首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Net CO2 uptake over 24 h periods for shoots of Agave deserti, Ferocactus acanthodes, and Opuntia ficus-indica was measured under the ranges of water status, air temperature, and photo-synthetically active radiation (PAR) that occur in the south-western U.S.A. An environmental productivity index (EPI) was constructed indicating the overall influence of these three factors on net CO2 uptake. Using growth chambers whose conditions were changed monthly to simulate the environmental conditions at a field site, the observed shoot dry weight increases per unit surface area changed in concert with monthly changes in EPI. The observed dry weight gain of the shoot was 17–19% lower than the predicted shoot net CO2 uptake, which could be accounted for by carbon diversion to the roots. Mean monthly EPI was also predicted for 21 sites in the south-western U.S.A. All three species had low EPIs in the Colorado River basin, which has low annual rainfall and high summer temperatures, and in the north-central part of the region, which has low temperatures and low PAR during winter when water is available. The two native species, A. deserti and F. acanthodes, had high EPIs beyond their range in coastal southern California, where competition by other vegetation for PAR may limit net CO2 uptake. Such regions as well as south-central California and south-central Arizona had high EPIs for all three species, indicating that these areas would be appropriate for the cultivation of O. ficus-indica.  相似文献   

2.
Summary To measure productivity of Agave deserti over its elevational range in the northwestern Sonoran Desert, leaf unfolding from its basal rosette was monitored on groups of 10 plants at 13 sites. Based on data from an intermediate elevation (840 m), leaf unfolding proved to be highly correlated (r 2=0.88) with an environmental productivity index (EPI) formed as the product of indices for water status, temperature, and photosynthetically active radiation (PAR); each of these latter indices indicated the fraction of maximum net CO2 uptake expected for that parameter based on laboratory measurements of gas exchange and field microclimatic data. At 840 m, the main environmental variable influencing leaf unfolding for A. deserti over a 2-y period was soil water potential. On steep slopes, however, leaf unfolding during the winter ranged from 0.7 leaves per 10 plants for north-facing slopes to 7.3 for south-facing slopes, reflecting the importance of PAR. Summer and winter rainfall increased 3-fold from elevations of 300 m to 1,200 m. Temperatures were more optimal for net CO2 uptake at high elevations in the summer and at low elevations in the winter. Hence EPI increased with elevation in the summer but was maximal at an intermediate elevation in the winter. Moreover, measured leaf unfolding in both the summer and the winter closely followed the changes in EPI with elevation, indicating that productivity could be closely predicted for A. deserti based on physiological CO2 responses and changes in environmental conditions with elevation.  相似文献   

3.
Summary Agave deserti, a monocarpic perennial occurring in the northwestern Sonoran Desert, produces ramets on rhizomes that extend from the base of a parent plant. Shading ramtes to light compensation for two years did not decrease their relative growth rate (RGR) compared with unshaded ramets. However, the parents experienced a 30% decrease in total nonstructural carbohydrate (TNC) level, suggesting that carbohydrates were translocated from parents to ramets. Shaded parents had RGR's similar to unshaded parents, due in large part to consumption of 50% of the TNC reserves of shaded parents, but about 10% of the growth of the shaded parents was attributed to TNC received from their attached ramets. Estimates of parent and ramet growth separately, based on changes in TNC levels (converted to dry weight using a measured production value), net CO2 uptake of unfolded leaves, and respiration of roots, stems, and folded leaves, were similar to measured growth of parents and ramets combined, suggesting that parents and ramets are physiologically integrated and grow as a unit. Large TNC reserves, which were also shown to support growth during conditions of water limitation in the field, enhance the growth of ramets in an environment where seedling establishment is rare.Abbreviations DW dry weight - EPI environmental productivity index - PAR photosynthetically active radiation - RGR relative growth rate - TNC total nonstructural carbohydrate  相似文献   

