共查询到20条相似文献,搜索用时 15 毫秒
1.
Yixin H. Ye Stephen F. Chenoweth Alison M. Carrasco Scott L. Allen Francesca D. Frentiu Andrew F. van den Hurk Nigel W. Beebe Elizabeth A. McGraw 《Evolution; international journal of organic evolution》2016,70(11):2459-2469
Dengue fever is the most common arboviral disease worldwide. It is caused by dengue viruses (DENV) and the mosquito Aedes aegypti is its primary vector. One of the most powerful determinants of a mosquito's ability to transmit DENV is the length of the extrinsic incubation period (EIP), the time it takes for a virus to be transmitted by a mosquito after consuming an infected blood meal. Here, we repeatedly measured DENV load in the saliva of individual mosquitoes over their lifetime and used this in combination with a breeding design to determine the extent to which EIP might respond to the evolutionary forces of drift and selection. We demonstrated that genetic variation among mosquitoes contributes significantly to transmission potential and length of EIP. We reveal that shorter EIP is genetically correlated with reduced mosquito lifespan, highlighting negative life‐history consequences for virus‐infected mosquitoes. This work highlights the capacity for local genetic variation in mosquito populations to evolve and to dramatically affect the nature of human outbreaks. It also provides the impetus for isolating mosquito genes that determine EIP. More broadly, our dual experimental approach offers new opportunities for studying the evolutionary potential of transmission traits in other vector/pathogen systems. 相似文献
2.
The comparative structure of bacterial communities among closely related host species remains relatively unexplored. For instance, as speciation events progress from incipient to complete stages, does divergence in the composition of the species’ microbial communities parallel the divergence of host nuclear genes? To address this question, we used the recently diverged species of the parasitoid wasp genus Nasonia to test whether the evolutionary relationships of their bacterial microbiotas recapitulate the Nasonia phylogenetic history. We also assessed microbial diversity in Nasonia at different stages of development to determine the role that host age plays in microbiota structure. The results indicate that all three species of Nasonia share simple larval microbiotas dominated by the γ‐proteobacteria class; however, bacterial species diversity increases as Nasonia develop into pupae and adults. Finally, under identical environmental conditions, the relationships of the microbial communities reflect the phylogeny of the Nasonia host species at multiple developmental stages, which suggests that the structure of an animal's microbial community is closely allied with divergence of host genes. These findings highlight the importance of host evolutionary relationships on microbiota composition and have broad implications for future studies of microbial symbiosis and animal speciation. 相似文献
3.
Inbreeding, which increases homozygosity throughout the genome by increasing the proportion of alleles that are identical by descent, is expected to compromise resistance against parasitism. Here, we demonstrate that host inbreeding increases susceptibility to ectoparasitism in a natural fruit fly (Drosophila nigrospiracula) - mite (Macrocheles subbadius) association, and that this effect depends on host genetic background. Moreover, flies generated from reciprocal crosses between susceptible inbred lines exhibited elevated levels of resistance similar to that in the mass-bred base population, confirming in reverse direction the causative link between expected heterozygosity and resistance. We also show that inbreeding reduces the host's ability to sustain energetically expensive behaviours, and that host exhaustion dramatically increases susceptibility. These findings suggest that inbreeding depression for resistance results from an inability to sustain defensive behaviours because of compromised physiological competence. 相似文献
4.
Temperature checks the Red Queen? Resistance and virulence in a fluctuating environment 总被引:2,自引:0,他引:2
Numerous studies have revealed genetic variation in resistance and susceptibility in host–parasite interactions and therefore the potential for frequency‐dependent selection (Red Queen dynamics). Few studies, if any, have considered the abiotic environment as a mediating factor in these interactions. Using the pea aphid, Acyrthosiphon pisum, and its fungal pathogen, Erynia neoaphidis, as a model host–parasite system, we demonstrate how temperature can mediate the expression of genotypic variation for susceptibility and virulence. Whilst previous studies have revealed among‐clone variation in aphid resistance to this pathogen, we show that resistance rankings derived from assessments at one temperature, are not conserved across differing temperature regimes. We suggest that variation in environmental temperature, through its nonlinear impact on parasite virulence and host defence, may contribute to the general lack of evidence for frequency‐dependent selection in field systems. 相似文献
5.
