首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor activated by fatty acids, hypolipidemic drugs, and peroxisome proliferators (PPs). Like other nuclear receptors, PPARalpha is a phosphoprotein whose activity is affected by a variety of growth factor signaling cascades. In this study, the effects of protein kinase C (PKC) on PPARalpha activity were explored. In vivo phosphorylation studies in COS-1 cells transfected with murine PPARalpha showed that the level of phosphorylated PPARalpha is increased by treatment with the PP Wy-14,643 as well as the PKC activator phorbol myristol acetate (PMA). In addition, inhibitors of PKC decreased Wy-14,643-induced PPARalpha activity in a variety of reporter assays. Overexpressing PKCalpha, -beta, -delta, and -zeta affected both basal and Wy-14,643-induced PPARalpha activity. Four consensus PKC phosphorylation sites are contained within the DNA binding (C-domain) and hinge (D-domain) regions of rat PPARalpha (S110, T129, S142, and S179), and their contribution to receptor function was examined. Mutation of T129 or S179 to alanine prevented heterodimerization of PPARalpha with RXRalpha, lowered the level of phosphorylation by PKCalpha and PKCdelta in vitro, and lowered the level of phosphorylation of transfected PPARalpha in transfected cells. In addition, the T129A mutation prevented PPARalpha from binding DNA in an electromobility shift assay. Together, these studies demonstrate a direct role for PKC in the regulation of PPARalpha, and suggest several PKCs can regulate PPARalpha activity through multiple phosphorylation sites.  相似文献   

2.
Phosphorylation of the cystic fibrosis transmembrane conductance regulator.   总被引:17,自引:0,他引:17  
Regulation of epithelial chloride flux, which is defective in patients with cystic fibrosis, may be mediated by phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cyclic AMP-dependent protein kinase (PKA) or protein kinase C (PKC). Part of the R-domain of CFTR (termed CF-2) was expressed in and purified from Escherichia coli. CF-2 was phosphorylated on seryl residues by PKA, PKC, cyclic GMP-dependent protein kinase (PKG), and calcium/calmodulin-dependent protein kinase I (CaM kinase I). Direct amino acid sequencing and peptide mapping of CF-2 revealed that serines 660, 700, 737, and 813 as well as serine 768, serine 795, or both were phosphorylated by PKA and PKG, and serines 686 and 790 were phosphorylated by PKC. CFTR was phosphorylated in vitro by PKA, PKC, or PKG on the same sites that were phosphorylated in CF-2. Kinetic analysis of phosphorylation of CF-2 and of synthetic peptides confirmed that these sites were excellent substrates for PKA, PKC, or PKG. CFTR was immunoprecipitated from T84 cells labeled with 32Pi. Its phosphorylation was stimulated in response to agents that activated either PKA or PKC. Peptide mapping confirmed that CFTR was phosphorylated at several sites identified in vitro. Thus, regulation of CFTR is likely to occur through direct phosphorylation of the R-domain by protein kinases stimulated by different second messenger pathways.  相似文献   

3.
The NR1 subunit of the NMDA receptor has two serines (S890 and S896) whose phosphorylation by protein kinase C (PKC) differentially modulates NMDA receptor trafficking and clustering. It is not known which PKC isoforms phosphorylate these serines. In primary cultures of cerebellar neurons, we examined which PKC isoforms are responsible for the phosphorylation S890 and S896. We used specific inhibitors of PKC isoforms and antibodies recognizing specifically phosphorylated S890 or S896. The results show that PKC alpha phosphorylates preferentially S896 and PKC gamma preferentially S890. Activation of type I metabotropic glutamate receptors (mGluRs) with DHPG (3,5-dihyidroxy-phenylglycine) activates PKC gamma but not PKC alpha or beta. We found that activation of mGluRs by DHPG increases S890 but not S896 phosphorylation, supporting a role for PKC gamma in the physiological modulation of S890 phosphorylation. It is also shown that the pool of NR1 subunits present in the membrane surface contains phosphorylated S890 but not phosphorylated S896. This supports that differential phosphorylation of S890 and S896 by different PKC isoforms modulates cellular distribution of NMDA receptors and may also contribute to the selective modulation of NMDA receptor function and intracellular localization.  相似文献   

