivate phosphorylase in EGTA-treated cells. The divalent cation inophore A23187 rapidly increased phosphorylase alpha and glucose output without altering the cAMP level, the protein kinase activity ratio, and the levels of ATP, ADP, or AMP, The effects of the ionophore were abolished in EGTA-treated cells and restored by calcium addition. Phenylephrine rapidly stimulated 45Ca uptake and exchange in hepatocytes, but did not affect the cell content of 45Ca at late time points. A glycogenolytically equivalent concentration of glucagon did not affect these processes, whereas higher concentrations were as effective as phenylephrine. The effect of phenylephrine on 45Ca uptake was blocked by the alpha-adrenergic antagonist phenoxybenzamine, was unaffected by the beta blocker propranolol, and was not mimicked by isoproterenol. The following conclusions are drawn: (a) alpha-adrenergic activation of phosphorylase and glucose release in hepatocytes is more dependent on calcium than is glucagon activation of these processes; (b) variations in liver cell calcium can regulate phosphorylase alpha levels and glycogenolysis; (c) calcium fluxes across the plasma membrane are stimulated more by phenylephrine than by a glycogenolytically equivalent concentration of glucagon. It is proposed that alpha-adrenergic agonists activate phosphorylase by increasing the cytosolic concentration of Ca2+ ions, thus stimulating phosphorylase kinase.  相似文献   

5.
The effect of Ca2+-mobilizing hormones, vasopressin, angiotensin II and the alpha-adrenergic agonist phenylephrine, on the metabolic flux through the tricarboxylic acid cycle was investigated in isolated perfused rat livers. All three Ca2+-mobilizing agonists stimulated 14CO2 production and gluconeogenesis in livers of 24-h-fasted rats perfused with [2-14C]pyruvate. Prazosin blocked the phenylephrine-elicited stimulation of 14CO2 and glucose production from [2-14C]pyruvate whereas the alpha 2-adrenergic agonist, BHT-933, did not affect the rates of 14CO2 and glucose production from [2-14C]pyruvate indicating that the phenylephrine-mediated response involved alpha 1-adrenergic receptors. Phenylephrine, vasopressin and angiotensin II stimulated 14CO2 production from [2-14C]acetate in livers derived from fed rats but not in livers of 24-h-fasted rats. In livers of 24-h-fasted rats, perfused with [2-14C]acetate, exogenously added pyruvate was required for an increase in the rate of 14CO2 production during phenylephrine infusion. This last observation suggests increased pyruvate carboxylation as one of the mechanisms involved in stimulation of tricarboxylic acid cycle activity by the Ca2+-mobilizing agonists, vasopressin, angiotensin II and phenylephrine.  相似文献   

6.
Phenylephrine increases hepatic gluconeogenesis for as long as it is present in the extracellular medium. This effect is accompanied by a parallel increase in oxygen consumption. No apparent stoichiometric relationship exists between the phenylephrine-stimulated respiration and the energy required to meet the demands of gluconeogenesis. In the absence of extracellular calcium, no sustained stimulation of respiration was observed and phenylephrine failed to enhance gluconeogenesis; however, acute and transient effects of the alpha-adrenergic agonist were still observable. The following observations indicate that fatty acids are not involved in the alpha-adrenergic response: (1) the effects of phenylephrine and octanoate on respiration and gluconeogenesis were found to be additive; (2) unlike phenylephrine, octanoate is capable of stimulating gluconeogenesis in calcium-depleted liver; (3) in the absence of calcium, phenylephrine was incapable of further stimulating respiration or gluconeogenesis in the presence of octanoate. It is concluded that the conditions of increased lipid mobilization and/or oxidation are not sufficient to explain the metabolic response to alpha-adrenergic agonists. Fatty acids and alpha-adrenergic stimulation share a common role of stimulating gluconeogenesis in a manner dependent on their ability to stimulate respiration; however, the additive nature of their effects and distinct calcium requirements indicate that they act to trigger different mechanisms.  相似文献   

