首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effect on the function of the Escherichia coli F1F0-ATPase of the substitution of leucine-31 by phenylalanine in the c-subunit of the enzyme was examined. The assembly of the mutant c-subunit requires an increased gene dosage [Jans, Fimmel, Langman, James, Downie, Senior, Ash, Gibson & Cox (1983) Biochem. J. 211, 717-726], and this was achieved by incorporation of the uncE408 or uncE463 alleles on to F-plasmids or multicopy plasmids. Membranes from strains carrying either the uncE463 or uncE408 alleles on F-plasmids or multicopy plasmids were capable of carrying out oxidative phosphorylation. In particular, membranes from strain AN1928 (pAN162, uncE463) gave phosphorylation rates and P/O ratios equal to or greater than those obtained for the control strain AN1460 (pAN45, unc+). However, the mutant membranes, on removal of the F1-ATPase, appeared to be proton-impermeable. The ATPase activity of the mutant membranes was also resistant to the inhibitor dicyclohexylcarbodi-imide.  相似文献   

3.
The amino acid substitutions in the mutant c-subunits of Escherichia coli F1F0-ATPase coded for by the uncE429, uncE408 and uncE463 alleles affect the incorporation of these proteins into the cell membrane. The DNA sequence of the uncE429 allele differed from normal in that a G leads to A base change occurred at nucleotide 68 of the uncE gene, resulting in glycine being replaced by aspartic acid at position 23 in the c-subunit. The uncE408 and uncE463 mutant DNA sequences were identical and differed from normal in that a C leads to T base change occurred at nucleotide 91 of the uncE gene, resulting in leucine being replaced by phenylalanine at position 31 in the c-subunit. An increased gene dosage of the uncE408 or uncE463 alleles resulted in the incorporation into the membranes of the mutant c-subunits. The results are discussed in terms of the 'Helical Hairpin Hypothesis' of Engelman & Steitz [(1981) Cell 23,411-422].  相似文献   

4.
A plasmid was isolated which included the region of the Escherichia coli chromosome carrying the known genes concerned with oxidative phosphorylation (unc genes). This plasmid was used to prepare partial diploids carrying normal unc alleles on the episome and one of the three mutant alleles (unc A401, uncB402 or unc-405) on the chromosome. These strains were compared with segregants from which the plasmid had been lost. Dominance of either normal ormutant unc alleles was determined by growth on succinate, growth yields on glucose, Mg-ATPase (Mg2+-stimulated adenosine triphosphatase) activity, atebrin-fluorescence quenching, ATP-dependent transhydrogenase activity and oxidative phosphorylation. In all the above tests, dominance of the normal allele was observed. However, in membranes from the diploid strains which carried a normal allele and either of the mutant alleles affecting Mg-ATPase activity (uncA401 or unc-405), the energy-linked functions were only partially restored.  相似文献   

5.
A strain of Escherichia coli (AN1007) carrying the polar uncD436 allele which affects the operon coding for the F1-F0 adenosine triphosphatase (ATPase) complex was isolated and characterized. The uncD436 allele affected the two genes most distal to the operon promoter, i.e., uncD and uncC. Although the genes coding for the F0 portion of the ATPase complex were not affected in strains carrying this mutant allele, the lack of reconstitution of washed membranes by normal F1 ATPase suggested that a functional F0 might not be formed. This conclusion was supported by the observation that the 18,000-molecular-weight F0 subunit, coded for by the uncF gene, was absent from the membranes. Plasmid pAN36 (uncD+C+), when inserted into a strain carrying the uncD436 allele, resulted in the incorporation of the 18,000-molecular-weight F0 subunit into the membrane. A further series of experiments with Mu-induced polarity mutants, with and without plasmid pAN36, showed that the formation of both the alpha- and beta-subunits of F1 ATPase was an essential prerequisite to the incorporation into the membrane of the 18,000-molecular-weight F0 subunit and to the formation of a functional F0. Examination of the polypeptide composition of membranes from various unc mutants allowed a sequence for the normal assembly of the F1-F0 ATPase complex to be proposed.  相似文献   

6.
7.
A mutant affected in the b subunit (coded by the uncF gene) of the F1F0-ATPase in Escherichia coli was isolated by a localized mutagenesis procedure in which a plasmid carrying the unc genes was mutagenized in vivo. The biochemical properties of cells carrying the uncF515 allele were examined in a strain carrying the allele on a multicopy plasmid and a mutator-induced polar unc mutation on the chromosome. The strain carrying the mutant unc allele was uncoupled with respect to oxidative phosphorylation. Membrane-bound ATPase activity was very low or absent, and membranes were somewhat proton permeable. It was concluded that the F0 sector was assembled. Determination of the DNA sequence of the uncF515 allele showed it differed from wild type in that a G----A substitution occurred at position 392, resulting in glycine being replaced by aspartate at position 131. Genetic complementation tests indicated that the uncF515 allele complemented the uncF476 allele (Gly 9----Asp). Two-dimensional gel electrophoresis of membrane preparations indicated that the uncF515 and uncF476 alleles interrupted assembly of the F1F0-ATPase at different stages.  相似文献   

