首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  相似文献   

2.
The denaturation of the dimeric enzyme glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides by guanidine hydrochloride has been studied using enzymatic activity, intrinsic fluorescence, circular dichroism, and light scattering measurements. Equilibrium experiments at 25 degrees C revealed that between 0.9 and 1.2 M denaturant the enzyme underwent a conformational change, exposing tryptophan residues to solvent, with some loss of secondary structure and a complete loss of enzymatic activity but without dimer dissociation to subunits. This inactive, partially unfolded, dimeric intermediate was susceptible to slow aggregation, perhaps due to exposure of 'sticky' hydrophobic stretches of the polypeptide chain. A second equilibrium transition, reflecting extensive unfolding and dimer dissociation, occurred only at denaturant concentrations above 1.4 M. Kinetics experiments demonstrated that in the denaturant concentration range of 1.7-1.9 M the fluorescence change occurred in two distinct steps. The first step involved a large, very rapid drop in fluorescence whose rate was strongly dependent on the denaturant concentration. This was followed by a small, relatively slow rise in the emission intensity, the rate of which was independent of denaturant concentration. Enzymatic activity was lost with a denaturant-concentration-dependent rate, which was approx. 3-times slower than the rate of the first step in fluorescence change. A denaturation mechanism incorporating several unfolding intermediates and which accounts for all the above results is presented and discussed. While the fully unfolded enzyme regained up to 55% of its original activity upon dilution of denaturant to a concentration that would be expected to support native enzyme, denaturation intermediates were able to reactivate only minimally and in fact were found to aggregate and precipitate out of solution.  相似文献   

3.
The denatured states of a small globular protein, apo-neocarzinostatin (NCS), have been characterized using several techniques. Structural properties were investigated by optical spectroscopy techniques and small-angle neutron scattering (SANS), as a function of guanidinium chloride (GdmCl) concentration. SANS experiments show that in heavy water, the protein keeps its native size at GdmCl concentrations below 2.5 M. A sharp transition occurs at about 3.6 M GdmCl, and NCS behaves like an excluded volume chain above 5 M. The same behavior is observed in deuterated buffer by fluorescence and circular dichroism measurements. For the H(2)O buffer, the transition occurs with lower concentration of denaturant, the shift being about 0.6 M. 8-Anilino-1-naphthalenesulfonate (ANS) was used as a hydrophobic fluorescent probe for studying the early stages of protein unfolding. Protein denaturation modifies the fluorescence intensity of ANS, a maximum of intensity being detected close to 2 M GdmCl in hydrogenated buffer, which shows the existence of at least one intermediate state populated at the beginning of the unfolding pathway. Differential scanning calorimetry (DSC) was used to obtain thermodynamic values for NCS denaturation. The melting curves recorded between 20 and 90 degrees C in the presence of various GdmCl concentrations (0-3 M) cannot be explained by a simple two-state model. Altogether, the data presented in this paper suggest that before unfolding the protein explores a distribution of states which is centered around compact states at denaturant concentrations below 2 M in H(2)O, and then shifts to less structured states by increasing denaturant concentrations.  相似文献   

4.
Bollen YJ  Sánchez IE  van Mierlo CP 《Biochemistry》2004,43(32):10475-10489
The folding kinetics of the 179-residue Azotobacter vinelandii apoflavodoxin, which has an alpha-beta parallel topology, have been followed by stopped-flow experiments monitored by fluorescence intensity and anisotropy. Single-jump and interrupted refolding experiments show that the refolding kinetics involve four processes yielding native molecules. Interrupted unfolding experiments show that the two slowest folding processes are due to Xaa-Pro peptide bond isomerization in unfolded apoflavodoxin. The denaturant dependence of the folding kinetics is complex. Under strongly unfolding conditions (>2.5 M GuHCl), single exponential kinetics are observed. The slope of the chevron plot changes between 3 and 5 M denaturant, and no additional unfolding process is observed. This reveals the presence of two consecutive transition states on a linear pathway that surround a high-energy on-pathway intermediate. Under refolding conditions, two processes are observed for the folding of apoflavodoxin molecules with native Xaa-Pro peptide bond conformations, which implies the population of an intermediate. The slowest of these two processes becomes faster with increasing denaturant concentration, meaning that an unfolding step is rate-limiting for folding of the majority of apoflavodoxin molecules. It is shown that the intermediate that populates during refolding is off-pathway. The experimental data obtained on apoflavodoxin folding are consistent with the linear folding mechanism I(off) <==> U <==> I(on) <== > N, the off-pathway intermediate being the molten globule one that also populates during equilibrium denaturation of apoflavodoxin. The presence of such on-pathway and off-pathway intermediates in the folding kinetics of alpha-beta parallel proteins is apparently governed by protein topology.  相似文献   