Julia Ferrari Christine B. Müller Alex R. Kraaijeveld H. Charles J. Godfray 《Evolution; international journal of organic evolution》2001,55(9):1805-1814
Abstract The potential rate of evolution of resistance to natural enemies depends on the genetic variation present in the population and any trade-offs between resistance and other components of fitness. We measured clonal variation and covariation in pea aphids ( Acyrthosiphon pisum ) for resistance to two parasitoid species ( Aphidius ervi and A. eadyi ) and a fungal pathogen ( Erynia neoaphidis ). We found significant clonal variation in resistance to all three natural enemies. We tested the hypothesis that there might be trade-offs (negative covariation) in defensive ability against different natural enemies, but found no evidence for this. All correlations in defensive ability were positive, that between the two parasitoid species significantly so. Defensive ability was not correlated with fecundity. A number of aphid clones were completely resistant to one parasitoid ( A. eadyi ), but a subset of these failed to reproduce subsequently. We discuss the factors that might maintain clonal variation in natural enemy resistance. 相似文献
6.
GITA R. KOLLURU GREGORY F. GRETHER SANDRA H. SOUTH ERIC DUNLOP REA CARDINALI LINDA LIU ANDREH CARAPIET 《Biological journal of the Linnean Society. Linnean Society of London》2006,89(2):301-309
Dietary carotenoids have been shown to confer immunological benefits to some species of animals in which males also use these pigments to attract mates. Thus, the potential exists for an allocation trade-off between the sexual and immunological functions of carotenoids. Food availability may also influence immune system function. The present study examined the effects of carotenoid and food availability on the resistance of male guppies ( Poecilia reticulata Peters) from four wild populations to the parasite Gyrodactylus turnbulli Harris. Intermediate levels of carotenoid ingestion resulted in the lowest parasite loads, which suggests that carotenoids strengthen parasite resistance at low levels but either benefit parasites or suppress host immunity at high levels. Males raised on the high-food level initially had fewer parasites, suggesting heightened innate immunity relative to males raised on the low-food level. Over the course of the experiment, however, the high-food males supported higher parasite population growth rates than the low-food males. The results obtained emphasize the importance of evaluating the effects of diet on multiple aspects of immune system function, and caution against assuming that positive effects of carotenoids on immunity in one context will automatically translate to other contexts. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 301–309. 相似文献
7.
Camillo Bérénos K. Mathias Wegner Paul Schmid-Hempel 《Proceedings. Biological sciences / The Royal Society》2011,278(1703):218-224
Genetic variation in natural populations is a prime prerequisite allowing populations to respond to selection, but is under constant threat from forces that tend to reduce it, such as genetic drift and many types of selection. Haldane emphasized the potential importance of parasites as a driving force of genetic diversity. His theory has been taken for granted ever since, but despite numerous studies showing correlations between genetic diversity and parasitism, Haldane''s hypothesis has rarely been tested experimentally for unambiguous support. We experimentally staged antagonistic coevolution between the host Tribolium castaneum and its natural microsporidian parasite, Nosema whitei, to test for the relative importance of two separate evolutionary forces (drift and parasite-induced selection) on the maintenance of genetic variation. Our results demonstrate that coevolution with parasites indeed counteracts drift as coevolving populations had significantly higher levels of heterozygosity and allelic diversity. Genetic drift remained a strong force, strongly reducing genetic variation and increasing genetic differentiation in small populations. To our surprise, differentiation between the evolving populations was smaller when they coevolved with parasites, suggesting parallel balancing selection. Hence, our results experimentally vindicate Haldane''s original hypothesis 60 years after its conception. 相似文献
8.
It has recently been proposed that mobile elements may be a significant driver of cooperation in microorganisms. This may drive a potential conflict, where cooperative genes are transmitted independently of the rest of the genome, resulting in scenarios where horizontally spread cooperative genes are favored, whereas a chromosomal equivalent would not be. This can lead to the whole genome being exploited by surrounding noncooperative individuals. Given that there are costs associated with mobile elements themselves, infection with a plasmid carrying a cooperative trait may lead to a significant conflict within the host genome. Here, we model the mechanisms that allow the host to resolve this conflict, either by exhibiting complete resistance to the mobile element or by controlling its gene expression via a chromosomally based suppressor. We find that the gene suppression mechanism will be more stable than full resistance, implying that suppressing the expression of costly genes within a cell is preferable to preventing the acquisition of the mobile element, for the resolution of conflict within a genome. 相似文献
9.