4.
Elevated CO2 may increase dry mass production of canopies directly through increasing net assimilation rate of leaves and also indirectly through increasing leaf area index (LAI). We studied the effects of CO2 elevation on canopy productivity and development in monospecific and mixed (1:1) stands of two co-occurring C3 annual species, Abutilon theophrasti, and Ambrosia artemisiifolia. The stands were established in the glasshouse with two CO2 levels (360 and 700 l/l) under natural light conditions. The planting density was 100 per m2 and LAI increased up to 2.6 in 53 days of growth. Root competition was excluded by growing each plant in an individual pot. However, interference was apparent in the amount of photons absorbed by the plants and in photon absorption per unit leaf area. Greater photon absorption by Abutilon in the mixed stand was due to different canopy structures: Abutilon distributed leaves in the upper layers in the canopy while Ambrosia distributed leaves more to the lower layers. CO2 elevation did not affect the relative performance and light interception of the two species in mixed stands. Total aboveground dry mass was significantly increased with CO2 elevation, while no significant effects on leaf area development were observed. CO2 elevation increased dry mass production by 30–50%, which was mediated by 35–38% increase in the net assimilation rate (NAR) and 37–60% increase in the nitrogen use efficiency (NUE, net assimilation rate per unit leaf nitrogen). Since there was a strong overall correlation between LAI and aboveground nitrogen and no significant difference was found in the regression of LAI against aboveground nitrogen between the two CO2 levels, we hypothesized that leaf area development was controlled by the amount of nitrogen taken up from the soil. This hypothesis suggests that the increased LAI with CO2 elevation observed by several authors might be due to increased uptake of nitrogen with increased root growth.  相似文献   

5.
The C4 grass Echinochloa polystachya, which forms dense and extensive monotypic stands on the Varzea floodplains of the Amazon region, provides the most productive natural higher plant communities known. The seasonal cycle of growth of this plant is closely linked to the annual rise and fall of water level over the floodplain surface. Diurnal cycles of leaf photosynthesis and transpiration were measured at monthly intervals, in parallel with measurements of leaf area index, canopy light interception and biomass. By artificial manipulation of the light flux incident on leaves in the field light-response curves of photosynthesis at the top and near to the base of the canopy were generated. Fitted light-response curves of CO2 uptake were combined with information of leaf area index, incident light and light penetration of the canopy to estimate canopy rates of photosynthesis. Throughout the period in which the floodplains were submerged photosynthetic rates of CO2 uptake (A) for the emergent leaves were high with a mean of c. 30 mol m-2 s-1 at mid-day and occasional values of 40 mol m-2 s-1. During the brief dry phase, when the floodplain surface is uncovered, there was a significant depression of A, with mid-day mean values of c. 17 mol m-2 s-1. This corresponded with a c. 50% decrease in stomatal conductance, and a c. 35% depression in the ratio of the leaf inter-cellular to external CO2 concentration (c i/c a). During the dry phase, a midday depression of rates of CO2 assimilation was observed. The lowest leaf area index (F) was c. 2 in November–December, when the flood plain was dry, and again in May, when the rising floodwaters were submerging leaves faster than they were replaced. The maximum F of c. 5 was in August when the floodwaters were receding rapidly. Canopy light interception efficiency varied from 0.90 to 0.98. Calculated rates of canopy photosynthesis exceeded 18 mol C m-2 mo-1 throughout the period of flooding, with a peak of 37 mol C m-2 mo-1 in August, but declined to 13 mol C m-2 mo-1 in November during the dry phase. Estimated uptake of carbon by the canopy from the atmosphere, over 12 months, was 3.57 kg C m-2. This was insufficient to account for the 3.99 kg C m-2 of net primary production, measured simultaneously by destructive harvesting. It is postulated that this discrepancy might be accounted for by internal diffusion of CO2 from the CO2-rich waters and sediments via the roots and stems to the sites of assimilation in the leaves.  相似文献   

6.
Rates of net CO2 uptake were examined in developing leaves of Hydrocotyle bonariensis. Leaves that developed under high photosynthetically active radiation (48 mol m-2 day-1 PAR) were smaller, thicker, and reached maximum size sooner than did leaves that developed under low PAR (4.8 mol m-2 day-1). Maximum net CO2 uptake rates were reached after 5 to 6 days expansion for both the low and the high PAR leaves. Leaves grown at high PAR had higher maximum photosynthetic rates and a higher PAR required for light saturation but showed a more rapid decline in rate with age than did low PAR leaves. To assess the basis for the difference observed in photosynthetic rates, CO2 diffusion conductances and the mesophyll surface available for CO2 absorption were examined for mature leaves. Stomatal conductance was the largest conductance in all treatments and did not vary appreciably with growth PAR. Mesophyll conductance progressively increased with growth PAR (up to 48 mol m-2 day-1) as did the mesophyll surface area per unit leaf area, but the cellular conductance exhibited most of its increase at low PAR (up to 4.8 mol m-2 day-1).  相似文献   