5.
Khan F  Ahmad A  Khan MI 《IUBMB life》2007,59(1):34-43
The effect of urea, guanidine thiocyanate, temperature and pH was studied on the conformational stability of Fusarium solani lectin. Equilibrium unfolding with chemical denaturants showed that the lectin was least stable at pH 12 and maximally stable at pH 8.0 near its pI (8.7). Guanidine thiocyanate (the concentration of denaturant at which the protein is half folded, D1/2 = 0.49 M at pH 12) was found to be an eight times stronger denaturant than urea (D1/2 = 3.88 M at pH 12). The unfolding curves obtained with fluorescence and CD measurements showed good agreement indicating a monophasic nature of unfolding and excluded the possibility of formation of any stable intermediate. The effect of pH on the lectin was found to be unusual as at acidic pH, the lectin showed a flexible tertiary structure with pronounced secondary structure, and retained its hemagglutinating activity. On the other hand, the lectin did not show any loss of conformation or activity upto 70 degrees C for 15 min. Moreover, thermal denaturation did not result in the aggregation or precipitation of the protein even at high temperatures. Thermal denaturation was also carried out in the presence of a low concentration of guanidine thiocyanate. Change in the enthalpy of transition (DeltaHm) varied linearly with transition temperature (Tm), which indicated that the heat capacity (DeltaCp = 3.95 kJ . mol-1 . K-1) of the lectin remained constant during the unfolding.  相似文献   

6.
Gram-negative bacteria contain a family of outer membrane transport proteins that function in the uptake of rare nutrients, such as iron and vitamin B(12). These proteins are termed TonB-dependent because transport requires an interaction with the inner-membrane protein TonB. Using a combination of site-directed spin labeling and chemical denaturation, we examined the site-specific unfolding of regions of the Escherichia coli vitamin B(12) transporter, BtuB. The data indicate that a portion of the N-terminal region of the protein, which occupies the lumen of the BtuB barrel, denatures prior to the unfolding of the barrel and that the free energy of folding for the N-terminus is smaller than that typically seen for globular proteins. Moreover, the data indicate that the N-terminal domain does not unfold in a single event but unfolds in a series of independent steps. The unfolding of the N-terminus is reversible, and removal of denaturant restores the native fold of the protein. These data are consistent with proposed transport mechanisms that involve a transient rearrangement or unfolding of the N-terminus of the protein, and they provide evidence of a specific protein conformation that might be an intermediate accessed during transport.  相似文献   