Tschirren B Andersson M Scherman K Westerdahl H Råberg L 《Evolution; international journal of organic evolution》2012,66(3):720-731
Comparing patterns of diversity and divergence between populations at immune genes and neutral markers can give insights into the nature and geographic scale of parasite-mediated selection. To date, studies investigating such patterns of selection in vertebrates have primarily focused on the acquired branch of the immune system, whereas it remains largely unknown how parasite-mediated selection shapes innate immune genes both within and across vertebrate populations. Here, we present a study on the diversity and population differentiation at the innate immune gene Toll-like receptor 2 (TLR2) across nine populations of yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) in southern Sweden. In yellow-necked mice, TLR2 diversity was very low, as was TLR2 population differentiation compared to neutral loci. In contrast, several TLR2 haplotypes co-occurred at intermediate frequencies within and across bank vole populations, and pronounced isolation by distance between populations was observed. The diversity and differentiation at neutral loci was similar in the two species. These results indicate that parasite-mediated selection has been acting in dramatically different ways on a given immune gene in ecologically similar and sympatric species. Furthermore, the finding of TLR2 population differentiation at a small geographical scale in bank voles highlights that vertebrate innate immune defense may be evolutionarily more dynamic than has previously been appreciated. 相似文献
10.
Erik E. Sotka 《Ecology letters》2005,8(4):448-459
The study of interactions between small invertebrates and their larger plant and animal hosts has a long tradition. One persistent theme within this literature is that spatially‐segregated populations of terrestrial and freshwater invertebrates commonly adapt to local hosts across their geographic ranges. Marine examples are rare, which leaves the impression that marine populations are less likely to adapt to locally abundant hosts and more likely to evolve generalized or phenotypically‐plastic strategies. Here, I review a short but growing list of marine invertebrates that appear to display local adaptation in host use. As expected, most of the marine examples are brooded animals with weak dispersal potential. However, some species with pelagically dispersed larvae have apparently adapted to local hosts. This surprising result is consistent with recent evidence that pelagically‐dispersed larvae are not always broadly dispersed, that strong selective pressures maintain local differences in host use, or both. The presence of host‐mediated adaptation in the sea alters predictions on how marine communities respond to disturbance, supports the notion that marine consumer‐prey interactions can coevolve, and indicates that hosts play fundamental roles in the differentiation and perhaps speciation of small marine invertebrates. 相似文献
11.
Population genetics theory has laid the foundations for genomic analyses including the recent burst in genome scans for selection and statistical inference of past demographic events in many prokaryote, animal and plant species. Identifying SNPs under natural selection and underpinning species adaptation relies on disentangling the respective contribution of random processes (mutation, drift, migration) from that of selection on nucleotide variability. Most theory and statistical tests have been developed using the Kingman coalescent theory based on the Wright‐Fisher population model. However, these theoretical models rely on biological and life history assumptions which may be violated in many prokaryote, fungal, animal or plant species. Recent theoretical developments of the so‐called multiple merger coalescent models are reviewed here (Λ‐coalescent, beta‐coalescent, Bolthausen‐Sznitman, Ξ‐coalescent). We explain how these new models take into account various pervasive ecological and biological characteristics, life history traits or life cycles which were not accounted in previous theories such as (i) the skew in offspring production typical of marine species, (ii) fast adapting microparasites (virus, bacteria and fungi) exhibiting large variation in population sizes during epidemics, (iii) the peculiar life cycles of fungi and bacteria alternating sexual and asexual cycles and (iv) the high rates of extinction‐recolonization in spatially structured populations. We finally discuss the relevance of multiple merger models for the detection of SNPs under selection in these species, for population genomics of very large sample size and advocate to potentially examine the conclusion of previous population genetics studies. 相似文献
12.
Genetic variation at the Me-2 locus in the Atlantic salmon within and between rivers: evidence for its selective maintenance 总被引:2,自引:0,他引:2
Spatial variation at the diallelic Me-2 locus in the Atlantic salmon, Salmo salar L., was analysed using data from 95 river basins. Gene diversity was apportioned as follows: 63% within samples, 20% between North America and Europe, 14% between regions within continents and 3% within and among rivers within regions. On both continents the variation between rivers was clinal with latitude and highly correlated with summer temperatures. The correlation was detectable within and between rivers. These correlations strongly suggest that variation at the locus is subject to the direct or indirect effects of natural selection, and that caution is required when interpreting between-location differentiation at the locus as evidence for distinct stocks. 相似文献
13.