7.
P Voisin  J P Collin 《Life sciences》1986,39(21):2025-2032
The present investigation sought to characterize the adrenergic inhibition of arylalkylamine-N-acetyltransferase in cultured chicken pineal glands. Arylalkylamine-N-acetyltransferase, the melatonin rhythm generating enzyme, displays daily oscillations of activity that are driven by a circadian oscillator. Norepinephrine released at sympathetic nerve endings inhibits the enzyme and appears to play a role in maintaining a circadian rhythm of melatonin release. Chicken pineal glands were isolated in organ culture and the effects of adrenergic agents on the night time peak of N-acetyltransferase activity were studied. Norepinephrine and clonidine prevented 50 to 65% of the nocturnal rise of N-acetyltransferase activity. When applied at middark, norepinephrine and clonidine caused a 50 to 65% inhibition of N-acetyltransferase activity in 2 hours. Dose-response studies indicated clonidine was 100 times more potent than norepinephrine or cirazoline at inhibiting N-acetyltransferase activity. Inhibition of N-acetyltransferase activity was also observed, at micromolar concentration with epinephrine, UK 14,304 and alpha-methylnorepinephrine but not with phenylephrine, isoproterenol or dopamine. Epinephrine and clonidine actions were antagonized by yohimbine but not by prazosin. Destruction of the presynaptic compartment by bilateral superior cervical ganglionectomy did not affect the clonidine-induced inhibition of N-acetyltransferase and its reversal by yohimbine. It is concluded that the adrenergic inhibition of N-acetyltransferase activity in chicken pineal gland probably occurs via stimulation of postsynaptic alpha 2-adrenergic receptors.  相似文献   

8.
Experiments were performed to determine if catecholamines can regulate control points in the gluconeogenic pathway, such as mitochondrial pyruvate carboxylation and pyruvate kinase activity, via an alpha-adrenergic, adenosine 3':5'-monophosphate-independent mechanism. Of a number of alpha agonists tested, only norepinephrine, epinephrine, and phenylephrine caused an increase in mitochondrial pyruvate metabolism. The effects of catecholamines on pyruvate carboxylation were not attenuated by 1-propranolol which abolishes changes in cyclic nucleotide levels but were blocked by alpha antagonists such as ergotamine, phenoxybenzamine, and phentolamine. Time course experiments demonstrated that the effects of catecholamines on the mitochondria and on carbohydrate metabolism correlated temporally with the concentration of epinephrine in the medium but not with the small changes in adenosine 3':5'-monophosphate. The effects of catecholamines appeared to require extracellular Ca2+ ion. The observation that catecholamines do not increase gluconeogenesis to the same extent as glucagon was not due to a differential effect on mitochondrial CO2 fixation. Rather, catecholamines caused a smaller inhibition of pyruvate kinase activity than did glucagon. The effects of catecholamines on pyruvate kinase also appeared to be mediated by an alpha-adrenergic, adenosine 3':5'-monophosphate-independent mechanism.  相似文献   

9.
We previously found that addition of cAMP and a Ca(2+)/PKC-dependent agonist causes synergism or potentiation of protein secretion from rat lacrimal gland acini. In the present study we determined whether cAMP decreases p44/p42 mitogen-activated protein kinase (MAPK) activity in the lacrimal gland. Since we know that activation of MAPK attenuates protein secretion stimulated by Ca(2+)- and PKC-dependent agonists, we also determined whether this activation causes potentiation of secretion. Freshly prepared rat lacrimal gland acinar cells were incubated with dibutyryl cAMP (DBcAMP), carbachol (a cholinergic agonist), phenylephrine (an alpha(1)-adrenergic agonist), or epidermal growth factor (EGF). The latter three agonists are known to activate p44/p42 MAPK. p44/p42 MAPK activity and protein secretion were measured. As measured by Western blot analysis, DBcAMP inhibited both basal and agonist-stimulated p44/p42 MAPK activity. Cellular cAMP levels were increased by 1) using two different cell-permeant cAMP analogs, 2) activating adenylyl cyclase (L-858051), or 3) activation of G(s)-coupled receptors (VIP). The cell-permeant cAMP analogs, L-858051, and VIP inhibited basal p44/p42 MAPK activity by 50, 40, and 40%, respectively. DBcAMP and VIP inhibited carbachol- and EGF-stimulated MAPK activity. cAMP, but not VIP, inhibited phenylephrine-stimulated MAPK activity. Potentiation of secretion was detected when carbachol, phenylephrine, or EGF was simultaneously added with DBcAMP. We conclude that increasing cellular cAMP levels inhibits p44/p42 MAPK activity and that this could account for potentiation of secretion obtained when cAMP was elevated and Ca(2+) and PKC were increased by agonists.  相似文献   

