首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Drosophila CRY is a deep brain circadian photoreceptor   总被引:10,自引:0,他引:10  
cry (cryptochrome) is an important clock gene, and recent data indicate that it encodes a critical circadian photoreceptor in Drosophila. A mutant allele, cry(b), inhibits circadian photoresponses. Restricting CRY expression to specific fly tissues shows that CRY expression is needed in a cell-autonomous fashion for oscillators present in different locations. CRY overexpression in brain pacemaker cells increases behavioral photosensitivity, and this restricted CRY expression also rescues all circadian defects of cry(b) behavior. As wild-type pacemaker neurons express CRY, the results indicate that they make a striking contribution to all aspects of behavioral circadian rhythms and are directly light responsive. These brain neurons therefore contain an identified deep brain photoreceptor, as well as the other circadian elements: a central pace-maker and a behavioral output system.  相似文献   

2.
Vasoactive intestinal polypeptide and its receptor, VPAC(2), play important roles in the functioning of the brain's circadian clock in the suprachiasmatic nuclei (SCN). Mice lacking VPAC(2) receptors (Vipr2(-/-)) show altered circadian rhythms in locomotor behavior, neuronal firing rate, and clock gene expression, however, the nature of molecular oscillations in individual cells is unclear. Here, we used real-time confocal imaging of a destabilized green fluorescent protein (GFP) reporter to track the expression of the core clock gene Per1 in live SCN-containing brain slices from wild-type (WT) and Vipr2(-/-) mice. Rhythms in Per1-driven GFP were detected in WT and Vipr2(-/-) cells, though a significantly lower number and proportion of cells in Vipr2(-/-) slices expressed detectable rhythms. Further, Vipr2(-/-) cells expressed significantly lower amplitude oscillations than WT cells. Within each slice, the phases of WT cells were synchronized whereas cells in Vipr2(-/-) slices were poorly synchronized. Most GFP-expressing cells, from both genotypes, expressed neither vasopressin nor vasoactive intestinal polypeptide. Pharmacological blockade of VPAC(2) receptors in WT SCN slices partially mimicked the Vipr2(-/-) phenotype. These data demonstrate that intercellular communication via the VPAC(2) receptor is important for SCN neurons to sustain robust, synchronous oscillations in clock gene expression.  相似文献   

3.
In the visual system of Drosophila melanogaster, two classes of interneurons in the first optic neuropil, or lamina, the monopolar cells L1 and L2, show rhythmic circadian changes in the shape and size of their axons. In the present study we have used the GAL4-UAS system to target the GFP expression to the L2 cells in D. melanogaster and to examine morphological changes in the cell body, nucleus, axon and dendritic spines. Our results showed that in addition to changes in the caliber of its axon, L2 also shows daily changes in the morphology of its dendritic spines, differences which are most pronounced at the beginning of the night. There are also changes in the sizes of the cells' nuclei in the lamina cortex, which are largest at the beginning and in the middle of day, in females and males, respectively. In contrast to the axon and dendrites, L2's soma does not change size significantly during the day or night. The observed changes clearly indicate the cyclical modulation of the structure of the L2 interneurons. These changes seem to be regulated by a circadian clock, which exhibits certain differences between the sexes.  相似文献   

4.
5.
The suprachiasmatic nucleus (SCN) of the hypothalamus synchronizes circadian rhythms of cells and tissues throughout the body. In SCN neurons, rhythms of clock gene expression are suppressed by manipulations that hyperpolarize the plasma membrane or lower intracellular Ca(2+). However, whether clocks in other cells also depend on membrane potential and calcium is unknown. In this study, the authors investigate the effects of membrane potential and intracellular calcium on circadian rhythms in mouse primary fibroblasts. Rhythms of clock gene expression were monitored using a PER2::LUC knockin reporter. Rhythms were lost or delayed at lower (hyperpolarizing) K(+) concentrations. Bioluminescence imaging revealed that this loss of rhythmicity in cultures was due to loss of rhythmicity of single cells rather than loss of synchrony among cells. In lower Ca(2+) concentrations, rhythms were advanced or had shorter periods. Buffering intracellular Ca(2+) by the calcium chelator 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) or manipulation of inositol triphosphate (IP(3))-sensitive intracellular calcium stores by thapsigargin delayed rhythms. These results suggest that the circadian clock in fibroblasts, as in SCN neurons, is regulated by membrane potential and Ca(2+). Changes in intracellular Ca(2+) may mediate the effects of membrane potential observed in this study.  相似文献   

