首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ascending noradrenaline-containing neuronal system from the locus coeruleus to the cerebral cortex was unilaterally lesioned by an intracerebral injection of 8 μg 6-hydroxydopamine in the dorsomedial reticular formation in the caudal mesencephalon. The 6-hydroxydopamine caused injury to axons of the dorsal catecholamine bundle associated with its specific neurotoxic action, while very limited unspecific tissue necrosis was observed. Following this treatment the endogenous noradrenaline in the ipsilateral cerebral cortex (neocortex) increased acutely (up to 2 days), as observed both with noradrenaline assay and fluorescence histochemistry. The noradrenaline concentration then gradually decreased to 15 per cent of the contralateral side 15 days after the lesion. At this time interval and up to at least 90 days no fluorescent catecholamine nerve terminals could be detected. The acute noradrenaline increase could be blocked partially by tyrosine hydroxylase inhibition produced by α-methyl-p-tyrosine. The disappearance of endogenous noradrenaline following tyrosine hydroxylase inhibition was also reduced after the 6-hydroxydopamine lesion. Studies on the in vitro uptake of [3H]noradrenaline (0.1 μM for 5 min) in slices from the neocortex after the 6-hydroxydopamine lesion showed a gradual decline in uptake reaching maximal reduction (35-40 per cent of the contralateral side) after 15 days. No recovery of [3H]noradrenaline uptake was seen up to 90 days after the lesion. The formation of [3H]noradrenaline from [3H]dopamine in vitro was reduced to 15 per cent of the contralateral side after a chronic lesion. The present results indicate that the disappearance of noradrenaline uptake-storage mechanisms in the neocortex is due to an anterograde degeneration of axons and nerve terminals of the dorsal catecholamine bundle. The data on endogenous noradrenaline and noradrenaline synthesis suggest that approx. 15 per cent of the noradrenaline nerve terminals in the neocortex remain intact following the lesion, while the [3H]noradrenaline uptake data reflect uptake in other tissue structures in addition to noradrenaline nerve terminals, e.g. dopamine nerve terminals, pericytes and/or glial cells.  相似文献   

2.
Abstract— The effects of the neurotoxic compound 6-hydroxydopamine on central noradrenaline (NA) neurones have been investigated in the adult rat after systemic administration of the drug at birth. This treatment produced a permanent and selective reduction in endogenous noradrenaline, [3H]noradrenaline uptake in vitro and the number of histochemically demonstrable noradrenaline nerve terminals in the forebrain, certainly related to neuroneal degeneration. The fluorescence morphology of the noradrenaline perikarya in the locus coeruleus was not notably affected. In the pons-medulla region, the 6-hydroxydopamine treatment led to an almost two-fold increase in endogenous noradrenaline with a similar increase in [3H]noradrenaline uptake and formation of 3H-catecholamines from [3H]tyrosine. Fluorescence histochemistry revealed an increased number of noradrenaline nerve terminals which in addition showed an increased fluorescence intensity. Subcellular distribution studies of endogenous noradrenaline in pons—medulla disclosed the highest relative noradrenaline increase in the microsomal fraction after 6-hydroxydopamine at birth. Sucrose gradient centrifugations disclosed that the pons-medulla synaptosomes from 6-OH-DA treated rats sedimented at a higher sucrose concentration than those from untreated controls. It is concluded that treatment of neonate rats with 6-hydroxydopamine produces a selective degeneration of noradrenaline nerve terminals in the forebrain, especially in the cerebral cortex, whereas in the pons-medulla this treatment leads to an increased intraneuronal noradrenaline concentration due to accumulation of noradrenaline in collateral systems not affected by 6-hydroxydopamine and probably also to an increased outgrowth of noradrenaline nerve terminals.  相似文献   