10.
T M Hagen  C Bai  D P Jones 《FASEB journal》1991,5(12):2721-2727
The alpha-adrenergic agonist, phenylephrine (1.6 microM), caused a threefold stimulation of glutathione (GSH) transport from the lumen into the vasculature in isolated, vascularly perfused rat small intestine. Stimulation of GSH transport by phenylephrine was blocked by the alpha-adrenergic antagonists, prazosin or phentolamine. Norepinephrine and epinephrine (both alpha and beta agonists) also stimulated GSH absorption but not to the same extent as phenylephrine. Isoproterenol, a strict beta-adrenergic agonist, had no effect on the rate of GSH absorption. Under physiological luminal GSH concentrations, phenylephrine stimulated GSH efflux from the lumen, accumulation in the intestinal mucosa, and transport into the mesenteric vasculature. Phenylephrine did not stimulate the transport of polyethylene glycol, a high molecular weight molecule, and stimulated uptake of cysteine and glycine by 30%. This suggests that the effect of phenylephrine on GSH transport is not due to enhanced bulk flow through paracellular pathways. Studies with isolated small intestinal epithelial cells showed that phenylephrine also stimulated the release of GSH from the cells. Oral administration of phenylephrine with GSH caused a two- to fivefold transient increase in plasma GSH concentrations in rats. Phenylephrine alone or with the amino acid constituents of GSH caused no increase in plasma GSH concentration. Thus, absorption of dietary GSH is under hormonal regulation. The physiological importance of this regulation is not known, although such regulation may function to control utilization of dietary GSH for detoxication and may have therapeutic benefits for individuals with deficient GSH or increased risk of oxidative or chemically induced injury.  相似文献   

11.
The sodium hydrogen exchanger isoform 1 (NHE1) is present in nearly all cells. Regulation of proton flux via the exchanger is a permissive step in cell growth and tumorgenesis and is vital in control of cell volume. The regulation of NHE1 by growth factors involves the Ras-extracellular signal regulated kinase (ERK) pathway, however, the mechanism for G protein-coupled receptor (GPCR) activation of NHE1 is not well established. In this report, the relationship between GPCRs, ERK, and NHE1 in CCL39 cells is investigated. We give evidence that two agonists, the specific alpha(1)-adrenergic agonist, phenylephrine and the water-soluble lipid mitogen, lysophosphatidic acid (LPA) activate NHE1 in CCL39 cells. Activation of ERK by phenylephrine and LPA occurs in a dose- and time-dependent manner. Optimal ERK activation was observed at 10 min and displayed a maximum stimulation at 100 microM phenylephrine and 10 microM LPA. alpha(1)-Adrenergic stimulation also led to a rise in steady-state pH(i) of 0.16+/-0.02 pH units, and incubation with LPA induced a 0.43+/-0.06 pH unit increase in pH(i). Phenylephrine-induced activation of NHE1 transport and ERK activity was inhibited by pretreating the cells with the MEK inhibitor PD98059. While only half of the LPA activatable exchange activity was abolished by PD98059 and U0126. To further demonstrate the specificity of the phenylephrine and LPA regulation of NHE1 and ERK, CCL39 cells were transfected with a kinase inactive MEK. The data indicate that ERK activation is essential for phenylephrine stimulation of NHE1, and that ERK and RhoA are involved in LPA stimulation of NHE1 by more than one mechanism. In addition, evidence of the convergence of these two pathways is shown by the loss of NHE1 activity when both pathways are inhibited and by the partial additivity of the two agonists on ERK and NHE1 activity. These studies indicate a direct involvement of ERK in the alpha(1)-adrenergic activation of NHE1 and a significant role for both ERK and RhoA in LPA stimulation of NHE1 in CCL39 fibroblasts.  相似文献   