4.
5.
Diacylglycerol kinase (DGK) terminates diacylglycerol (DAG) signaling by phosphorylating DAG to produce phosphatidic acid, which also has signaling properties. Thus, precise control of DGK activity is essential for proper signal transduction. We demonstrated previously that a peptide corresponding to the myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation site domain (PSD) in DGK zeta was phosphorylated in vitro by an active fragment of protein kinase C (PKC). In the present study, we tested full-length DGK zeta and found that PKC alpha phosphorylated DGK zeta on serines within the MARCKS PSD in vitro and in vivo. DGK zeta also coimmunoprecipitated with PKC alpha, suggesting that they reside in a regulated signaling complex. We then tested whether phosphorylation affected DAG kinase activity. We found that a mutant (DGK zeta S/D) in which serines within the MARCKS PSD were altered to aspartates (to mimic phosphorylation) had lower activity compared with wild-type DGK zeta or a control mutant (DGK zeta S/N) in which the same serines were changed to asparagines. Furthermore, activation of PKC alpha by phorbol 12-myristate 13-acetate inhibited the activity of wild-type DGK zeta, but not DGK zeta S/D, in human embryonic kidney 293 cells. These results suggest that by phosphorylating the MARCKS PSD, PKC alpha attenuates DGK zeta activity. Supporting this, we found that cells expressing DGK zeta S/D had higher DAG levels and grew more rapidly compared with cells expressing DGK zeta S/N that could not be phosphorylated. Taken together, these results indicate that PKC alpha phosphorylates DGK zeta in cells, and this phosphorylation inhibits its kinase activity to remove cellular DAG, thereby affecting cell growth.  相似文献   

6.
G-protein-coupled receptor kinases (GRKs) are important regulators of G-protein-coupled receptor function. Two members of this family L, GRK2 and GRK5 L, have been shown to be substrates for protein kinase C (PKC). Whereas PKC-mediated phosphorylation results in inhibition of GRK5, it increases the activity of GRK2 toward its substrates probably through increased affinity for receptor-containing membranes. We show here that this increase in activity may be caused by relieving a tonic inhibition of GRK2 by calmodulin. In vitro, GRK2 was preferentially phosphorylated by PKC isoforms alpha, gamma, and delta. Two-dimensional peptide mapping of PKCalpha-phosphorylated GRK2 showed a single site of phosphorylation, which was identified as serine 29 by HPLC-MS. A S29A mutant of GRK2 was not phosphorylated by PKC in vitro and showed no phorbol ester-stimulated phosphorylation when transfected into human embryonic kidney (HEK)293 cells. Serine 29 is located in the calmodulin-binding region of GRK2, and binding of calmodulin to GRK2 results in inhibition of kinase activity. This inhibition was almost completely abolished in vitro when GRK2 was phosphorylated by PKC. These data suggest that calmodulin may be an inhibitor of GRK2 whose effects can be abolished with PKC-mediated phosphorylation of GRK2.  相似文献   

7.
Choline acetyltransferase (ChAT) synthesizes acetylcholine in cholinergic neurons; regulation of its activity or response to physiological stimuli is poorly understood. We show that ChAT is differentially phosphorylated by protein kinase C (PKC) isoforms on four serines (Ser-440, Ser-346, Ser-347, and Ser-476) and one threonine (Thr-255). This phosphorylation is hierarchical, with phosphorylation at Ser-476 required for phosphorylation at other serines. Phosphorylation at some, but not all, sites regulates basal catalysis and activation. Ser-476 with Ser-440 and Ser-346/347 maintains basal ChAT activity. Ser-440 is targeted by Arg-442 for phosphorylation by PKC. Arg-442 is mutated spontaneously (R442H) in congenital myasthenic syndrome, rendering ChAT inactive and causing neuromuscular failure. This mutation eliminates phosphorylation of Ser-440, and Arg-442, not phosphorylation of Ser-440, appears primarily responsible for ChAT activity, with Ser-440 phosphorylation modulating catalysis. Finally, basal ChAT phosphorylation in neurons is mediated predominantly by PKC at Ser-476, with PKC activation increasing phosphorylation at Ser-440 and enhancing ChAT activity.  相似文献   