3.
J Bruinvels 《Life sciences》1977,20(3):437-443
The effects of the monovalent cations Na+ and K+ were studied on the uptake of noradrenaline and tyrosine by a crude synaptosomal fraction in vitro. Sodium ions produced opposite effects on the uptake of noradrenaline and the uptake of tyrosine viz. an increase in noradrenaline uptake and a decrease in the uptake of its precursor tyrosine. A low concentration of K+ stimulated the uptake of noradrenaline in the presence of Na+, while in the absence of Na+ K+ had no effect. However, the uptake of tyrosine could be stimulated by low K+ in the absence of Na+. Besides the increased uptake in the absence of Na+, a second uptake was found which was Na+, K+ activated ATPase dependent. The contribution of this uptake system to the total uptake of tyrosine was about 20%. No evidence was obtained for the involvement of a Na+, K+ activated ATPase in noradrenaline uptake. It is suggested that another ATPase might be involved in the latter uptake system.  相似文献   

4.
An i.p. injection of normal saline combined with 1 min handling when repeated 14 times results in an increase in noradrenaline synthesis in synaptosomes prepared from the cortex of stressed rats; at 24 h synthesis acceleration is greater than at 48 h after the last stress.The activity of tyrosine hydroxylase solubilised from the hippocampus is the same in the control and the stressed group, when assayed at the optimal pH of 5.8 and with saturating concentration (2 mM) of the cofactor 6 MPH4. However enzyme from stressed rats shows a relative increase in the activity at pH 7.4 assayed in the presence of 0.2 mM 6 MPH4. This indicates activation, not induction, of the enzyme. 8-Br-cAMP produced the same increase in noradrenaline synthesis in cortical synaptosomes from control and stressed rats; however 50 mM K+ did not increase synthesis rate in stressed rats. Furthermore in synaptosomes from stressed rats neither isoprenaline (which increases noradrenaline synthesis) nor clonidine with 50 mM K+ (which leads to a depression of the K+-accelerated synthesis) had any effect on synthesis rate. The results suggest that the increased noradrenaline synthesis rate in cortical synaptosomes from stressed rats represents a Ca2+-dependent activation of tyrosine hydroxylase resulting from the desensitisation of alpha2-autoreceptors.  相似文献   

5.
Smith–Lemli–Opitz syndrome is an inherited monogenic disorder in which mutations to the 7‐dehydrocholesterol (7‐DHC) reductase (Dhcr7) gene lead to deficits in cholesterol synthesis. As a result, many patients suffer from gross physiological and neurological deficits. The purpose of this study was to identify a potential abnormal behavioral phenotype in a compound mutant mouse model for Smith–Lemli–Opitz disease (Dhcr7 Δ3 –5/ T93M ) to further validate the model and to provide potential targets for future therapeutic interventions. We also sought to identify some of the underlying changes in brain function that may be responsible for behavioral differences among groups. The Dhcr7 compound mutant mice were smaller than their single mutant littermates. Both single and compound heterozygous mice made fewer ultrasonic vocalizations when separated from the dam, which may suggest a communication deficit in these animals. Striking increases of the highly oxidizable 7‐DHC were observed in the compound mutant mice. 7‐Dehydrocholesterol is the precursor to cholesterol and builds up because of decreased function of the mutated Dhcr7 enzyme. Additionally, several differences were noted in the serotonergic system including increased expression of the serotonin transporter and increased uptake of serotonin by isolated synaptosomes. We propose that changes to the oxidative environment during development can have a significant impact on the development of serotonergic function and that this contributes to behavioral differences observed in the mutant mice.  相似文献   

6.
Rats treated with d -amphctamine have a decreased ability to convert intracisternally injected radioactive dopamine to noradrenaline. This effect is dose-related and reversible by increasing the dose of injected dopamine. L-Amphetamine is equipotent to the d -isomer, but para-hydroxyamphetamine reduces noradrenaline formation only slightly. Like the amphetamines, imipramine produces significant inhibition of noradrenaline from labelled dopamine; however, dopamine content after imipramine, but not after the amphetamines, was consistently decreased, suggesting that imipramine's effect on conversion of labelled dopamine to noradrenaline is mediated by interference with membranal transport systems. Conversion of labelled tyrosine to noradrenaline increases after imipramine. In contrast, noradrenaline accumulating from labelled tyrosine is decreased by d - or l -amphetamine. The divergent effects of the amphetamines and imipramine on noradrenaline accumulation from labelled tyrosine suggest that the amphetamines' effect on in vivo dopamine-β-hydroxylase activity are not solely attributable to interference with transport and, therefore, suggest a direct effect on the enzyme.  相似文献   