T. L. Lenz C. Eizaguirre J. P. Scharsack M. Kalbe M. Milinski 《Journal of fish biology》2009,75(8):2122-2142
To investigate and disentangle the role of major histocompatibility complex (MHC)‐based ‘good genes' and ‘compatible genes' in mate choice, three‐spined sticklebacks Gasterosteus aculeatus with specific MHC IIB genotypes were allowed to reproduce in an outdoor enclosure system. Here, fish were protected from predators but encountered their natural parasites. Mate choice for an intermediate genetic distance between parental MHC genotypes was observed, which would result in intermediate diversity in the offspring, but no mate choice based on good genes was found under the current semi‐natural conditions. Investigation of immunological variables revealed that the less‐specific innate immune system was more active in individuals with a genetically more divergent MHC allele repertoire. This suggests the need to compensate for an MHC‐diminished T‐cell repertoire and potentially explains the observed mate choice for intermediate MHC genetic distance. The present findings support a general pattern of mate choice for intermediate MHC diversity (i.e. compatible genes). In addition, the potentially dynamic role of MHC good genes in mate choice under different parasite pressures is discussed in the light of present and previous results. 相似文献
14.
Genetic variation for parasite resistance occurs in most host populations. Costs of resistance, manifested as reduced fitness of resistant genotypes in the absence of parasitism, can be an important factor contributing to the maintenance of this variation. One powerful tool for detecting costs of resistance is the study of correlated responses to artificial selection. Provided that experimental lines are recently derived from large outbreeding populations, and that inbreeding is minimized during the experiment, correlated responses to selection are expected to be strong indicators of pleiotropy. We artificially selected for elevated behavioral resistance against an ectoparasitic mite (Macrocheles subbadius) in replicate populations of the fly Drosophila nigrospiracula. Resistance was modeled as a threshold trait, and the realized heritability of resistance was estimated to be 12.3% (1.4% SE) across three replicate lines recently derived from nature. We contrasted the longevity and fecundity of resistant and control (unselected) flies under a variable thermal environment. We report that reduced fecundity is a correlated response to artificial selection for increased resistance, and that the strength of this effect increases from 25 degrees to 29 degrees C. In contrast, longevity differences were not detected between resistant and control lines at either temperature. These findings are robust as they were confirmed with an independent set of experimental lines. Thus, our results identify a negative genetic correlation between ectoparasite resistance and an important life-history trait. That a correlated response was only detected for fecundity, and not longevity, suggests that the genetic correlation is attributable to pleiotropic effects with narrower effects than reallocation of a general resource pool within the organism, although other interpretations are discussed. Combined with fluctuating parasite-mediated selection and temperature, the presence of this trade-off may contribute to the maintenance of genetic variation for resistance in natural populations. 相似文献
15.
T. J. Little 《Journal of evolutionary biology》2002,15(1):1-9
It has long been recognized that reciprocal antagonism might lock host and parasite populations into a process of constant change, adapting and reacting in open‐ended coevolution. A significant body of theory supports this intuition: dynamic genetic polymorphisms are a common outcome of computer simulations of host–parasite coevolution. These in silico experiments have also shown that dynamical interactions could be responsible for high levels of genetic diversity in host populations, and even be the principle determinant of rates of genetic recombination and sexuality. The evolutionary significance of parasitism depends on the strength and prevalence of parasite‐mediated selection in nature. Here I appraise whether parasitism is a pervasive agent of evolutionary change by detailing empirical evidence for selection. Although there is considerable evidence of genetic variation for resistance, and hence the potential for selection, direct observation of parasite‐driven genetic change is lacking. 相似文献
16.
Barbara Tschirren 《Biology letters》2015,11(5)
Although parasite-mediated selection is assumed to be the main driver of immune gene evolution, empirical evidence that parasites induce allele frequency changes at host immune genes in time and/or space remains scarce. Here, I show that the frequency of a protective gene variant of the innate immune receptor Toll-like receptor 2 in natural bank vole (Myodes glareolus) populations is positively associated with the strength of Borrelia burgdorferi sensu lato infection risk across the European continent. Thereby, this study provides rare evidence for the role of spatially variable infection pressures in moulding the vertebrate immune system. 相似文献
17.