8.
Membranes from a mutant strain of Escherichia coli K12 carrying the uncD409 allele were washed in low-ionic-strength buffers in the presence or absence of the proteinase inhibitor p-aminobenzamidine. Unlike membranes from a normal strain, those from strain AN463 (uncD409) did not become proton-permeable, as judged by NADH-induced atebrinfluorescence quenching, when the membranes were washed in the absence of p-aminobenzamide. Furthermore, ATP-dependent atebrin-fluorscence quenching in such washed membranes could not be reconstituted by the addition of solubilized Mg2+-stimulated adenosine triphosphatase preparations. The examination by two-dimensional polyacrylamide-gel electrophoresis of the polypeptide composition of the washed membranes from strain AN463 (uncD409) indicated the presence of a polypeptide of similar molecular weight to the normal beta-subunit of the Mg2+-stimulated adenosine triphosphatase, but with an altered isoelectric point. Both the normal and abnormal beta-subunits were identified in membranes prepared from a partial diploid strain carrying both the unc+ and uncD409 alleles. It is concluded that the uncD gene codes for the beta-subunit of the Mg2+-stimulated adenosine triphosphatase.  相似文献   

9.
Mu-induced polarity in the unc operon of Escherichia coli.   总被引:26,自引:18,他引:8       下载免费PDF全文
  相似文献   

10.
Four mutant strains of Escherichia coli which lack membrane-bound adenosine triphosphatase activity were shown by genetic-complementation tests to carry mutations in the uncA gene. A soluble inactive F1-ATPase aggregate was released from the membranes of three of the uncA mutant strains by low-ionic-strength washing, and purified by procedures developed for the purification of F1-ATPase from normal strains. Analysis of the subunit structure by two-dimensional gel electrophoresis indicated that the F1-ATPase in strains carrying the uncA401 or uncA453 alleles had a subunit structure indistinguishable from normal F1-ATPase. In contrast, the F1-ATPase from the strain carrying the uncA447 allele contained an alpha-subunit of normal molecular weight, but abnormal net charge. Membranes from strains carrying the uncA450 allele did not have F1-ATPase aggregates that could be solubilized by low-ionic-strength washing. However, a partial dipolid strain carrying both the uncA+ and uncA450 alleles formed an active F1-ATPase aggregate which could be solubilized by low-ionic-strength washing of the membranes and which contained two types of alpha-subunit, one of which was normal and the other had abnormal net charge. It is concluded that the uncA gene codes for the alpha-subunit of the adenosine triphosphatase.  相似文献   

11.
A new mutant strain of Escherichia coli in which phosphorylation is uncoupled from electron transport was isolated. A genetic-complementation analysis, using partial diploid strains, showed that the new mutant allele, uncD409, is in a gene distinct from the other previously identified genes uncA, uncB and uncC. A strain carrying the uncd409 allele has no Mg2+ ion-stimulated adenosine triphosphatase activity and is therefore phenotypically similar to strains carrying the uncA401 mutant allele. Complementation between the uncA401 and the uncD409 alleles occurred, as indicated by growth of partial diploid strains on succinate and their growth yields on limiting concentrations of glucose. Complementation was confirmed by using membranes prepared from the above partial diploids. Such membranes were found to have Mg2+-stimulated adenosine triphosphatase activity, ATP-dependent transhydrogenase activity ADP-induced atebrin-fluorescence quenching and low but significant amounts of oxidative phosphorylation.  相似文献   

12.
A new mutant strain of Escherichia coli in which phosphorylation is uncoupled from electron transport was isolated. The new mutant strain has a similar phenotype to the uncB mutant described previously; results from reconstitution experiments in vitro indicate that the new mutation also affects a component of the F0 portion of the Mg2+-stimulated adenosine triphosphatase. A method was developed to incorporate mutant unc alleles into plasmids. Partial diploid strains were prepared in which the uncB402 allele was incorporated into the plasmid and the new unc mutation into the chromosome, or vice versa. Complementation between the mutant unc alleles was indicated by growth on succinate, growth yields on glucose, ATP-dependent transhydrogenase activities, ATP-induced atebrin-fluorescence quenching and oxidative-phosphorylation measurements. The gene in which the new mutation occurs is therefore distinct from the uncB gene, and the mutant allele was designated uncC424.  相似文献   