8.
While a great deal of attention has been focused on G-protein-coupled receptor (GPCR)-induced epidermal growth factor receptor (EGFR) transactivation, it has been known for many years that the tyrosine kinase activity of the EGFR is inhibited in cells treated with tumor-promoting phorbol esters, a process termed EGFR transmodulation. Because many GPCR agonists that elicit EGFR transactivation also stimulate the Gq/phospholipase C (PLC)/protein kinase C (PKC) pathway, we hypothesized that PKC-mediated inhibition of EGFR transactivation operates physiologically as a feedback loop that regulates the intensity and/or duration of GPCR-elicited EGFR transactivation. In support of this hypothesis, we found that treatment of intestinal epithelial IEC-18 cells with the PKC inhibitors GF 109203X or Ro 31-8220 or chronic exposure of these cells to phorbol-12,13-dibutyrate (PDB) to downregulate PKCs, markedly enhanced the increase in EGFR tyrosine phosphorylation induced by angiotensin II or vasopressin in these cells. Similarly, PKC inhibition enhanced EGFR transactivation in human colonic epithelial T84 cells stimulated with carbachol, as well as in bombesin-stimulated Rat-1 fibroblasts stably transfected with the bombesin receptor. Furthermore, cell treatment with inhibitors with greater specificity towards PKCα,  including Gö6976, Ro 31-7549 or Ro 32-0432, also increased GPCR-induced EGFR transactivation in IEC-18, T84 and Rat-1 cells. Transfection of siRNAs targeting PKCα  also enhanced bombesin-induced EGFR tyrosine phosphorylation in Rat-1 cells. Thus, multiple lines of evidence support the hypothesis that conventional PKC isoforms, especially PKCα, mediate feedback inhibition of GPCR-induced EGFR transactivation.  相似文献   

9.
The addition of phorbol esters to U937 leukemic cells stimulates the phosphorylation of c-Jun on serines 63 and 73. To isolate the protein kinase which stimulates this phosphorylation, we have used heparin-Sepharose chromatography followed by affinity chromatography over glutathione-Sepharose beads bound with a fusion protein of glutathione S-transferase and amino acids 5-89 of c-Jun (GST-c-Jun). Using this procedure we purify a 67-kDa protein which is capable of phosphorylating GST-c-Jun as well as the complete c-Jun protein. By making mutations in serines 63 and 73 and then creating a fusion protein with GST (GST-c-Jun mut), we demonstrate that this protein kinase specifically phosphorylates these sites in the c-Jun amino terminus. Treatment of purified c-Jun amino-terminal protein kinase (cJAT-PK) with phosphatase 2A inhibits its ability to phosphorylate GST-c-Jun. This inactivated enzyme can be reactivated by phosphorylation with protein kinase C (PKC), although PKC is not capable of phosphorylating the GST-c-Jun substrate. Because v-Jun cannot be phosphorylated in vivo, we compared the ability of cJAT-PK to bind to GST-v-Jun or GST-c-Jun mut. The cJAT-PK bound 50-fold better to GST-c-Jun mut than GST-v-Jun suggesting that the delta domain which is missing in v-Jun plays a role in binding the cJAT-PK. These results suggest that there is a protein kinase cascade mediated by protein phosphatases and PKC which regulates c-Jun phosphorylation.  相似文献   