The degree of specificity in host-parasite interactions has important implications for ecology and evolution. Unfortunately, specificity can be difficult to determine when parasites cannot be cultured. In such cases, studies often use isolates of unknown genetic composition, which may lead to an underestimation of specificity. We obtained the first clones of the unculturable bacterium Pasteuria ramosa, a parasite of Daphnia magna. Clonal genotypes of the parasite exhibited much more specific interactions with host genotypes than previous studies using isolates. Clones of P. ramosa infected fewer D. magna genotypes than isolates and host clones were either fully susceptible or fully resistant to the parasite. Our finding enhances our understanding of the evolution of virulence and coevolutionary dynamics in this system. We recommend caution when using P. ramosa isolates as the presence of multiple genotypes may influence the outcome and interpretation of some experiments. 相似文献
18.
Miguel Gómez-Llano;Ronald D. Bassar;Erik I. Svensson;Simon P. Tye;Adam M. Siepielski; 《Ecology letters》2024,27(8):e14477
Explaining the maintenance of genetic variation in fitness-related traits within populations is a fundamental challenge in ecology and evolutionary biology. Frequency-dependent selection (FDS) is one mechanism that can maintain such variation, especially when selection favours rare variants (negative FDS). However, our general knowledge about the occurrence of FDS, its strength and direction remain fragmented, limiting general inferences about this important evolutionary process. We systematically reviewed the published literature on FDS and assembled a database of 747 effect sizes from 101 studies to analyse the occurrence, strength, and direction of FDS, and the factors that could explain heterogeneity in FDS. Using a meta-analysis, we found that overall, FDS is more commonly negative, although not significantly when accounting for phylogeny. An analysis of absolute values of effect sizes, however, revealed the widespread occurrence of modest FDS. However, negative FDS was only significant in laboratory experiments and non-significant in mesocosms and field-based studies. Moreover, negative FDS was stronger in studies measuring fecundity and involving resource competition over studies using other fitness components or focused on other ecological interactions. Our study unveils key general patterns of FDS and points in future promising research directions that can help us understand a long-standing fundamental problem in evolutionary biology and its consequences for demography and ecological dynamics. 相似文献
19.
BRUCE WALLACE 《Biological journal of the Linnean Society. Linnean Society of London》1982,17(3):269-274
Having argued that phenotypic variation with respect to the component of fitness involved in withstanding density stress is useful for the persistence of populations through time, the sources of such variation are described. Age differences and differences caused by the accidental encounters of dissimilar microenvironments are non-genetic in origin. Genetic bases for phenotypic variation can either be proximate (each individual having a unique genotype) or ultimate. The latter case is one in which the genotypes of individuals are such that the progeny they produce are phenotypically variable. Selection favouring such genotypes can be shown to be Darwinian; group selection is not required. A means for revealing instances of the ultimate genetic control of phenotypic variation is suggested: measures of what should be error variance prove to be larger than those which should, under normal circumstances, include error variance. The last increment of variation that causes what might otherwise be repetitive structures to differ can be ascribed to decisions that are genetically pre-set within developmental programmes. 相似文献
20.
W. O. H. Hughes A. N. M. Bot J. J. Boomsma 《Proceedings. Biological sciences / The Royal Society》2010,277(1681):609-615
Social insect castes represent some of the most spectacular examples of phenotypic plasticity, with each caste being associated with different environmental conditions during their life. Here we examine the level of genetic variation in different castes of two polyandrous species of Acromyrmex leaf-cutting ant for the antibiotic-producing metapleural gland, which has a major role in defence against parasites. Gland size increases allometrically. The small workers that play the main role in disease defence have relatively large glands compared with larger workers, while the glands of gynes are substantially larger than those of any workers, for their body size. The gland size of large workers varies significantly between patrilines in both Acromyrmex echinatior and Acromyrmex octospinosus. We also examined small workers and gynes in A. echinatior, again finding genetic variation in gland size in these castes. There were significant positive relationships between the gland sizes of patrilines in the different castes, indicating that the genetic mechanism underpinning the patriline variation has remained similar across phenotypes. The level of expressed genetic variation decreased from small workers to large workers to gynes. This is consistent with the hypothesis that there is individual selection on disease defence in founding queens and colony-level selection on disease defence in the worker castes. 相似文献