7.
Summary Net annual productivity and annual carbon budgets were determined for populations of Littorella uniflora var. americana and Isoetes macrospora in a mesotrophic and oligotrophic lake in northern Wisconsin, to assess the contribution of Crassulacean Acid Metabolism (CAM) to annual productivity of the species in their natural environment. Nocturnal carbon accumulation (CAM), daytime uptake of external CO2 via the C3 mechanism, and refixation of endogenously generated CO2 from daytime respiration were the sources of carbon income. CAM activity as diurnal acid rhythms reached maxima of 89 to 182 eq·g-1 leaf fresh weight for the various populations.Maximum rates of daytime 14C uptake ranged from 0.56 to 1.46 mg C·g-1 leaf dry wt.·h-1 for the study populations. Refixation of daytime respired CO2 averaged 37% for the four populations. Carbon loss was due largely to dark respiration, during the day and night. Nocturnal carbon accumulation, daytime CO2 uptake and 24-h dark respiration were of similar magnitude, indicating dark respiration was equivalent to 50% of gross photosynthesis.Net annual production was measured for each population by following leaf turnover. Turnover rates for the Littorella populations were 1.56 and 1.72·yr-1, and for the Isoetes populations, 0.85 and 1.00·yr-1. Measured net annual productivity and calculated net annual productivity (based on carbon exchange) agreed within an average of 12% for the four populations. While CAM activity was greater for the more productive population of each species, the results suggest that the contribution of CAM to annual productivity is greater for the less productive population of each species. CAM contributed 45 to 55% of the annual carbon gain for the study populations.  相似文献   

8.
Most productivity studies use destructive harvesting methods, prohibiting continuous plant monitoring under various environmental conditions. Here a nondestructive procedure involving the displacement of areoles from the apex was utilized to study the growth of Ferocactus acanthodes, a common barrel cactus of the Sonoran Desert. Net CO2 uptake measured under controlled conditions of temperature, water, and photosynthetically active radiation in the laboratory was used to indicate how F. acanthodes would respond to field values of these parameters. For example, net CO2 uptake over 24 hr was maximal at day/night air temperatures of 23 C/14 C, the mean annual values in the field, and was approximately halved at 11 C/5 C and 32 C/23 C, the monthly extreme values in the field. An environmental productivity index (EPI), constructed as the product of indices for the three environmental variables, indicated the fraction of maximal CO2 uptake expected. The monthly production of areoles on 33 plants was highly correlated with EPI (r2 = 0.81). Areole production for individual plants, however, tended to be in pulses represented by Fibonacci numbers. EPI predicted an annual stem growth of 8% compared with 9 ± 3% measured previously in the field. Thus, morphological and physiological studies can be usefully combined and applied to indicate field productivity of F. acanthodes and, by extension, of other plants.  相似文献   

9.
Abstract. The productivity of the prickly-pear cactus Opuntia ficus-indica, which is cultivated worldwide for its fruits and stem segments, was predicted based on the responses of its net CO2 uptake to soil water status, air temperature and photosynthetic photon flux density (PPFD). Each of these environmental factors was represented by an index with a maximum value of unity when that factor was not limiting net CO2 uptake over a 24-h period. The water index, the temperature index, and the PPFD index were determined for 87 sites in the contiguous United States using data from 189 weather stations and for 148 sites worldwide using data from 1464 weather stations. The product of these three indices, the environmental productivity index (EPI), was used to predict the productivity of O. ficus-indica under current climatic conditions and under those accompanying a possible increase in the atmospheric CO2 level to 650μumol mol?1. Sites with temperatures always above -10°C and hence suitable for prickly-pear cultivation numbered 37 in the United States and 110 worldwide; such sites increased by 43 and 5%, respectively, for the global warming accompanying the elevated CO2. Productivity of O. ficus-indica was at least 15 tonnes dry weight hectare?1 year?1, comparable to that of many agronomic crops, for 20 sites with temperatures always above -10°C in the contiguous United States and for 12 such sites worldwide under current climatic conditions; such sites increased by 85 and 117%, respectively, under the elevated CO2 condition, mainly because of direct effects of the atmospheric CO2 level on net CO2 uptake. In summary, simulations based on EPI indicate that O. ficus-indica may presently be advantageously cultivated over a substantial fraction of the earth's surface, such regions increasing markedly with a future doubling in atmospheric CO2 levels.  相似文献   