13.
Five uncoupled mutant strains of Escherichia coli carrying mutations in the uncD gene have been studied. In each of these mutant strains the beta-subunit of the F1 portion of the membrane-bound adenosine triphosphatase is abnormal. In one of the mutant strains (carrying the uncD12 allele) in F1-ATPase aggregate was formed which was purified and found to have low ATPase activity. ATPase activity was absent in the other four strains and the abnormal beta-subunits were tightly bound to the membranes. However, membranes from these strains exhibited various proton permeabilities as indicated by NADH-dependent atebrin-fluorescence quenching and bound different amounts of normal F1-ATPase. The amounts of reconstitution of energy-linked reactions after the addition of normal F1-ATPase also varied depending on the mutant allele. It is apparent that considerable phenotypic variations can occur between strains carrying mutations in the same unc gene.  相似文献   

14.
1. A new mutant strain (AN228) of Escherichia coli K12, unable to couple phosphorylation to electron transport, has been isolated. The mutant allele (unc-405), in strain AN228, was found to map near the uncA and uncB genes at about minute 74 on the E. coli genome. 2. A transductant strain (AN285) carrying the unc-405 allele is similar to the uncA and uncB mutants described previously in that it is unable to grow on succinate, gives a low aerobic yield on limiting concentrations of glucose, has a normal rate of electron transport, is unable to couple phosphorylation to electron transport, and lacks ATP-dependent transhydrogenase activity. 3. Strain AN285 (unc-405) is similar to an uncA mutant, but different from an uncB mutant, in that it is unable to grow anaerobically in a glucose-mineral-salts medium, and membrane preparations do not have Mg(2+)-stimulated adenosine triphosphatase activity. 4. Strain AN285 (unc-405) does not form an aggregate analogous to the membrane-bound Mg(2+)-stimulated adenosine triphosphatase aggregate found in normal cells. In this respect it differs from strain AN249 (uncA(-)), which forms an inactive membrane-bound Mg(2+)-stimulated adenosine triphosphatase aggregate.  相似文献   

15.
A mutant strain of Escherichia coli carrying a mutation in the uncE gene which codes for the c-subunit of the F1F0-ATPase has been isolated and examined. The mutant allele, designated uncE513, results in alanine at position 25 of the c-subunit being replaced by threonine. The mutant F1F0-ATPase appears to be fully assembled and is partially functional with respect to oxidative phosphorylation. The ATPase activity of membranes from the mutant strain is resistant to the inhibitor dicyclohexylcarbodiimide, but this is due to the F1-ATPase being lost from the membranes in the presence of the inhibitor. Mutant membranes from which the F1-ATPase has been removed have a greatly reduced proton permeability compared with similarly treated normal membranes. The results are discussed in relation to a previously proposed mechanism of oxidative phosphorylation.  相似文献   

16.
The uncE114 mutation from Escherichia coli strain KI1 (Nieuwenhuis, F. J. R. M., Kanner, B. I., Gutnick, D. L., Postma, P. W., and Van Dam, K. (1973) Biochim. Biophys. Acta 325, 62-71) was characterized after transfer to a new genetic background. A defective H+-ATPase complex is formed in strains carrying the mutation. Based upon the genetic complementation pattern of other unc mutants by a lambda uncE114 transducing phage, and complementation of uncE114 recipients by an uncE+ plasmid (pCP35), the mutation was concluded to lie in the uncE gene. The uncE gene codes for the omega subunit ("dicyclohexylcarbodiimide binding protein") of the H+-ATPase complex. The mutation was defined by sequencing the mutant gene. The G----C transversion found results in a substitution of Glu for Gln at position 42 of the omega subunit in the Fo sector of the H+-ATPase. The substitution did not significantly impair H+ translocation by Fo or affect inhibition of H+ translocation by dicyclohexylcarbodiimide. Wild-type F1 was bound by uncE114 Fo with near normal affinity, but the functional coupling between F1 and Fo was disrupted. The uncoupling was indicated by an H+-leaky membrane, even when saturating levels of wild-type F1 were bound. Disassociation of F1 from Fo under conditions of assay did partially contribute to the H+ leakiness, but the major contributor to the high H+ conductance was Fo with bound F1. The F1 bound to uncE114 membranes exhibited normal ATPase activity, but ATP hydrolysis was uncoupled from H+ translocation and was resistant to inhibition by dicyclohexylcarbodiimide. The F1 isolated from the uncE114 mutant was modified with partial loss of coupling function. However, this modification did not account for the uncoupled properties of the mutant Fo described above, since these properties were retained after reconstitution of mutant membrane (Fo) with wild-type F1.  相似文献   