10.
To determine whether alpha4 subunits of alpha4beta2 neuronal nicotinic receptors are phosphorylated within the M3/M4 intracellular region by cyclic AMP-dependent protein kinase A (PKA) or protein kinase C (PKC), immunoprecipitated receptors from Xenopus oocytes and a fusion protein corresponding to the M3/M4 cytoplasmic domain of alpha4 (alpha4(336-597)) were incubated with ATP and either PKA or PKC. Both alpha4 and alpha4(336-597) were phosphorylated by PKA and PKC, providing the first direct biochemical evidence that the M3/M4 cytoplasmic domain of neuronal nicotinic receptor alpha4 subunits is phosphorylated by both kinases. When the immunoprecipitated receptors and the alpha4(336-597) fusion protein were phosphorylated and the labeled proteins subjected to phosphoamino acid analysis, results indicated that alpha4 and alpha4(336-597) were phosphorylated on the same amino acid residues by each kinase. Furthermore, PKA phosphorylated serines exclusively, whereas PKC phosphorylated both serines and threonines. To determine whether Ser(368) was a substrate for both kinases, a peptide corresponding to amino acids 356-371 was synthesized (alpha4(356-371)) and incubated with ATP and the kinases. The phosphorylation of alpha4(356-371) by both PKA and PKC was saturable with K(m)s of 15.3 +/- 3.3 microM and 160.8 +/- 26.8 microM, respectively, suggesting that Ser(368) was a better substrate for PKA than PKC.  相似文献   

11.
Rat tyrosine hydroxylase is phosphorylated at four serine residues, at positions 8, 19, 31, and 40 in its amino terminal regulatory domain by multiple protein kinases. Cyclic AMP-dependent protein kinase phosphorylates S40, which results in alleviation of inhibition by dopamine. Extracellular signal-regulated protein kinase 2 phosphorylates S8 and S31. Site-directed serine-to-glutamate mutations were introduced into tyrosine hydroxylase to mimic prior phosphorylation of the regulatory serines; these proteins were used as substrates for cAMP-dependent kinase and extracellular signal-regulated kinase 2. The activity of cAMP-dependent kinase was unaffected by the substitution of serines 8, 19 or 31 with glutamate and the activity of extracellular signal-regulated kinase 2 was unaffected by substitution of serines 19 or 40 with glutamate. Cyclic AMP-dependent kinase was less active in phosphorylating S40 if dopamine was bound to tyrosine hydroxylase, but extracellular signal-regulated kinase 2 phosphorylation at S31 was unaffected by the presence of dopamine.  相似文献   

12.
13.
Ca(2+)-independent or novel protein kinase Cs (nPKCs) contain an N-terminal C2 domain of unknown function. Removal of the C2 domain of the Aplysia nPKC Apl II allows activation of the enzyme at lower concentrations of phosphatidylserine, suggesting an inhibitory role for the C2 domain in enzyme activation. However, the mechanism for C2 domain-mediated inhibition is not known. Mapping of the autophosphorylation sites for protein kinase C (PKC) Apl II reveals four phosphopeptides in the regulatory domain of PKC Apl II, two of which are in the C2 domain at serine 2 and serine 36. Unlike most PKC autophosphorylation sites, these serines could be phosphorylated in trans. Interestingly, phosphorylation of serine 36 increased binding of the C2 domain to phosphatidylserine membranes in vitro. In cells, PKC Apl II phosphorylation at serine 36 was increased by PKC activators, and PKC phosphorylated at this position translocated more efficiently to membranes. Moreover, mutation of serine 36 to alanine significantly reduced membrane translocation of PKC Apl II. We suggest that translocation of nPKCs is regulated by phosphorylation of the C2 domain.  相似文献   

14.
synGAP is a neuron-specific Ras GTPase-activating protein found in high concentration in the postsynaptic density fraction from mammalian forebrain. Proteins in the postsynaptic density, including synGAP, are part of a signaling complex attached to the cytoplasmic tail of the N-methyl-d-aspartate-type glutamate receptor. synGAP can be phosphorylated by a second prominent component of the complex, Ca(2+)/calmodulin-dependent protein kinase II. Here we show that phosphorylation of synGAP by Ca(2+)/calmodulin-dependent protein kinase II increases its Ras GTPase-activating activity by 70-95%. We identify four major sites of phosphorylation, serines 1123, 1058, 750/751/756, and 764/765. These sites together with other minor phosphorylation sites in the carboxyl tail of synGAP control stimulation of GTPase-activating activity. When three of these sites and four other serines in the carboxyl tail are mutated, stimulation of GAP activity after phosphorylation is reduced to 21 +/- 5% compared with 70-95% for the wild type protein. We used phosphosite-specific antibodies to show that, as predicted, phosphorylation of serines 765 and 1123 is increased in cultured cortical neurons after exposure of the neurons to the agonist N-methyl-d-aspartate.  相似文献   