7.
Studies on the genetic mechanisms in control of mouse liver tyrosine aminotransferase expression were of three general types: (1) studies on strain variance in endogenous enzyme activity and of various factors affecting the basal enzyme level, (2) purification of the enzyme and studies of its properties, and (3) studies of strain variance in enzyme regulation dealing primarily with glucocorticoid induction and with the starvation-induced enzyme adaptation. Tyrosine aminotransferase (l-tyrosine: 2-oxoglutarate aminotransferase, E.C. 2.6.1.5) was purified 400 to 600-fold from livers of C57BL/6J and DBA/2J inbred mice. Several of the properties of the mouse liver enzyme were similar to those known for the rat liver enzyme although the apparent K m (l-tyrosine) was lower, calculated at 6.25×104 M. Disc gel electrophoresis of the enzyme from 105,000 g supernatant fluid after induction by hydrocortisone indicated three bands of enzyme activity with strain variance in electrophoretic mobility between the C57BL/6J and DBA/2J mice. The administration of glucose to fasting C57BL/6J mice repressed the starvation-induced increase in enzyme activity, but did not prevent the hydrocortisone induction of enzyme activity. DEAE-cellulose chromatography of purified enzyme from fasting DBA/2J and C57BL/6J mice which had been labeled in vivo with C 14 -l-leucine revealed strain differences in the elution patterns for both enzyme activity and radioactivity. Two peaks of enzyme activity were detected in the enzyme preparations from fasting mice. The marked strain variance in the enzyme activity and the quantity of radioactivity associated with the first enzyme peak may indicate differential rates of protein turnover for different isozymic forms of tyrosine aminotransferase. Flumethasone, a potent difluoro synthetic glucocorticoid, was used in studies on the hormonal regulation of tyrosine aminotransferase in obese mutant mice of the C57BL/6J-ob strain. The obese mice are relatively insensitive to the action of adrenal glucocorticoids to cause liver enzyme induction.This paper was presented at a symposium entitled Genetic Control of Mammalian Metabolism held at The Jackson Laboratory, Bar Harbor, Maine, June 30–July 2, 1969. The symposium was supported in part by an allocation from NIH General Research Support Grant FR 05545 from the Division of Research Resources to The Jackson Laboratory.This investigation was supported in part by an allocation from the NIH General Research Support Grant FR 05545 from the Division of Research Resources to The Jackson Laboratory and in part by Institutional Grant IN-19 from the American Cancer Society to The Jackson Laboratory.  相似文献   

8.
In the course of conducting a biochemical screening program for mutant enzymes in mice, individuals with an apparent nonfunctional allele at the locus (Mod-1) responsible for cytoplasmic malic enzyme were observed. The variant, later attributed to a germinal mutation, was identified by starch gel electrophoresis and by enzyme activity measurements. A series of matings were made, and mice homozygous for the nonfunctional, null, allele (Mod-1) were produced. In liver, kidney, and testis homogenates, the homozygous mutant exhibited less than 10% of the enzyme activity of the control mice. By an enzyme immuno-inactivation study, the residual enzyme activity was shown to be mitochondrial malic enzyme in all of the tissues examined. By double immuno-diffusion experiments, the kidney homogenate of the mutant formed no precipitin lines with the antiserum to cytoplasmic malic enzyme. Thus, the null mutants express no proteins that crossreact with the antiserum to cytoplasmic malic enzyme (CRM negative). Tissue enzyme assays revealed no significant differences between the normal and the mutant mice in activities of other enzymes in the related metabolic pathways. Because malic acid and malic enzyme together are reported to serve as a pump for NADPH generation in cytoplasm, total cellular NADP+ and NADPH concentrations in liver were determined for the control and the mutant mice. In liver from two individual mutant mice, lower NADPH/NADP+ ratio was detected in comparison to the level in liver from control mice. In spite of the lower levels of NADPH in the mutant mice, their body weight and lipid content were not significantly altered. Mice without cytoplasmic malic enzyme exhibited no striking deficiencies in metabolism or viability.  相似文献   