7.
Anticoagulation factor I (ACF I) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein in a Ca(2+)-dependent fashion with marked anticoagulant activity. The equilibrium unfolding/refolding of apo-ACF I, holo-ACF I, and Tb(3+)-reconstituted ACF I in guanidine hydrochloride (GdnHCl) solutions was studied by following the fluorescence and circular dichroism. Metal ions were found to increase the structural stability of ACF I against GdnHCl and thermal denaturation and, furthermore, influence its unfolding/refolding behavior. The GdnHCl-induced unfolding/refolding of both apo-ACF I and Tb(3+)-ACF I is a two-state process with no detectable intermediate state(s), whereas the GdnHCl-induced unfolding/refolding of holo-ACF I in the presence of 1 mM Ca(2+) follows a three-step transition, with intermediate state a (Ia) and intermediate state b (Ib). Ca(2+) ions play an important role in the stabilization of the Ia and Ib states. The decalcification of holo-ACF I shifts the ending zone of unfolding/refolding curve toward lower GdnHCl concentration, whereas the reconstitution of apo-ACF I with Tb(3+) ions shifts the initial zone of denaturation curve toward higher GdnHCl concentration. Therefore, it is possible to find a denaturant concentration (2.0 M GdnHCl) at which refolding from the fully denatured state of apo-ACF I to the Ib state of holo-ACF I or to the native state of Tb(3+)-ACF I can be initiated merely by adding the 1 mM Ca(2+) ions or 10 microM Tb(3+) ions to the unfolded state of apo-ACF I, respectively, without changing the concentration of the denaturant. Using Tb(3+) as a fluorescence probe of Ca(2+), the kinetic results of metal ions-induced refolding provide evidence that the compact Tb(3+)-binding region forms first, and subsequently, the protein undergoes further conformational rearrangements to form the native structure.  相似文献   

8.
The activity and the conformational changes of methanol dehydrogenase (MDH), a quinoprotein containing pyrrolo-quinoline quinone as its prosthetic group, have been studied during denaturation in guanidine hydrochloride (GdnHCl) and urea. The unfolding of MDH was followed using the steady-state and time resolved fluorescence methods. Increasing the denaturant concentration in the denatured system significantly enhanced the inactivation and unfolding of MDH. The enzyme was completely inactivated at 1 M GdnHCl or 6 M urea. The fluorescence emission maximum of the native enzyme was at 332 nm. With increasing denaturant concentrations, the fluorescence emission maximum red-shifted in magnitude to a maximum value (355 nm) at 5 M GdnHCl or 8 M urea. Comparison of inactivation and conformational changes during denaturation showed that in general accord with the suggestion made previously by Tsou, the active sites of MDH are situated in a region more flexible than the molecule as a whole.  相似文献   

9.
In this study the thermal and denaturant induced unfolding of apolipoprotein A-I (apo A-I) and the monomer form of apolipoprotein A-I(Milano) (apo A-I(M)) was followed. Dimer apo A-I(M) was reduced with dithiothreitol, which was present in the protein solutions in all experiments. Thermal denaturation is followed by differential scanning calorimetry (DSC) and far-UV and near-UV CD. Both apo A-I and monomer apo A-IM have a broad asymmetric DSC peak that could be deconvoluted into three non two-state transitions, apo A-I being more stable than the monomer apo A-IM. Estimation of melting of tertiary structure by near-UV CD is lower than that for secondary structure determined from far-UV. This together with the non two-state unfolding of the proteins observed with DSC is indicative of unfolding via a molten globular-like state. Apo A-I and monomer apo A-I(M) are equally susceptible to guanidinum chloride, half-unfolded at 1.2 M denaturant. The presence of 0.5 and 1.0 M denaturant, lower and equalize the denaturation temperatures of the proteins, respectively.  相似文献   