6.
Circadian rhythms are common in many cell types but are reported to be lacking in embryonic stem cells. Recent studies have described possible interactions between the molecular mechanism of circadian clocks and the signaling pathways that regulate stem cell differentiation. Circadian rhythms have not been examined well in neural stem cells and progenitor cells that produce new neurons and glial cells during adult neurogenesis. To evaluate circadian timing abilities of cells undergoing neural differentiation, neurospheres were prepared from the mouse subventricular zone (SVZ), a rich source of adult neural stem cells. Circadian rhythms in mPer1 gene expression were recorded in individual spheres, and cell types were characterized by confocal immunofluorescence microscopy at early and late developmental stages in vitro. Circadian rhythms were observed in neurospheres induced to differentiate into neurons or glia, and rhythms emerged within 3–4 days as differentiation proceeded, suggesting that the neural stem cell state suppresses the functioning of the circadian clock. Evidence was also provided that neural stem progenitor cells derived from the SVZ of adult mice are self-sufficient clock cells capable of producing a circadian rhythm without input from known circadian pacemakers of the organism. Expression of mPer1 occurred in high frequency oscillations before circadian rhythms were detected, which may represent a role for this circadian clock gene in the fast cycling of gene expression responsible for early cell differentiation.  相似文献   

7.
8.
In the first (lamina) and second (medulla) optic neuropils of Drosophila melanogaster, sodium pump subunit expression changes during the day and night, controlled by a circadian clock. We examined α-subunit expression from the intensity of immunolabeling. For the β-subunit, encoded by Nervana 2 (Nrv2), we used Nrv2-GAL4 to drive expression of GFP, and measured the resultant fluorescence in whole heads and specific optic lobe cells. All optic neuropils express the α-subunit, highest at the beginning of night in both lamina and medulla in day/night condition and the oscillation was maintained in constant darkness. This rhythm was lacking in the clock arrhythmic per0 mutant. GFP driven by Nrv2 was mostly detected in glial cells, mainly in the medulla. There, GFP expression occurs in medulla neuropil glia (MNGl), which express the clock gene per, and which closely contact the terminals of clock neurons immunoreactive to pigment dispersing factor. GFP fluorescence exhibited circadian oscillation in whole heads from Nrv2-GAL4 + UAS-S65T-GFP flies, although significant GFP oscillations were lacking in MNGl, as they were for both subunit mRNAs in whole-head homogenates. In the dissected brain tissues, however, the mRNA of the α-subunit showed a robust daily rhythm in concentration changes while changes in the β-subunit mRNA were weaker and not statistically significant. Thus in the brain, the genes for the sodium pump subunits, at least the one encoding the α-subunit, seem to be clock-controlled and the abundance of their corresponding proteins mirrors daily changes in mRNA, showing cyclical accumulation in cells.  相似文献   

9.
Panorpa larvae possess stemmata (lateral ocelli), which have the structure of compound eyes, and stemma lamina and stemma medulla neuropils. A distinct lobula neuropil is lacking. The stemma neuropils have a columnar organization. They contain lamina monopolar cells, and both short and long visual fibers. All the identified larval monopolar neurons have radially arranged dendrites along the entire depth of the lamina neuropil and a single terminal arborization within the medulla (L1/L2-type). The terminals of visual fibers have short spiny lateral projections. Long fibers possess en passant synapses within the lamina. The same principles of organization of first and second order visual neuropils are found in Panorpa imagines. In contrast to the larvae, a lobula neuropil is present. Adults have monopolar cells of the L1-type that are similar to the L1-neurons found in Diptera. The columnar organization, the presence of short and long visual fibers, and lamina monopolar neurons are thus features common to both visual systems, viz., the larval (stemmata) and the imaginal (compound eyes).  相似文献   

10.
Antennal sensory neurons in the fruit fly Drosophila melanogaster express circadian rhythms in the clock gene PERIOD (PER) and appear to be sufficient and necessary for circadian rhythms in olfactory responses. Given recent evidence for daily rhythms of pheromone responses in the antenna of the hawkmoth Manduca sexta, we examined whether a peripheral PER-based circadian clock might be present in this species. Several different cell types in the moth antenna were recognized by monoclonal antibodies against Manduca sexta PER. In addition to PER-like staining of pheromone-sensitive olfactory receptor neurons and supporting cells, immunoreactivity was detected in beaded branches contacting the pheromone-sensitive sensilla. The nuclei of apparently all sensory receptor neurons, of sensilla supporting cells, of epithelial cells, and of antennal nerve glial cells were PER-immunoreactive. Expression of per mRNA in antennae was confirmed by the polymerase chain reaction, which showed stronger expression at Zeitgeber-time 15 compared with Zeitgeber-time 3. This evidence for the expression of per gene products suggests that the antenna of the hawkmoth contains endogenous circadian clocks.  相似文献   