9.
The postnatal development of the blood-brain barrier for the neurotoxic action of 6-hydroxydopamine on central noradrenaline neurons has been investigated by recording the in vitro uptake of [3H]noradrenaline in slices from cerebral cortex, hypothalamus and spinal cord in rats treated with large doses of 6-hydroxydopamine at different ages. The [3H]noradranaline uptake was permanently and markedly reduced in all regions when the animals were treated at birth, certainly related to degeneration of noradrenaline neurons, caused by 6-OH-DA. In the cerebral cortex and hypothalamus an efficient protection against the effects of 6-OH-DA on [3H]noradrenaline uptake developed postnatally, while in the spinal cord this protection was never seen to become complete. The results obtained indicate a rapid formation of a blood-brain barrier for 6-OH-DA in the cerebral cortex between the 7th and 9th day after birth. In the hypothalamus the development of this barrier seemed to have a more gradual time-course, but appeared to be fully developed already at day 5 postnatally. Also in the spinal cord the barrier developed more gradually from birth to the adult age. It was observed, however, that both in the cerebral cortex and in the spinal cord, the blood-brain barrier developed, could not completely protect the central noradrenaline neurons from the neurotoxic actions of large doses of 6-OH-DA administered systemically to adult rats. Furthermore, the results obtained support the view that 6-OH-DA does not seem to apparently affect the outgrowth of remaining NA neurons which have not been destroyed by the 6-OH-DA treatment.  相似文献   

10.
—The injection of 50 μg of 5,6-dihydroxytryptamine (5,6-HT) into a lateral ventricle of the rat depleted the spinal cord and various regions of the brain of indoleamines (presumably 5-HT) and 5-hydroxyindole acetic acid. The concentrations of 5-HT were measured by two different methods: the formation of a fluorescent derivative with o-phthalaldehyde, and the native fluorescence in hydrochloric acid. When the results of both methods were compared on the pons and medulla 4 days after injecting 5,6-HT, the loss in indoleamine appeared to be greater when o-phthalaldehyde was used. This suggests that the two methods may be measuring different compounds. According to both methods, the loss of 5-HT persisted for several days after the injection of 5,6-HT, but by 2 months 5-HT concentrations (measured only by the native fluorescence procedure), had recovered to near-normal values. The depletion of 5-HT was most pronounced in regions adjacent to the ventricular system and in the spinal cord. Initially, caudate and septum were more affected on the side of the injection, and later showed some permanent atrophy. The injection of up to 50 μg of 5,6-HT did not lead to any significant loss of noradrenaline or dopamine from the brain, or to any reduction in the activity of the enzyme tyrosine hydroxylase. The drug was a potent inhibitor of the uptake of [3H]5-HT by brain slices, but was less effective in inhibiting catecholamine uptake systems. These observations suggest a preferential action on tryptaminergic neurones. Larger doses of 5,6-HT caused a loss of catecholamines and tyrosine hydroxylase from the brain, and were severely toxic.  相似文献   

11.
A ROLE FOR DIVALENT CATIONS IN THE UPTAKE OF NORADRENALINE BY SYNAPTOSOMES   总被引:9,自引:7,他引:2  
–The effects of divalent cations on the initial rates of noradrenaline uptake by synaptosomes were determined using Millipore filtration to terminate the reaction. The removal of either Ca2+ or Mg2+ from the incubation medium had no effect on uptake, but when both Ca2+ and Mg2+ were removed, uptake was reduced. Uptake was also diminished when Ca2+ was absent and 1 mm -EGTA added to the medium. It appeared that Ca2+ was required for optimal uptake but that Mg2+ could partially substitute for Ca2+ in this regard. The reduction in the rate of uptake when both Ca2+0 and Mg2+ were absent could be rapidly and completely reversed by restoring Ca2+, Mg2+, or both Ca2+ and Mg2+ to the incubation medium. Of the divalent cations tested, Ca2+ and Mg2+, but not Mn2+, supported noradrenaline uptake. When the kinetics of uptake were examined, it was found that removing both Ca2+ and Mg2+ from the medium resulted in a reduction of the Vmax for noradrenaline uptake. It is apparent from these results that, in addition to facilitating the release of noradrenaline from noradrenergic terminals, Ca2+ may also play a role in the uptake of noradrenaline by presynaptic nerve-endings in the CNS.  相似文献   