10.
Leaf area index (LAI) and its seasonal dynamics are key determinants of terrestrial productivity and, therefore, of the response of ecosystems to a rising atmospheric CO2 concentration. Despite the central importance of LAI, there is very little evidence from which to assess how forest LAI will respond to increasing [CO2]. We assessed LAI and related leaf indices of a closed-canopy deciduous forest for 4 years in 25-m-diameter plots that were exposed to ambient or elevated CO2 (542 ppm) in a free-air CO2 enrichment (FACE) experiment. LAI of this Liquidambar styraciflua (sweetgum) stand was about 6 and was relatively constant year-to-year, including the 2 years prior to the onset of CO2 treatment. LAI throughout the 1999–2002 growing seasons was assessed through a combination of data on photosynthetically active radiation (PAR) transmittance, mass of litter collected in traps, and leaf mass per unit area (LMA). There was no effect of [CO2] on any expression of leaf area, including peak LAI, average LAI, or leaf area duration. Canopy mass and LMA, however, were significantly increased by CO2 enrichment. The hypothesized connection between light compensation point (LCP) and LAI was rejected because LCP was reduced by [CO2] enrichment only in leaves under full sun, but not in shaded leaves. Data on PAR interception also permitted calculation of absorbed PAR (APAR) and light use efficiency (LUE), which are key parameters connecting satellite assessments of terrestrial productivity with ecosystem models of future productivity. There was no effect of [CO2] on APAR, and the observed increase in net primary productivity in elevated [CO2] was ascribed to an increase in LUE, which ranged from 1.4 to 2.4 g MJ–1. The current evidence seems convincing that LAI of non-expanding forest stands will not be different in a future CO2-enriched atmosphere and that increases in LUE and productivity in elevated [CO2] are driven primarily by functional responses rather than by structural changes. Ecosystem or regional models that incorporate feedbacks on resource use through LAI should not assume that LAI will increase with CO2 enrichment of the atmosphere.  相似文献   

11.
Relative importance of short-term environmental interaction and preconditioning to CO2 exchange response was examined in Fragaria ananasa (strawberry, cv. Quinault). Tests included an orthogonal comparison of 15 to 60-min and 6 to 7-h exposures to different levels of temperature (16 to 32°C), photosynthetically active radiation (PAR, 200 to 800 E m2 s-1), and CO2 (300 to 600 l/l) on successive days of study. Plants were otherwise maintained at 21°C, 300 E m2 s-1 PAR and 300–360 l/l CO2 as standard conditions. Treatment was restricted to the mean interval of 14 h daily illumination and the first 3–4 days of each test week over a 12-week cultivation period. CO2 exchange rates were followed with each step-change in environmental level including ascending/descending temperature/PAR within a test period, initial response at standard conditions on successive days of testing, and measurement at reduced O2. Response generally supported prior concepts of leaf biochemical modeling in identifying CO2 fixation as the major site of environmental influence, while overall patterns of whole plant CO2 exchange suggested additional effects for combined environmental factors and preconditioning. These included a positive interaction between temperature and CO2 concentration on photosynthesis at high irradiance and a greater contribution by dark respiration at lower PAR than previously indicated. The further importance of estimating whole plant CO2 exchange from repetitive tests and measurements was evidenced by a high correlation of response to prior treatment both during the daily test period and on consecutive days of testing.Abbreviations C3 plant a plant in which the product of CO2 fixation is a 3-carbon acid (3-phosphoglyceric acid) - IRGA intra-red gas analyzer - PAR photosynthetically active radiation - RH relative humidity - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase Reference to a company and/or product named by the Department is only for purposes of information and does not imply approval or recommendation of the product to the exclusion of others which may also be suitable.  相似文献   