11.
Pigment-dispersing factor (PDF) was recently reported to be a principal circadian neuromodulator involved in transmitting circadian rhythms of daily locomotion in insects. In Drosophila, PDF functions in some of the neurons expressing the clock genes period, timeless, Clock, and cycle, and those clock genes in turn regulate pdf gene expression. In the present study, we cloned a cDNA encoding PDF in the brain of a nocturnal insect, the cricket Gryllus bimaculatus, and found that an isolated clone (310 bp) codes for an extraordinarily short precursor protein with no definite signal sequence, but a nuclear localization signal (NLS)-like sequence instead. The cricket PDF exhibits high sequence identity (78-94%) and similarity (89-100%) to insect PDFs and also to crustacean beta-PDH peptides. In the optic lobes of G. bimaculatus there are PDF-immunoreactive neurons in both the medulla and lamina neuropiles. Among the strongly immunoreactive lamina PDF neurons, on electron microscopy we identified cells exhibiting distinct staining that is not only cytoplasmic but also nuclear. When GFP-fused PDF precursor proteins were expressed in COS-7 cells, distinct translocation of the fusion protein into the nucleus was observed. This is the first finding of PDF peptide in the nucleus, which suggests a fundamental role of PDF peptide per se in the circadian clock system.  相似文献   

12.
Although overt diurnal rhythms of behavior do not begin until well after birth, molecular studies suggest that the circadian clock may begin much earlier at a cellular level: mouse embryonic fibroblasts, for example, already possess robust clocks. By multiple criteria, we found no circadian clock present in mouse embryonic stem cells. Nevertheless, upon their differentiation into neurons, circadian gene expression was observed. In the first steps along the pathway from ES cells to neurons, a neural precursor cell (NPC) line already showed robust circadian oscillations. Therefore, at a cellular level, the circadian clock likely begins at the very earliest stages of mammalian development.  相似文献   

13.
The molecular mechanisms of the pacemakers underlying circadian rhythms are not well understood. One molecule that presumably functions in the circadian clock of Drosophila is the product of the period (per) gene, which dramatically affects biological rhythms when mutated. An antibody specific for the per protein labels putative circadian pacemaker neurons and fibers in eyes of two marine gastropods, Aplysia and Bulla. As was found for the Drosophila per protein, there is a daily rhythm in the levels of the per-like antigen in Aplysia eyes. Thus, certain molecular features of the per protein, as well as aspects of the temporal regulation of its expression, may be conserved in circadian pacemakers of widely divergent species.  相似文献   

14.
Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during differentiation, but they generated normal percentages of neuronal cells. Neuronal fate commitment therefore appears to be controlled through a non-clock function of BMAL1. This study provides insight into how cell autonomous circadian clocks and clock genes regulate adult neural stem cells with implications for treating neurodegenerative disorders and impaired brain functions by manipulating neurogenesis.  相似文献   

15.

Background

In the first optic neuropil (lamina) of the fly''s visual system, monopolar cells L1 and L2 and glia show circadian rhythms in morphological plasticity. They change their size and shape during the day and night. The most pronounced changes have been detected in circadian size of the L2 axons. Looking for a functional significance of the circadian plasticity observed in axons, we examined the morphological plasticity of the L2 dendrites. They extend from axons and harbor postsynaptic sites of tetrad synaptic contacts from the photoreceptor terminals.

Methodology/Principal Findings

The plasticity of L2 dendrites was evaluated by measuring an outline of the L2 dendritic trees. These were from confocal images of cross sections of L2 cells labeled with GFP. They were in wild-type and clock mutant flies held under different light conditions and sacrified at different time points. We found that the L2 dendrites are longest at the beginning of the day in both males and females. This rhythm observed under a day/night regime (LD) was maintained in constant darkness (DD) but not in continuous light (LL). This rhythm was not present in the arrhythmic per01 mutant in LD or in DD. In the clock photoreceptor cryb mutant the rhythm was maintained but its pattern was different than that observed in wild-type flies.