10.
Xu X  Liu Q  Xie Y 《Biochemistry》2002,41(11):3546-3554
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein in a Ca(2+)-dependent fashion with marked anticoagulant activity. The equilibrium unfolding/refolding of apo-ACF II, holo-ACF II, and Tb(3+)-reconstituted ACF II in guanidine hydrochloride (GdnHCl) solutions was studied by following the fluorescence and circular dichroism (CD). Metal ions were found to increase the structural stability of ACF II against GdnHCl and irreversible thermal denaturation and, furthermore, influence its unfolding/refolding behavior. The GdnHCl-induced unfolding/refolding of both apo-ACF II and Tb(3+)-ACF II is a two-state process with no detectable intermediate state, while the GdnHCl-induced unfolding/refolding of holo-ACF II in the presence of 1 mM Ca(2+) follows a three-state transition with an intermediate state. Ca(2+) ions play an important role in the stabilization of both native and I states of holo-ACF II. The decalcification of holo-ACF II shifts the ending zone of unfolding/refolding curve toward lower GdnHCl concentration, while the reconstitution of apo-ACF II with Tb(3+) ions shifts the initial zone of the denaturation curve toward higher GdnHCl concentration. Therefore, it is possible to find a denaturant concentration (2.1 M GdnHCl) at which refolding from the fully denatured state of apo-ACF II to the I state of holo-ACF II or to the native state of Tb(3+)-ACF II can be initiated merely by adding the 1 mM Ca(2+) ions or 10 microM Tb(3+) ions to the unfolded state of apo-ACF II, respectively, without changing the concentration of the denaturant. Using Tb(3+) as a fluorescence probe of Ca(2+), the kinetic results of metal ion-induced refolding provide evidence for the fact that the first phase of Tb(3+)-induced refolding should involve the formation of the compact metal-binding site regions, and subsequently, the protein undergoes further conformational rearrangements to form the native structure.  相似文献   

11.
The unfolding and refolding of pancreatic ribonuclease have been observed by absorbance, fluorescence, and size exclusion chromatographic measurements in solutions of guanidinium chloride continuously maintained at pH 6.0 and 4 degrees C. The spectral measurements were fitted with a minimal number of kinetic phases while the chromatographic measurements were simulated from an explicit mechanism. All of the measurements are consistent with a minimal mechanism involving seven components. The folded components include the native protein and two transiently stable intermediates each having the same hydrodynamic volume. The intermediate having all native peptide isomers has an unfolding midpoint in 3.8 M denaturant while the intermediate having one nonnative peptide isomer has an unfolding midpoint in 1.3 M denaturant. The unfolded protein is distributed among four components having the same hydrodynamic volume but differing peptide isomers. At equilibrium, 10% of the denatured protein has all native isomers, 60% has one nonnative isomer, 5% has a different nonnative isomer, and 25% has both nonnative isomers. In low denaturant concentrations, the dominant component with one nonnative isomer can refold to transiently populate the compact intermediate with the same nonnative isomer.  相似文献   

12.
Urea and guanidine-hydrochloride (GdnHCl) are frequently used for protein denaturation in order to determine the Gibbs free energy of folding and kinetic folding/unfolding parameters. Constant pH value is applied in the folding/unfolding experiments at different denaturant concentrations and steady protonation state of titratable groups is assumed in the folded and unfolded protein, respectively. The apparent side-chain pKa values of Asp, Glu, His and Lys in the absence and presence of 6 M urea and GdnHCl, respectively, have been determined by 1H-NMR. pKa values of all four residues are up-shifted by 0.3-0.5 pH units in presence of 6 M urea by comparison with pKa values of the residues dissolved in water. In the presence of 6 M GdnHCl, pKa values are down-shifted by 0.2-0.3 pH units in the case of acidic and up-shifted by 0.3-0.5 pH units in the case of basic residues. Shifted pKa values in the presence of denaturant may have a pronounced effect on the outcome of the protein stability obtained from denaturant unfolding experiments.  相似文献   

13.
Cellulases are increasingly being used for industrial purposes, particularly in washing powders, yet little is known of the factors governing the stability of proteins in detergent solutions. We present a comparative analysis of the behavior of the cellulase Cel45 from Humicola insolens in the presence of the denaturant guanidinium chloride and the anionic detergent C12-LAS. Although Cel45 unfolds in GdmCl according to a simple two-state model under equilibrium conditions, it accumulates a transient intermediate during refolding. The four disulfide bonds do not contribute detectably to the stability of the native state. Cel45 is unfolded by very low concentrations of C12-LAS (1-4 mM). An analysis of 16 mutants of Cel45 shows a very weak correlation between unfolding rates in denaturant and detergent; mutants that have the same unfolding rate in GdmCl (within a factor of 1.5) vary 1,000-fold in their unfolding rates in C12-LAS. The data support a simple model for unfolding by detergent, in which the introduction of positive charges or removal of negative charges greatly increases detergent sensitivity, while interactions with the hydrophobic detergent tail contribute to a smaller extent. This implies that different detergent-mediated unfolding pathways exist, whose accessibilities depend on individual residues. Double-mutant cycles reveal that mutations in two proximal residues lead to repulsion and a destabilization greater than the sum of the individual mutations as measured by GdmCl denaturation, but they also reduce the affinity for LAS and therefore actually stabilize the protein relative to wild-type. Ligands that interact strongly with the denatured state may therefore alter the unfolding process.  相似文献   