12.
Noradrenaline, a Transmitter Candidate in the Retina   总被引:5,自引:3,他引:2  
The occurrence, metabolism, uptake, and release of noradrenaline were studied in the bovine retina with the following results. (1) Small amounts of noradrenaline occur in the retina and are restricted to the area corresponding to the inner nuclear and plexiform layers. (2) Retinal tissue can metabolise [14C]dopamine to form quantities of [14C]noradrenaline. (3) [14C]Noradrenaline can also be partly metabolised to form [14C]normetanephrine. (4) When bovine retinas were incubated with 5 × 10-7 M-[3H]noradrenaline for 20 min and processed for autoradiography, most of the label was associated with apparent nerve processes in the inner plexiform layer. Biochemical analysis showed that more than 95% of the label was noradrenaline. (5) [14C]Noradrenaline uptake saturated with increasing noradrenaline concentrations and followed Michaelis-Menten kinetics. This uptake could be accounted for by two processes, a high-affinity system with a Km1 of 5 × 10-8 M and a Vmax1 of 0.193 pmol/mg/10 min and a low-affinity system with a Km2 of 6.3 × 10-5 M and a Vmax2 of 0.109 nmol/mg/10 min. (6) Noradrenaline uptake was strongly dependent on temperature and sodium, less dependent on potassium, and independent of calcium and magnesium ions. (7) Centrally acting drugs, such as desipramine, imipramine, desmethylimipramine, and amitriptyline, inhibited noradrenaline uptake by more than 55% at the concentration of 5 × 10-5 M. These drugs at the same concentration diminished dopamine uptake by less than 30%. (8) Noradrenaline uptake is stereospecific, the (-) isomer having a greater affinity for the uptake sites than the (+) isomer. (9) [14C]Noradrenaline in the retina could be released by increasing the external potassium concentration. This release was calcium-dependent and was blocked by 20 mM-cobalt chloride. The present studies could be interpreted as supporting the idea that noradrenaline acts as a transmitter in the retina.  相似文献   

13.
The growth of a mFP-resistant Brevibacterium flavum mutant, No. 221-43, having PDTR was synergistically and completely inhibited by mFP plus Tyr-Glu, but not by mFP plus tyrosine or pFP plus Tyr-Glu, whereas that of a mutant having was only partially inhibited by mFP plus Tyr-Glu. Tyr-Glu could replace tyrosine required for the growth of a tyrosine auxotroph. The phenylalanine uptake was competitively inhibited by tyrosine and the tyrosine uptake by phenylalanine. The phenylalanine uptake was also inhibited by mFP, but not by Tyr-Glu. Mutants having both PDTR and DSR derived from strain No. 221-43 were effectively selected by the resistance to mFP plus Tyr-Glu, and produced much larger amounts of phenylalanine, with small amounts of tyrosine, than the parent. By the same method, mutants having DSR and PDTR, which produced 23.4 g/l of phenylalanine at maximum, were obtained from a pFP-resistant tyrosine auxotroph having PDTR which produced 18 g/l. Similar mutants were also obtained from a tryptophan-producing strain, but produced smaller amounts of tryptophan than the parent, whereas the total amounts of tryptophan and phenylalanine produced were increased.  相似文献   

14.
Pyridoxal‐5′‐phosphate (vitamin B6) is an essential cofactor for many important enzymatic reactions such as transamination and decarboxylation. African trypanosomes are unable to synthesise vitamin B6de novo and rely on uptake of B6 vitamers such as pyridoxal and pyridoxamine from their hosts, which are subsequently phosphorylated by pyridoxal kinase (PdxK). A conditional null mutant of PdxK was generated in Trypanosoma brucei bloodstream forms showing that this enzyme is essential for growth of the parasite in vitro and for infectivity in mice. Activity of recombinant T. brucei PdxK was comparable to previously published work having a specific activity of 327 ± 13 mU mg−1 and a Kmapp with respect to pyridoxal of 29.6 ± 3.9 µM. A coupled assay was developed demonstrating that the enzyme has equivalent catalytic efficiency with pyridoxal, pyridoxamine and pyridoxine, and that ginkgotoxin is an effective pseudo substrate. A high resolution structure of PdxK in complex with ATP revealed important structural differences with the human enzyme. These findings suggest that pyridoxal kinase is an essential and druggable target that could lead to much needed alternative treatments for this devastating disease.  相似文献   