12.
The carbon-dioxide response of photosynthesis of leaves of Quercus suber, a sclerophyllous species of the European Mediterranean region, was studied as a function of time of day at the end of the summer dry season in the natural habitat. To examine the response experimentally, a standard time course for temperature and humidity, which resembled natural conditions, was imposed on the leaves, and the CO2 pressure external to the leaves on subsequent days was varied. The particular temperature and humidity conditions chosen were those which elicited a strong stomatal closure at midday and the simultaneous depression of net CO2 uptake. Midday depression of CO2 uptake is the result of i) a decrease in CO2-saturated photosynthetic capacity after light saturation is reached in the early morning, ii) a decrease in the initial slope of the CO2 response curve (carboxylation efficiency), and iii) a substantial increase in the CO2 compensation point caused by an increase in leaf temperature and a decrease in humidity. As a consequence of the changes in photosynthesis, the internal leaf CO2 pressure remained essentially constant despite stomatal closure. The effects on capacity, slope, and compensation point were reversed by lowering the temperature and increasing the humidity in the afternoon. Constant internal CO2 may aid in minimizing photoinhibition during stomatal closure at midday. The results are discussed in terms of possible temperature, humidity, and hormonal effects on photosynthesis.Abbreviations and symbols CE carboxylation efficiency - NP net photosynthesis rate - PAR photosynthetically active radiation - Pi leaf internal CO2 partial pressure - W water vapor mole fraction difference between leaf and air - T CO2 compensation pressure Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

13.
Photosynthetic characteristics of Cymbidium plantlet in vitro   总被引:17,自引:0,他引:17  
The photosynthetic characteristics of the Cymbidium plantlet in vitro cultured on Hyponex-agar medium with 2% sucrose were determined based on the measurements of CO2 concentration inside and outside of the culture vessels. The CO2 measurements were made with a gas chromatograph at a PPF (photosynthetic photon flux) of 35, 102 and 226 mol m-2 s-1, a chamber air temperature of 15, 25 and 35°C and a CO2 concentration outside the vessel of approximately 350, 1100 and 3000 ppm. The net photosynthetic rates were determined on individual plantlets and were expressed on a dry weight basis. The steady-state CO2 concentration during the photoperiod was lower inside the vessel than outside the vessel at any PPF greater than 35 mol m-2s-1 and at any chamber air temperature. The photosynthetic response curves relating the net photosynthetic rate, PPF, and CO2 concentration in the vessel and chamber air temperature were similar to those for Cymbidium plants grown outside and other C3 plants grown outside under shade. The results indicate that CO2 enrichment for the plantlets in vitro at a relatively high PPF would promote photosynthesis and hence the growth of chlorophyllous shoots/plantlets in vitro and that the plantlets in vitro would make photoautotrophic growth under environmental conditions favorable for photosynthesis.Abbreviations Cin CO2 concentration in the culture vessel - Cout CO2 concentration outside the vessel (in the culture room) - PPF photosynthetic photon flux  相似文献   

14.
Visser  A. J.  Tosserams  M.  Groen  M. W.  Kalis  G.  Kwant  R.  Magendans  G. W. H.  Rozema  J. 《Plant Ecology》1997,128(1-2):209-222
Seedlings of Vicia faba L. (cv. Minica) were grown in a factorial experiment in a greenhouse. The purpose of the study was to determine whether CO2 enrichment and supplemental UV-B radiation affect leaf optical properties and whether the combined effects differ from single factor effects. Seedlings were grown at either 380 mol mol-1 or 750 mol mol-1 CO2 and at four levels of UV-B radiation. After 20 and 40 days of treatment, absorptance, transmittance and reflectance of photosynthetically active radiation (PAR) were measured on the youngest fully developed leaf. On the same leaf, the specific leaf area on a fresh weight basis (SLAfw), chlorophyll content, UV-B absorbance, transmittance of UV light and stomatal index were measured. UV-B radiation significantly increased PAR absorptance and decreased PAR transmittance. The increased PAR absorptance can be explained by an increased chlorophyll content in response to UV-B radiation. Leaf transmittance of UV radiation decreased with increasing UV-B levels mainly caused by increased absorbance of UV absorbing compounds. UV-B radiation decreased both the stomatal density and epidermal cell density of the abaxial leaf surface, leaving the stomatal index unchanged. Effects of CO2 enrichment were less pronounced than those of UV-B radiation. The most important CO2 effect was an increase in stomatal density and epidermal cell density of the adaxial leaf surface. The stomatal index was not affected. No interaction between CO2 and UV-B radiation was found. The results are discussed in relation to the internal light environment of the leaf.  相似文献   