17.
A site-directed mutation in the gene which codes for the c-subunit of the F1F0-ATPase, resulting in the substitution of Ala-25 by Tyr, has been constructed and characterized. A plasmid carrying the mutation was used to transform strain AN943 (uncE429). The resulting strain is unable to grow on succinate as sole carbon source and possesses an uncoupled growth yield. Membranes prepared from the mutant possess low levels of ATPase activity and are proton-impermeable. The F1-ATPase activity was found to be inhibited by 80% when bound to the membrane. When carried on a plasmid, the mutation is dominant in complementation tests with all mutant unc alleles tested and when transformed into wild-type strain AN346, the mutation results in an uncoupled phenotype. A mutant which overcomes this dominance was isolated and found to possess an 11-amino-acid deletion extending from Ile-55 to Met-65 within the c-subunit. These results are discussed in relation to the previously isolated Ala-25 to Thr mutant (Fimmel, A.L., Jans, D.A., Hatch, L., James, L.B., Gibson, F. and Cox, G.B. (1985) Biochim. Biophys. Acta 808, 252-258) and in relation to a previously proposed model for the F0 (Cox, G.B., Fimmel, A.L., Gibson, F. and Hatch, L. (1986) Biochim. Biophys. Acta 849, 62-69).  相似文献   

18.
1. The uptakes of Pi and serine by whole cells of mutant strains of Escherichia coli K12, grown under both aerobic and anaerobic conditions, were studied. 2. Uptake by aerobic cells was low in a ubiquinone-less mutant but normal in two mutant strains unable to couple phosphorylation to electron transport. 3. One of these uncoupled strains, carrying the unc-405 allele, does not form a membrane-bound Mg2+-stimulated adenosine triphosphatase aggregate, and it is concluded that the Mg2+-stimulated adenosine triphosphatase does not serve a structural role in the aerobic active transport of Pi or serine. 4. The other uncoupled strain, in which aerobic uptake is unaffected, carries a mutation in the uncB gene, thus distinguishing this gene from the etc gene, previously shown to be concerned with the coupling of electron transport to active transport. 5. The uptakes of Pi and serine by anaerobic cells were normal in the ubiquinone-less mutant, but defective in both the uncoupled strains. 6. The uptake of Pi and serine by anaerobic cells of the uncB mutant could be increased by the addition of fumarate to the uptake medium. The unc-405 mutant, however, required the addition of fumarate for growth and for uptake. 7. The uncB mutant, unlike the unc-405 mutant, is able to grow anaerobically in a minimal medium with glucose as sole source of carbon. Similarly a strain carrying a mutation in the frd gene, which is the structural gene for the enzyme fumarate reductase, is able to grow anaerobically in a glucose-minimal medium. However, a mutant strain carrying mutations in both the uncB and frd genes resembles the unc-405 mutant in not being able to grow under these conditions.  相似文献   

19.
Mutations in the H+-translocating ATPase complex (F1F0) of Escherichia coli have been described in which aspartyl-61 of the omega subunit ( uncE protein) is substituted by either glycine ( uncE105 ) or asparagine ( uncE107 ). Either substitution blocks the H+-translocation activity of the F0 sector of the complex. Here we report a difference in the effects of the two substitutions on the coupled ATPase activity of F1 bound to F0. Wild-type F1 was bound to the F0 of either mutant with affinities comparable to wild-type. The ATPase activity of F1 bound to uncE107 F0 was inhibited by 50%, whereas that bound to uncE105 F0 was not inhibited. Complementation studies with a pBR322-derived plasmid that carried the E gene of the unc operon only indicated that a single mutation in the host strain was responsible for the respective phenotypes. In mutants complemented by the uncE + plasmid, restoration of wild-type biochemical properties was only partial and may be attributed to a mixing of wild-type and mutant omega subunits in a hybrid F0 complex. The activity of membrane-bound F1 was less inhibited in the uncE +/ uncE107 hybrid. Paradoxically, complementation of uncE105 by the uncE + plasmid resulted in substantial inhibition of the activity of membrane-bound F1. The results indicate that a glycine-versus-asparagine substitution for aspartyl-61 must lead to altered conformations of omega and that these differences in conformation are important in the coupling between the F0 and F1 sectors of the complex.  相似文献   

20.
Previous studies have shown that mutations in the unc gene of Escherichia coli K12 cause defects in energy transduction as well as a membrane-bound (Mg2+, Ca2+)-adenosine triphosphatase. We studied the effect of this mutation on the "downhill" efflux of methyl-beta-D-galactopyranoside, a suboli K12 did not show significant differences in substrate influx of efflux, a differential effect of an uncoupler, 2,4-dinitrophenol was demonstrated. In contrast to the unc+, dinitrophenol failed to inhibit significantly the rate coefficient of efflux in the unc- strain. Analysis of spontaneous unc+ revertants of the unc- mutant provided additional evidence that a functional unc gene is necessary for dinitrophenol inhibition of efflux. Other uncouplers tested in the unc+ strain showed different effects on efflux. While arsenate, azide and carbonyl cyanide p-trifluoromethoxyphenulhydrazone caused little or no effect, 2,4-dibromophenol and pentachlorophenol increased efflux by a considerable factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号