14.
We have analysed the hydrogen/deuterium exchange of the tetramerization domain of human tumour suppressor p53 under mild chemical denaturation conditions, and at different temperatures. Exchange behaviour has been measured for 16 amide protons in the chemical-denaturation studies and for seven protons in the temperature-denaturation studies. The exchange rates are in the range observed for other proteins with similar elements of secondary structure. The slowest-exchange core includes contributions from residues in the alpha helix and the beta sheet. However, only some of the slowest-exchanging protons correspond to residues involved in native interactions in the transient intermediate detected during the folding of this domain. The guanidinium-chloride denaturation curves of all residues seem to merge together, although they are well below the main isotherm of global unfolding. Thus, there is no evidence for several subglobal unfolding units. The activation parameters obtained from the temperature-denaturation experiments are similar to those obtained for monomeric proteins, and well below the global unfolding enthalpy obtained by circular dichroism measurements. Thus, the exchange studies at different denaturant concentrations and temperatures indicate that no particular folding intermediate is populated under those conditions.  相似文献   

15.
Two types (isoenzymes) of octopine dehydrogenase (A and B) from Pecten jacobaeus adductor muscle were purified to homogeneity, applying affinity chromatography as an efficient final step of purification. Both forms of the enzyme differ in their electrophoretic mobility. All other physico-chemical and enzymatic properties, as well as the folding behaviour were found to be identical. Interconversion of one form into the other was not detectable. Sedimentation equilibrium, gel permeation chromatography, and NaDodSO4/polyacrylamide gel electrophoresis yield a relative molecular mass of 45000 +/- 1500 for both native and denatured enzyme. The unfolding transition at varying guanidine X HCl concentrations is characterized by a two-step profile: at 0.4-0.8 M, partial unfolding is parallelled by inactivation; at 2.0-2.4 M the residual structure is destroyed in a second unfolding step. Beyond 2.8 M no further changes in fluorescence emission and dichroic absorption are observed. At 0.4-1.8 M guanidine X HCl, partial unfolding is superimposed by aggregation. The emission maximum of the intrinsic protein fluorescence at 327 nm is shifted to 352 nm upon denaturation in 6 M guanidine X HCl. Changes in the far-ultraviolet circular dichroism indicate complete loss of the overall backbone structure in this denaturant, including the native helix content of about 33%. Denaturation in 6 M guanidine X HCl, as monitored by the decrease of protein fluorescence, is fast (less than 8s). Upon reactivation after short denaturation, about 25% of the activity is recovered in a fast initial phase (less than 20s). The product of this phase has a similar stability towards destabilizing additives or proteases as the native enzyme. The slow phase of reactivation, which predominates after long-term denaturation, is determined by a single first-order reaction characterized by tau = 29 +/- 3 min (20 degrees C). This reaction must be a relatively late event on the folding pathway, preceded by the fast formation of a structured intermediate, as indicated by the immediate recovery of the native fluorescence. The structural rearrangements, which are rate-limiting for reactivation after long-term denaturation, are characterized by a high energy of activation (112 +/- 8 kJ/mol). The slow reactivation step is compatible in rate with the first-order folding reactions involved in the reconstitution of several oligomeric dehydrogenases [c.f. R. Jaenicke and R. Rudolph (1983) Colloq. Ges. Biol. Chem. Mosbach 34, 62-90].  相似文献   