12.
The effect of alpha-adrenergic agonists on Ca2+ fluxes was examined in the perfused rat liver by using a combination of Ca2+-electrode and 45Ca2+-uptake techniques. We showed that net Ca2+ fluxes can be described by the activities of separate Ca2+-uptake and Ca2+-efflux components, and that alpha-adrenergic agonists modulate the activity of both components in a time-dependent manner. Under resting conditions, Ca2+-uptake and -efflux activities are balanced, resulting in Ca2+ cycling across the plasma membrane. The alpha-adrenergic agonists vasopressin and angiotensin, but not glucagon, stimulate the rate of both Ca2+ efflux and Ca2+ uptake. During the first 2-3 min of alpha-agonist administration the effect on the efflux component is the greater, the net effect being efflux of Ca2+ from the cell. After 3-4 min of phenylephrine treatment, net Ca2+ movements are essentially complete, however, the rate of Ca2+ cycling is significantly increased. After removal of the alpha-agonist a large stimulation of the rate of Ca2+ uptake leads to the net accumulation of Ca2+ by the cell. The potential role of these Ca2+ flux changes in the expression of alpha-adrenergic-agonist-mediated effects is discussed.  相似文献   

13.
1. The accumulation of [3H]methyltriphenylphosphonium by isolated fat-cells was used to estimate the membrane potential of mitochondria in situ. 2. An alpha-adrenergic receptor-mediated decrease in the apparent accumulation of [3H]methyltriphenylphosphonium was observed. Methoxamine, clonidine and low concentrations of phenylephrine decreased the calculated mitochrondrial membrane potential without significantly raising cyclic AMP levels, adenylate cyclase activity or stimulating lipolysis. The agonist potency order was phenylephrine greater than methoxamine greater than clonidine. 3. The decrease in the calculated mitochondrial membrane potential caused by phenylephrine, clonidine and methoxamine was blocked by the alpha-adrenergic antagonist prazosin but not by yohimbine nor by the beta-antagonist propranolol. This suggests that the effect on the calculated mitochondrial membrane potential may be mediated by alpha 1-like receptors.  相似文献   

14.
Following a stimulation with acetylcholine, the beta-adrenergic agonists adrenaline (A), noradrenaline (NA), isoproterenol (Iso) and salbutamol (Sal) induced a concentration-dependent decrease in the tone and (or) rate of amnion contraction with EC50 ISO < NA < A < Sal. Metaprolol, a specific beta 1-antagonist, induced a rightward shift in the dose-response curves of Iso, NA and A, whereas beta-antagonist butoxamine was ineffective. pA2 values for beta-antagonists were propranolol 8.3, metoprolol 7.0, butoxamine 5.6. EC50 values of alpha-adrenergic agonists form a sequence: clonidine < NA < methoxamine < phenylephrine. Specific alpha-antagonists yohimbine and idazoxan were found to antagonise competitively the effects of NA. The data obtained characterize the adrenergic receptors mediating stimulation of amniotic contractile activity as alpha 2-adrenergic receptors. Inhibition of contractile receptors in amnion is mainly mediated by beta 1-adrenergic receptor activation.  相似文献   