15.
TYROSINE HYDROXYLASE IN BOVINE CAUDATE NUCLEUS   总被引:7,自引:4,他引:3  
Approximately 80 per cent of tyrosine hydroxylase activity in bovine caudate nucleus was particle-bound. The rest of the activity was found in the soluble fraction. The enzyme activity in crude tissue preparations was inhibited, probably by the presence of endogenous inhibitors. Dilution of crude tissue preparations such as the crude mitochondrial fraction caused an increase in the specific activity. The particle-bound enzyme was solubilized by incubation with trypsin. The presence of deoxycholate increased the degree of solubilization. The activity of the solubilized enzyme from the washed particles was also inhibited, but the subsequent purification by ammonium sulphate could eliminate the inhibition. The solubilized enzyme was partially purified by ammonium sulphate fractionation and Sephadex G-150 chromatography. A tetrahydropteridine and ferrous ion were required as cofactors for the partially purified enzyme. Among various divalent cations, only ferrous ion could activate the partially purified enzyme. The enzyme was inhibited by L-α-methyl-p-tyrosine and catecholamines such as dopamine. The optimum pH was found between 5.5 and 6.0. Km values toward tyrosine, 2-amino-4-hydroxy-6,7-dimethyltetrahydropteridine and Fe2+, were approximately 5 × 10?5 M, 1 × 10?4 M and 4 × 10?4 M, respectively.  相似文献   

16.
Abstract: Species differences in susceptibility are a unique feature associated with the neurotoxicity of β-N-oxalyl-l -α,β-diaminopropionic acid (l -ODAP), the Lathyrus sativus neurotoxin, and the excitotoxic mechanism proposed for its mechanism of toxicity does not account for this feature. The present study examines whether neurotoxicity of l -ODAP is the result of an interference in the metabolism of any amino acid and if it could form the basis to explain the species differences in susceptibility. Thus, Wistar rats and BALB/c (white) mice, which are normally resistant to l -ODAP, became susceptible to it following pretreatment with tyrosine (or phenylalanine), exhibiting typical neurotoxic symptoms. C57BL/6J (black) mice were, however, normally susceptible to l -ODAP without any pretreatment with tyrosine. Among the various enzymes associated with tyrosine metabolism examined, the activity of only tyrosine aminotransferase (TAT) was inhibited specifically by l -ODAP. The inhibition was noncompetitive with respect to tyrosine (Ki = 2.0 ± 0.1 mM) and uncompetitive with respect to α-ketoglutarate (Ki = 8.4 ± 1.5 mM). The inhibition of TAT was also reflected in a marked decrease in the rate of oxidation of tyrosine by liver slices, an increase in tyrosine levels of liver, and also a twofold increase in the dopa and dopamine contents of brain in l -ODAP-injected black mice. The dopa and dopamine contents in the brain of only l -ODAP-injected white mice did not show any change, whereas levels of these compounds were much higher in tyrosine-pretreated animals. Also, the radioactivity associated with tyrosine, dopa, and dopamine arising from [14C]tyrosine was twofold higher in both liver and brain of l -ODAP-treated black mice. Thus, a transient increase in tyrosine levels following the inhibition of hepatic TAT by l -ODAP and its increased availability for the enhanced synthesis of dopa and dopamine and other likely metabolites (toxic?) resulting therefrom could be the mechanism of neurotoxicity and may even underlie the species differences in susceptibility to this neurotoxin.  相似文献   

17.
Summary Tyrosine hydroxylase, responsible for the formation ofl-dopa froml-tyrosine, has been identified in the central nervous system of the crayfish,Pacifastacus leniusculus (Crustacea, Decapoda). It requires pterine as cofactor and is inhibited by a number of known tyrosine hydroxylase inhibitors; iron-chelators, tyrosine analogues and also by the catecholamines, dopamine and noradrenaline. Iron enhances the activity of the enzyme. It differs from the vertebrate tyrosine hydroxylase in having a more alkaline pH optimum and a higher affinity for the pterine cofactor. Kinetic studies were performed andK m andV max values are presented. Dopa formed was identified and quantitatively measured by high pressure liquid chromatography (HPLC) and electrochemical detection.  相似文献   