16.
The unfolding of triosephosphate isomerase (TIM) from Trypanosoma brucei (TbTIM) induced by guanidine hydrochloride (GdnHCl) was characterized. In contrast to other TIMs, where unfolding is a two or three state process, TbTIM showed two intermediates. The solvent exposure of different regions of the protein in the unfolding process was characterized spectroscopically with mutant proteins in which tryptophans (W) were changed to phenlylalanines (F). The midpoints of the transitions measured by circular dichroism, intrinsic fluorescence, and catalytic activity, as well as the increase in 1-aniline 8-naphthalene sulfonate fluorescence, show that the native state was destabilized in the W12F and W12F/W193F mutants, relative to the wild-type enzyme. Using the hydrodynamic profile for the unfolding of a monomeric TbTIM mutant (RMM0-1TIM) measured by size-exclusion chromatography as a standard, we determined the association state of these intermediates: D*, a partially expanded dimer, and M*, a partially expanded monomeric intermediate. High-molecular-weight aggregates were also detected. At concentrations over 2.0 M GdnHCl, the hydrodynamic properties of TbTIM and RMM0-1TIM are the same, suggesting that the dimeric intermediate dissociates and the unfolding proceeds through the denaturation of an expanded monomeric intermediate. The analysis of the denaturation process of the TbTIM mutants suggests a sequence for the gradual exposure of W residues: initially the expansion of the native dimer to form D* affects the environments of W12 and W159. The dissociation of D* to M* and further unfolding of M* to U induces the exposure of W170. The role of protein concentration in the formation of intermediates and aggregates is discussed considering the irreversibility of this unfolding process.  相似文献   

17.
The urea-induced denaturation of dimeric Erythrina indica lectin (EIL) has been studied at pH 7.2 under equilibrium and kinetic conditions in the temperature range of 40-55 degrees C. The structure of EIL is largely unaffected in this temperature range in absence of denaturant, and also in 8 M urea after incubation for 24 h at ambient temperature. The equilibrium denaturation of EIL exhibits a monophasic unfolding transition from the native dimer to the unfolded monomer as monitored by fluorescence, far-UV CD, and size-exclusion FPLC. The thermodynamic parameters determined for the two-state unfolding equilibrium show that the free energy of unfolding (DeltaGu, aq) remains practically same between 40 and 55 degrees C, with a value of 11.8 +/- 0.6 kcal mol(-1) (monomer units). The unfolding kinetics of EIL describes a single exponential decay pattern, and the apparent rate constants determined at different temperatures indicate that the rate of the unfolding reaction increases several fold with increase in temperature. The presence of probe like external metal ions (Mn2+, Ca2+) does not influence the unfolding reaction thermodynamically or kinetically; however, the presence of EDTA affects only kinetics. The present results suggest that the ability of EIL to preserve the structural integrity against the highly denaturing conditions is linked primarily to its kinetic stability, and the synergic action of heat and denaturant is involved in the unfolding of the protein.  相似文献   

18.
In order to elucidate the stabilization mechanism of CutA1 from Pyrococcus horikoshii (PhCutA1) with a denaturation temperature of nearly 150 degrees C, GuHCl denaturation and heat denaturation were examined at neutral and acidic pHs. As a comparison, CutA1 proteins from Thermus thermophilus (TtCutA1) and Oryza sativa (OsCutA1) were also examined, which have lower optimum growth temperatures of 75 and 28 degrees C, respectively, than that (98 degrees C) of P. horikoshii. GuHCl-induced unfolding and refolding curves of the three proteins showed hysteresis effects due to an unusually slow unfolding rate. The midpoints of refolding for PhCutA1, TtCutA1 and OsCutA1 were 5.7 M, 3.3 M, and 2.3 M GuHCl, respectively, at pH 8.0 and 37 degrees C. DSC experiments with TtCutA1 and OsCutA1 showed that the denaturation temperatures were remarkably high, 112.8 and 97.3 degrees C, respectively, at pH 7.0 and that the good heat reversibility was amenable to thermodynamic analyses. At acidic pH, TtCutA1 showed higher stability to both heat and denaturant than PhCutA1. Combined with the data for DSC and denaturant denaturation, the unfolding Gibbs energy of PhCutA1 could be depicted as a function of temperature. It was experimentally revealed that (1) the unusually high stability of PhCutA1 basically originates from a common trimer structure of the three proteins, (2) the stability of PhCutA1 is superior to those of the other two CutA1s over all temperatures above 0 degrees C at neutral pH, due to the decrease in both enthalpy and entropy, and (3) ion pairs of PhCutA1 contribute to the unusually high stability at neutral pH.  相似文献   