15.
16.
17.
In resting cells, c-Jun is phosphorylated on five sites. Three of these sites reside next to its DNA binding domain and negatively regulate DNA binding. In response to expression of oncogenic Ha-Ras, phosphorylation of these sites decreases, while phosphorylation of two other sites within c-Jun's activation domain is greatly enhanced. Phosphorylation of these residues, serines 63 and 73, stimulates the transactivation function of c-Jun and is required for oncogenic cooperation with Ha-Ras. We now show that the same changes in c-Jun phosphorylation are elicited by a variety of transforming oncoproteins with distinct biochemical activities. These oncoproteins, v-Sis, v-Src, Ha-Ras, and Raf-1, participate in a signal transduction pathway that leads to increased phosphorylation of serines 63 and 73 on c-Jun. While oncogenic Ha-Ras is a constitutive stimulator of c-Jun activity and phosphorylation, the normal c-Ha-Ras protein is a serum-dependent modulator of c-Jun's activity. c-Jun is therefore a downstream target for a phosphorylation cascade involved in cell proliferation and transformation.  相似文献   

18.
19.
The phosphorylation of Kvβ2 was investigated by different protein kinases. Protein kinase A catalytic subunit (PKA-CS) yielded the greatest phosphorylation of recombinant Kvβ2 (rKvβ2), with limited phosphorylation by protein kinase C catalytic subunit (PKC-CS) and no detectable phosphorylation by casein kinase II (CKII). Protein kinase(s) from adult rat brain lysate phosphorylated both rKvβ2 and endogenous Kvβ. The PKA inhibitor, PKI 6-22, fully inhibited PKA-mediated phophorylation of rKvβ2 yet showed minimal inhibition of kinase activity present in rat brain. The inhibitor Gö 6983, that blocks PKCα, PKCβ, PKCγ, PKCδ and PKCζ activities, inhibited rKvβ2 phosphorylation by rat brain kinases, with no inhibition by Gö 6976 which blocks PKCα and PKCβΙ activities. Dose-response analysis of Gö 6983 inhibitory activity indicates that at least two PKC isozymes account for the kinase activity present in rat brain. Τhus, while PKA was the most active protein kinase to phosphorylate rKvβ2 in vitro, Kvβ2 phosphorylation in the rat brain is mainly mediated by PKC isozymes.  相似文献   

20.
Arachidonic acid (AA) stimulation of adhesion of human metastatic breast carcinoma cells to collagen type IV depends on the protein kinase C (PKC) pathway(s) and is associated with the translocation of PKC mu from the cytoplasm to the membrane. In the present study, we have further explored the role of PKC mu in AA-stimulated adhesion. PKC mu activation site serines 738/742 and autophosphorylation site serine 910 are rapidly phosphorylated, and in vitro PKC mu kinase activity is enhanced in response to AA treatment. Inhibition of PKC mu activation blocks AA-stimulated adhesion. A phosphorylated, truncated species of PKC mu was detected in AA-treated cells. This 77-kDa protein contains the kinase domain but lacks a significant portion of the regulatory domains. Inhibition of calpain protease activity blocks generation of the truncated protein, promotes accumulation of the activated, full-length protein in the membrane, and blocks the AA-mediated increase in adhesion. p38 MAPK activity is also required for AA-stimulated adhesion. Activation of PKC mu and p38 are independent events. However, inhibition of p38 activity reduces calpain-mediated proteolysis of PKC mu and in vivo calpain activity, suggesting a role for p38 in regulation of calpain activity and a point for cross-talk between the PKC and MAPK pathways. These results support the hypothesis that AA stimulates activation of PKC mu, which is cleaved by calpain at the cell membrane. The resulting truncated kinase, as well as the full-length kinase, may be required for increased cell adhesion to collagen type IV. Additionally, these studies present the first evidence for calpain cleavage of a non-structural protein leading to the promotion of tumor cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号