18.
A genetically determined absence of mitochondrial malic enzyme (EC 1.1.1.40) in c3H/c6H mice is accompanied by a four-fold increase in liver glucose-6-phosphate dehydrogenase and a two-fold increase for 6-phosphogluconate dehydrogenase activity. Smaller increases in the activity of serine dehydratase and glutamic oxaloacetic transaminase are observed while the level of glutamic pyruvate transaminase activity is reduced in the liver of deficient mice. Unexpectedly, the level of activity of total malic enzyme in the livers of mitochondrial malic enzyme-deficient mice is increased approximately 50% compared to littermate controls. No similar increase in soluble malic enzyme activity is observed in heart of kidney tissue of mutant mice and the levels of total malic enzyme in these tissues are in accord with expected levels of activity in mitochondrial malic enzyme-deficient mice. The divergence in levels of enzyme activity between mutant and wild-type mice begins at 19–21 days of age. Immunoinactivation experiments with monospecific antisera to the soluble malic enzyme and glucose-6-phosphate dehydrogenase demonstrate that the activity increases represent increases in the amount of enzyme protein. The alterations are not consistent with a single hormonal response.  相似文献   

19.
THERE is a daily rhythm in the activity of tyrosine transaminase in rat liver1 which is characterized by a three-fold rise in enzyme activity from low daytime values to a peak several hours after dark. The oscillation persists in the absence of the pituitary or adrenal glands2–4 and during fasting5,6. Noradrenaline seems to play a role in the regulation of the enzyme and thereby contributes to the generation of the daily rhythm of activity7, but elevation of tissue noradrenaline in vivo suppresses the circadian enzyme rhythm at basal levels8. Noradrenaline inhibits tyrosine transaminase activity in vitro by competing with enzyme for binding with the pyridoxal-5′-phosphate co-factor7 and recent observations suggest that noradrenaline regulates tyrosine transaminase turnover in vivo by the same mechanism.  相似文献   

20.
Abstract The pharmacological and biochemical characteristics of [3H]desipramine binding to rat brain tissue were investigated. Competition studies with noradrenaline, nisoxetine, nortriptyline, and desipramine suggested the presence of more than one [3H]desipramine binding site. Most of the noradrenaline-sensitive binding represented a high-affinity site, and this site appeared to be the same as the high-affinity site of nisoxetine-sensitive binding. The [3H]desipramine binding sites were abolished by protease treatment, a result suggesting that the binding sites are protein in nature. When specific binding was defined by 0.1 μM nisoxetine, the binding was saturable and fitted a single-site binding model with a binding affinity of ~1 nM. This binding fraction was abolished by lesioning of the noradrenaline neurons with the noradrenaline neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromo-benzylamine (DSP4). In contrast, when 10 μM nisoxetine was used to define the specific binding, the binding was not saturable over the nanomolar range, but the binding fitted a two-site binding model with KD values of 0.5 and >100 nM for the high- and low-affinity components, respectively. The high-affinity site was abolished after DSP4 lesioning, whereas the low-affinity site remained. The binding capacity (Bmax) for binding defined by 0.1 μM nisoxetine varied between brain regions, with very low density in the striatum (Bmax not possible to determine), 60-90 fmol/mg of protein in cortical areas and cerebellum, and 120 fmol/mg of protein in the hypothalamus. The binding capacities of these high-affinity sites correlated significantly with the regional distribution of [3H]noradrenaline uptake but not with 5-[3H]hydroxytryptamine uptake. The low-affinity sites did not correlate with the regional distribution of [3H]noradrenaline uptake. Drug inhibition studies showed that noradrenaline inhibits the binding defined by 0.1 μM nisoxetine in a competitive manner. Together, these findings suggest that only a small fraction of the [3H]desipramine binding can be regarded as “specific” binding, and this binding fraction may represent the substrate recognition site for noradrenaline uptake. Assuming that one molecule of desipramine binds to each carrier molecule, the turnover number for the noradrenaline carrier was calculated to be 20/min, i.e., the duration of one transport cycle was 3 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号