15.
The effects of alpha- and beta-adrenergic stimulation on sarcolemmal protein phosphorylation and contractile slow responses were studied in intact myocardium. Isolated rat ventricles were perfused via the coronary arteries with 32Pi after which membrane vesicles partially enriched in sarcolemma were isolated from individual hearts. Alterations in the sarcolemmal slow inward Ca2+ current were assessed in the 32P-perfused hearts using a contractile slow response model. In this model, Na+ channels were first inactivated by partial depolarization of the hearts in 25 mM K+ after which alterations in Ca2+ channel activity produced by either alpha- or beta-adrenergic agonists could be assessed as restoration of contractions. alpha-Adrenergic stimulation (phenylephrine + propranolol) of the perfused hearts resulted in increased 32P incorporation into a 15-kDa sarcolemmal protein. This protein co-migrated with the 15-kDa sarcolemmal protein phosphorylated in hearts exposed to beta-adrenergic stimulation produced by isoproterenol. beta-Adrenergic stimulation, but not alpha-adrenergic stimulation, also resulted in phosphorylation of the sarcoplasmic reticulum protein, phospholamban. Phosphorylation of the 15-kDa protein in perfused hearts in response to either alpha- or beta-adrenergic stimulation was associated with restoration of contractions, indicative of increases in the slow inward Ca2+ current. Increases in 32P incorporation into the 15-kDa protein preceded restoration of contractions by phenylephrine. Nifedipine abolished the contractile responses to alpha-adrenergic stimulation while having no effect on increases in 15-kDa protein phosphorylation. The effects of alpha-adrenergic stimulation occurred in the absence of increases in cAMP levels. These results suggest that phosphorylation of the 15-kDa protein may be involved in increases in the slow inward current produced by stimulation of either alpha- or beta-adrenergic receptors.  相似文献   

16.
The effects of adrenergic agonists on acetyl-CoA carboxylase and fatty acid synthesis were studied in isolated rat hepatocytes from mature rats (300 to 350 g). Norepinephrine and phenylephrine inactivate acetyl-CoA carboxylase activity and inhibit fatty acid synthesis. The effects of both norepinephrine and phenylephrine were blocked by the alpha-adrenergic receptor blockers, phentolamine and phenoxybenzamine, and unaffected by the beta-receptor blocker propranolol. This inactivation was not mimicked by the beta-agonist isoproterenol. The measurable increase in cyclic AMP levels caused by norepinephrine and phenylephrine was abolished by the alpha-antagonist phentolamine and diminished by the beta-antagonist propranolol. Calcium depletion potentiated the increase in cyclic AMP levels by phenylephrine but abolished the phenylephrine inactivation of the carboxylase. The inactivation of acetyl-CoA carboxylase by phenylephrine was correlated with an increase in the incorporation of [32P]phosphate into the enzyme. Thus, catecholamines and their agonists promote phosphorylation and inactivation of acetyl-CoA carboxylase through the alpha-adrenergic receptor, and the inactivation requires calcium.  相似文献   

17.
Experiments were undertaken to define the role of two calcium-associated enzyme systems in modulating transmitter-stimulated production of cyclic nucleotides in rat brain. Cyclic AMP (cAMP) accumulation was examined in cerebral cortical slices using a prelabeling technique. The enhancement of isoproterenol-stimulated cAMP production by alpha-adrenergic and gamma-aminobutyric acid-B (GABAB) agonists was reduced by exposing the tissue to EGTA, a chelator of divalent cations, or quinacrine, a nonselective inhibitor of phospholipase A2. Likewise, chronic (2 weeks) administration of corticosterone decreased the alpha-adrenergic and GABAB receptor modulation of second messenger production. Neither cyclooxygenase nor lipoxygenase inhibitors selectively influenced the facilitating response of alpha-adrenergic and GABAB agonists. Other experiments revealed that although norepinephrine and 6-fluoronorepinephrine stimulated inositol phosphate (IP) production in cerebral cortical slices with potencies equal to those displayed in the cyclic nucleotide assay, selective alpha 1-adrenergic agonists were less efficacious on IP formation and were without effect in the cAMP assay. Conversely, a selective alpha 2-adrenergic receptor agonist facilitated the cAMP response to a beta-adrenergic agonist without affecting IP formation. The rank orders of potency of a series of alpha-adrenergic antagonists suggest that IP accumulation is mediated solely by alpha 1-adrenergic receptors, whereas the augmentation of cAMP accumulation is regulated by a mixed population of alpha-adrenergic sites. The results suggest that the alpha-adrenergic and GABAB receptor-mediated enhancement of isoproterenol-stimulated cAMP formation appears to be more closely associated with phospholipase A2 than phospholipase C and may be mediated by arachidonate or some other fatty acid.  相似文献   