15.
Elevated CO2 increases belowground respiration in California grasslands   总被引:1,自引:0,他引:1  
This study was designed to identify potential effects of elevated CO2 on belowground respiration (the sum of root and heterotrophic respiration) in field and microcosm ecosystems and on the annual carbon budget. We made three sets of respiration measurements in two CO2 treatments, i.e., (1) monthly in the sandstone grassland and in microcosms from November 1993 to June 1994; (2) at the annual peak of live biomass (March and April) in the serpentine and sandstone grasslands in 1993 and 1994; and (3) at peak biomass in the microcosms with monocultures of seven species in 1993. To help understand ecosystem carbon cycling, we also made supplementary measurements of belowground respiration monthly in sandstone and serpentine grasslands located within 500 m of the CO2 experiment site. The seasonal average respiration rate in the sandstone grassland was 2.12 mol m-2 s-1 in elevated CO2, which was 42% higher than the 1.49 mol m-2 s-1 measured in ambient CO2 (P=0.007). Studies of seven individual species in the microcosms indicated that respiration was positively correlated with plant biomass and increased, on average, by 70% with CO2. Monthly measurements revealed a strong seasonality in belowground respiration, being low (0–0.5 mol CO2 m-2 s-1 in the two grasslands adjacent to the CO2 site) in the summer dry season and high (2–4 mol CO2 m-2 s-1 in the sandstone grassland and 2–7 mol CO2 m-2 s-1 in the microcosms) during the growing season from the onset of fall rains in November to early spring in April and May. Estimated annual carbon effluxes from the soil were 323 and 440 g C m-2 year-1 for the sandstone grasslands in ambient and elevated CO2. That CO2-stimulated increase in annual soil carbon efflux is more than twice as big as the increase in aboveground net primary productivity (NPPa) and approximately 60% of NPPa in this grassland in the current CO2 environment. The results of this study suggest that below-ground respiration can dissipate most of the increase in photosynthesis stimulated by elevated CO2.CIWDPB Publication # 1271  相似文献   

16.
For the leaf succulent Agave deserti and the stem succulent Ferocactus acanthodes, increasing the ambient CO2 level from 350 microliters per liter to 650 microliters per liter immediately increased daytime net CO2 uptake about 30% while leaving nighttime net CO2 uptake of these Crassulacean acid metabolism (CAM) plants approximately unchanged. A similar enhancement of about 30% was found in dry weight gain over 1 year when the plants were grown at 650 microliters CO2 per liter compared with 350 microliters per liter. Based on these results plus those at 500 microliters per liter, net CO2 uptake over 24-hour periods and dry weight productivity of these two CAM succulents is predicted to increase an average of about 1% for each 10 microliters per liter rise in ambient CO2 level up to 650 microliters per liter.  相似文献   

17.
One and a half year-old Ginkgo saplings were grown for 2 years in 7 litre pots with medium fertile soil at ambient air CO2 concentration and at 700 μmol mol−1 CO2 in temperature and humidity-controlled cabinets standing in the field. In the middle of the 2nd season of CO2 enrichment, CO2 exchange and transpiration in response to CO2 concentration was measured with a mini-cuvette system. In addition, the same measurements were conducted in the crown of one 60-year-old tree in the field. Number of leaves/tree was enhanced by elevated CO2 and specific leaf area decreased significantly.CO2 compensation points were reached at 75–84 μmol mol−1 CO2. Gas exchange of Ginkgo saplings reacted more intensively upon CO2 than those of the adult Ginkgo. On an average, stomatal conductance decreased by 30% as CO2 concentration increased from 30 to 1000 μmol mol−1 CO2. Water use efficiency of net photosynthesis was positively correlated with CO2 concentration levels. Saturation of net photosynthesis and lowest level of stomatal conductance was reached by the leaves of Ginkgo saplings at >1000 μmol mol−1 CO2. Acclimation of leaf net CO2 assimilation to the elevated CO2 concentration at growth occurred after 2 years of exposure. Maximum of net CO2 assimilation was 56% higher at ambient air CO2 concentration than at 700 μmol mol−1 CO2.  相似文献   