Conclusions/Significance

The results obtained showed that the L2 dendrites exhibit circadian structural plasticity. Their morphology is controlled by the per gene-dependent circadian clock. The L2 dendrites are longest at the beginning of the day when the daytime tetrad presynaptic sites are most numerous and L2 axons are swollen. The presence of the rhythm, but with a different pattern in cryb mutants in LD and DD indicates a new role of cry in the visual system. The new role is in maintaining the circadian pattern of changes of the L2 dendrite length and shape.  相似文献   

16.
Though it has been shown that immunological functions of CD4+ T cells are time of day-dependent, the underlying molecular mechanisms remain largely obscure. To address the question whether T cells themselves harbor a functional clock driving circadian rhythms of immune function, we analyzed clock gene expression by qPCR in unstimulated CD4+ T cells and immune responses of PMA/ionomycin stimulated CD4+ T cells by FACS analysis purified from blood of healthy subjects at different time points throughout the day. Molecular clock as well as immune function was further analyzed in unstimulated T cells which were cultured in serum-free medium with circadian clock reporter systems. We found robust rhythms of clock gene expression as well as, after stimulation, IL-2, IL-4, IFN-γ production and CD40L expression in freshly isolated CD4+ T cells. Further analysis of IFN-γ and CD40L in cultivated T cells revealed that these parameters remain rhythmic in vitro. Moreover, circadian luciferase reporter activity in CD4+ T cells and in thymic sections from PER2::LUCIFERASE reporter mice suggest that endogenous T cell clock rhythms are self-sustained under constant culture conditions. Microarray analysis of stimulated CD4+ T cell cultures revealed regulation of the NF-κB pathway as a candidate mechanism mediating circadian immune responses. Collectively, these data demonstrate for the first time that CD4+ T cell responses are regulated by an intrinsic cellular circadian oscillator capable of driving rhythmic CD4+ T cell immune responses.  相似文献   

17.
This review presents a new perspective on the circadian regulation and functions of insect developmental hormones. In Rhodnius prolixus (Hemiptera), the brain neuropeptide prothoracicotropic hormone (PTTH) is released with a circadian rhythm that is controlled by paired photosensitive clocks in the brain. These clocks comprise the dorsal and lateral PER/TIM clock neurons known to regulate behavioral rhythms in Drosophila. Axons of PTTH and clock cells make close contact. Photosensitive PER/TIM clocks also reside in the paired prothoracic glands (PGs), which generate rhythmic synthesis and release of the ecdysteroid molting hormones. The PG clocks are entrained by both light and PTTH. These four clocks are coupled together by both nerves and hormones into a timing system whose primary regulated output is the circadian rhythm of ecdysteroids in the hemolymph. This complex timing system appears necessary to ensure circadian organization of the gene expression that is induced in target cells by ecdysteroids via circadian cycling of the nuclear ecdysteroid receptor (EcR). This multioscillator system serves to transduce 'the day outside' into endocrine rhythms that orchestrate 'the day inside'. It has many functional similarities with vertebrate circadian systems.  相似文献   

18.
19.
In the cyanobacterium Synechococcus elongatus, cell division is regulated by a circadian clock. Deletion of the circadian clock gene, kaiC, abolishes rhythms of gene expression and cell division timing. Overexpression of the ftsZ gene halted cell division but not growth, causing cells to grow as filaments without dividing. The nondividing filamentous cells still exhibited robust circadian rhythms of gene expression. This result indicates that the circadian timing system is independent of rhythmic cell division and, together with other results, suggests that the cyanobacterial circadian system is stable and well sustained under a wide range of intracellular conditions.  相似文献   

20.
The suprachiasmatic nucleus (SCN) of the hypothalamus synchronizes circadian rhythms of cells and tissues throughout the body. In SCN neurons, rhythms of clock gene expression are suppressed by manipulations that hyperpolarize the plasma membrane or lower intracellular Ca2+. However, whether clocks in other cells also depend on membrane potential and calcium is unknown. In this study, the authors investigate the effects of membrane potential and intracellular calcium on circadian rhythms in mouse primary fibroblasts. Rhythms of clock gene expression were monitored using a PER2::LUC knockin reporter. Rhythms were lost or delayed at lower (hyperpolarizing) K+ concentrations. Bioluminescence imaging revealed that this loss of rhythmicity in cultures was due to loss of rhythmicity of single cells rather than loss of synchrony among cells. In lower Ca2+ concentrations, rhythms were advanced or had shorter periods. Buffering intracellular Ca2+ by the calcium chelator 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) or manipulation of inositol triphosphate (IP3)-sensitive intracellular calcium stores by thapsigargin delayed rhythms. These results suggest that the circadian clock in fibroblasts, as in SCN neurons, is regulated by membrane potential and Ca2+. Changes in intracellular Ca2+ may mediate the effects of membrane potential observed in this study. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号