18.
The effect has been investigated of the alpha-adrenergic agonist, phenylephrine, on excretion of water and electrolytes (Na, K, and HCO3) by the parotid and mandibular glands of the rat. In the mandibular glands the agonist was as effective as acetylcholine (or parasympathetic nerve stimulation) in stimulating secretion, and the electrolyte excretory patterns seen in the two modes of stimulation were similar. In the parotid gland, phenylephrine was only one-fifth as potent as acetylcholine (or parasympathetic nerve stimulation) in evoking a secretory response but, when due allowance for flow rate differences is made, the electrolyte excretion patterns were similar. In both glands the secretory response to phenylephrine was totally different, in magnitude and in electrolyte excretion pattern, to that evoked by the beta-adrenergic agonist, isoprenaline. It is concluded, as has already been established for secretion of exportable protein, that alpha-adrenergic agonists have very similar effects to muscarinic agonists both on endpiece and on duct cells and that these actions are completely different from those evoked by activation of beta-adrenergic receptors.  相似文献   

19.
Oxidation of [14C] glucose in isolated epididymal adipocytes from Golden hamsters was stimulated by isoproterenol, epinephrine and norepinephrine, which all interact with beta-adrenergic receptors and by adrenocorticotrophic hormone. In contrast alpha-receptor agonists, such as phenylephrine, methoxamine or clonidine did not increase basal glucose oxidation. The beta-adrenergic blocking drug propranolol inhibited both lipolysis and glucose oxidation when these had been stimulated by isoproterenol, epinephrine or norepinephrine. Conversely, the alpha-adrenergic blocking drugs phentolamine and phenoxybenzamine did not influence lipolysis or glucose oxidation when isoproterenol provided the stimulus and increased both lipolysis and glucose metabolism in the present of either epinephrine or norepinephrine. All alpha-adrenergic agonists tested (phenylephrine, methoxamine and clonidine) lowered lipolysis and glucose oxidation isolated adipocytes exposed to isoproterenol. However, when adrenocorticotropin provided the stimulus for glucose oxidation and lipolysis, only clonidine produced a significant reduction in lipolysis and glucose oxidation. None of the alpha-agonists influenced glucose metabolism which had been increased by insulin. These data confirm the presence of both alpha and beta adrenergic receptors on hamster epididymal adipocytes and suggest that they exert antagonistic influences on lipolysis and glucose oxidation. These data are also consistent with the view that adrenergic stimulation of glucose oxidation and lipolysis in adipocytes are both mediated through beta receptors.  相似文献   

20.
We investigated the role of cyclic AMP (cAMP) in alpha 2- and possible beta-adrenergic regulation of arylalkylamine-N-acetyltransferase (NAT), the penultimate enzyme in the biosynthesis of melatonin. The study was performed on primary cultures of dispersed chick pineal cells. Electron microscopy indicated that approximately 70% of the dispersed cells were modified photoreceptors. A similar proportion of melatoninergic cells was detected by immunocytochemical labeling of hydroxyindole-O-methyltransferase, the final enzyme in the biosynthesis of melatonin. Adrenergic agonists caused a sustained 50% inhibition of forskolin-augmented cAMP levels and NAT activity, with an alpha 2-adrenergic potency order of UK 14,304 greater than or equal to clonidine greater than norepinephrine greater than phenylephrine. Noradrenergic inhibition of 3-isobutyl-1-methylxanthine-augmented cAMP levels and NAT activity was reversed by yohimbine (an alpha 2-adrenergic antagonist) but not by prazosin (an alpha 1-adrenergic antagonist). The alpha-adrenergic inhibition of cAMP accumulation and NAT activity was prevented by pertussis toxin. Addition of propranolol (a beta-adrenergic antagonist) was necessary to observe an inhibitory effect of norepinephrine on cAMP levels but not on NAT activity. Similarly, the beta-adrenergic agonist isoproterenol transiently increased cAMP levels but did not affect NAT activity. The data indicate that the alpha 2-adrenergic inhibition of NAT activity in chick pineal cells is strongly correlated with an inhibition of cAMP accumulation. The lack of beta-adrenergic effect on NAT suggests that beta-adrenoceptors might be on a subset of cells that do not produce melatonin or that the beta-adrenergic-induced increase in cAMP levels is too transient to affect NAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号