18.
Photosynthetic gas exchange characteristics of two common boreal forest mosses, Sphagnum (section acutifolia) and Pleurozium schreberi, were measured continuously during the time required for the moss to dry out from full hydration. Similar patterns of change in CO2 assimilation with variation in water content occurred for both species. The maximum rates of CO2 assimilation for Sphagnum (approx. 7 mol m–2 s–1) occurred at a water content of approximately 7 (fresh weight/dry weight) while for Pleurozium the maximum rate (approx. 2 mol m–2 s–1) occurred at a water content of approximately 6 (fresh weight/dry weight). Above and below these water contents CO2 assimilation declined. In both species total conductance to water vapour (expressed as a percentage of the maximum rates) remained nearly constant at a water content above 9 (fresh weight/dry weight), but below this level declined in a strong linear manner. Short-term, on-line 13CO2 and C18O16O discrimination varied substantially with changes in moss water content and associated changes in the ratio of chloroplast CO2 to ambient CO2 partial pressure. At full hydration (maximum water content) both Sphagnum and Pleurozium had similar values of 13CO2 discrimination (approx. 15). Discrimination against 13CO2 increased continuously with reductions in water content to a maximum of 27 in Sphagnum and 22 in Pleurozium. In a similar manner C18C16O discrimination increased from approximately 30 at full hydration in both species to a maximum of 150 in Sphagnum and 90 in Pleurozium, at low water content. The observed changes in C18O16O were strongly correlated to predictions of a mechanistic model of discrimination processes. Field measurements of moss water content suggested that photosynthetic gas exchange by moss in the understory of a black spruce forest was regularly limited by low water content.  相似文献   

19.
Summary Thalli of Ramalina maciformis were moistened to their maximal water holding capacity, thus, simulating actual conditions following a heavy rainfall. Time courses of net photosynthesis at 17° C and 750 E m-2 s-1 light intensity (PAR) were obtained during drying of the thalli. At ambient CO2 concentrations from 200 to 1,000 ppm, CO2 uptake of the moist lichens was depressed at high water content. After a certain water loss, net photosynthesis increased to a maximal value and decreased again with further drying of the thalli. The degree of initial depression of photosynthesis decreased with increasing ambient CO2 concentration, and it was fully absent at 1,600 ppm ambient CO2. Under these conditions of CO2 saturation, net photosynthesis remained constant at maximum for many hours and decreased only when substantial amounts of water had been lost. We conclude that the carboxylation capacity of the lichen is not affected by high contents of liquid water. Therefore, the depression of CO2 uptake of the water saturated lichen at lower (e.g. natural) ambient CO2 must be due exclusively to increased resistance to CO2 diffusion from the external air to the sites of carboxylation.  相似文献   

20.
Summary In order to document the natural CO2 environment of the moss Hylocomium splendens, and ascertain whether or not the moss was adapted to this, and its interactions with other microenvironmental factors, two studies were carried out. Firstly, the seasonal variations of CO2 concentration, photosynthetically active radiation (PAR), tissue water content and temperature were measured in the natural microenvironment of H. splendens in a subarctic forest during the summer period (July–September). Secondly, the photosynthetic responses of the species to controlled CO2 concentrations, PAR, temperature, and hydration were measured in the laboratory. CO2 concentrations around the upper parts of the plant, when PAR was above the compensation point (30 mol m–2 s–1), were mostly between 400 and 450 ppm. They occasionally increased up to 1143 ppm for short periods. PAR flux densities below saturating light levels for photosynthesis (100 mol m–2 s–1), occurred during 65% (July), 76% (August) and 96% (September) of the hours of the summer period. The temperature optimum of photosynthesis was 20° C: this temperature coincided with PAR above the compensation point during 5%, 6% and 0% of the time in July, August and September, respectively. Optimal hydration of tissues was infrequent. Hence PAR, temperature and water limit CO2 uptake for most of the growing season. Our data suggest that the higher than normal ambient CO2 concentration in the immediate environment of the plant counteracts some of the limitations in PAR supply that it experiences in its habitat. This species already experiences concentrations of atmospheric CO2 predicted to occur over the next 50 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号