19.
Human placental alkaline phosphatase is a membrane-anchored dimeric protein. Unfolding of the enzyme by guanidinium chloride (GdmCl) caused a decrease of the fluorescence intensity and a large red-shifting of the protein fluorescence maximum wavelength from 332 to 346 nm. The fluorescence changes were completely reversible upon dilution. GdmCl induced a clear biphasic fluorescence spectrum change, suggesting that a three-state unfolding mechanism with an intermediate state was involved in the denaturation process. The half unfolding GdmCl concentrations, [GdmCl]0.5, corresponding to the two phases were 1.45 M and 2.50 M, respectively. NaCl did not cause the same effect as GdmCl, indicating that the GdmCl-induced biphasic denaturation is not a salt effect. The decrease in fluorescence intensity was monophasic, corresponding to the first phase of the denaturation process with [GdmCl]0.5 = 1.37 M and reached a minimum at 1.5 M GdmCl, where the enzyme remained completely active. The enzymatic activity lost started at 2.0 M GdmCl and was monophasic but coincided with the second-phase denaturation with [GdmCl]0.5 = 2.46 M. Inorganic phosphate provides substantial protection of the enzyme against GdmCl inactivation. Determining the molecular weight by sucrose-density gradient ultracentrifugation revealed that the enzyme gradually dissociates in both phases. Complete dissociation occurred at [GdmCl] > 3 M. The dissociated monomers reassociated to dimers after dilution of the GdmCl concentration. Refolding kinetics for the first-phase denaturation is first-order but not second-order. The biphasic phenomenon thereby was a mixed dissociation-denaturation process. A completely folded monomer never existed during the GdmCl denaturation. The biphasic denaturation curve thereby clearly demonstrates an enzymatically fully active intermediate state, which could represent an active-site structure intact and other structure domains partially melted intermediate state. Proteins 33:49–61, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
The kinetics of the irreversible unfolding of glutathione reductase (NAD[P]H:GSSG oxidoreductase, EC 1.6.4.2.) from cyanobacterium Spirulina maxima was studied at pH 7.0 and room temperature. Denaturation was induced by guanidinium chloride and the changes in enzyme activity, aggregation state, and tertiary structure were monitored. No full reactivation of enzyme was obtained, even after very short incubation times in the presence of denaturant. Reactivation plots were complex, showing biphasic kinetics. A very fast early event in the denaturation pathway was the dissociation of tetrameric protein into reactivatable native-like dimers, followed by its conversion into a nonreactivatable intermediary, also dimeric. In the final step of the unfolding pathway the latter was dissociated into denatured monomers. Fluorescence measurements revealed that denaturation of S. maxima glutathione reductase is a slow process. Release of the prostethic group FAD was previous to the unfolding of the enzyme. No aggregated species were detected in the unfolding pathway, dismissing the aggregation of denatured polypeptide chains as the origin of irreversibility. Instead, the transition between the two dimeric intermediates is proposed as the cause of irreversibility in the denaturation of S. maxima glutathione reductase. A value of 106.6 +/- 3 kJ mol(-1) was obtained for the activation free energy of unfolding in the absence of denaturant. No evidence for the native monomer in the unfolding pathway was obtained which suggests that the dimeric nature of glutathione reductase is essential for the maintenance of the native subunit conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号