首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在麻醉大鼠观察了向延髓腹外侧区微量注射NO合成酶抑制剂N-硝基左旋精氨酸(LNNA)和硝普钢(SNP)对血压、心率和肾交感神经活动的影响,旨在探讨中枢左旋精氨酸-NO通路在动脉血压调节中的作用及其机制。实验结果如下:(1)向延髓腹外侧头端区(RVLM)注射L-NNA后,平均动脉压(MAP)升高,肾交感神经活动(RSNA)增强;心率(HR)减慢,但无统计学意义。MAP和RSNA的变化持续30min以上;此效应可被预先静注左旋精氨酸所逆转。(2)向RVLM微量注射SNP,MAP降低,RSNA减弱;但HR的变化无统计学意义。(3)向延髓腹外侧尾端区(CVLM)注射L-NNA,MAP降低,HR减慢,RSNA减弱。(4)向CVLM微量注射SNP,MAP升高,RSNA增强,而心率无明显变化。以上结果表明,中枢左旋精氨酸-NO通路对延髓腹外侧部的神经元活动有调变作用。  相似文献   

2.
We have previously shown that acute intravenous injection of the angiotensin-converting enzyme (ACE) inhibitor enalapril in diabetic rats evokes a baroreflex-independent sympathoexcitatory effect that does not occur with angiotensin receptor blockade alone. As ACE inhibition also blocks bradykinin degradation, we sought to determine whether bradykinin mediated this effect. Experiments were performed in conscious male Sprague-Dawley rats, chronically instrumented to measure mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), 2 wk after streptozotocin (55 mg/kg iv, diabetic, n = 11) or citrate vehicle (normal, n = 10). Enalapril (2.5 mg/kg iv) decreased MAP in normal rats (-15 +/- 3 mmHg), while a smaller response (-4 +/- 1 mmHg) occurred in diabetic rats. Despite these different depressor responses to enalapril, HR (+44 +/- 8 vs. +26 +/- 7 bpm) and RSNA (+90 +/- 21 vs +71 +/- 8% baseline) increased similarly between the groups (P > or = 0.22 for both). Pretreatment with the bradykinin B2 receptor antagonist Hoe 140 (10 microg/kg bolus followed by 0.8.mug(-1)kg.min(-1) infusion) attenuated the decrease in MAP observed with enalapril in normal rats but had no effect in diabetic rats. Moreover, the normal group had smaller HR and RSNA responses (HR: +13 +/- 8 bpm; RSNA: +32 +/- 13% baseline) that were abolished in the diabetic group (HR: -4 +/- 5 bpm; RSNA: -5 +/- 9% baseline; P < 0.05 vs. preenalapril values). Additionally, bradykinin (20 microg/kg iv) evoked a larger, more prolonged sympathoexcitatory effect in diabetic compared with normal rats that was further potentiated after treatment with enalapril. We conclude that enhanced bradykinin signaling mediates the baroreflex-independent sympathoexcitatory effect of enalapril in diabetic rats.  相似文献   

3.
Zhu GQ  Gao XY  Zhang F  Wang W 《生理学报》2004,56(1):47-53
为观察延髓头端腹外侧区(rostral ventrolateral medulla,RVLM)一氧化氮(N0)在慢性心力衰竭(chronic heart failure,CHF)大鼠增强的心交感传入反射(cardiac sympathetic afferent reflex,CSAR)中的作用,实验在去压力感受器神经支配的结扎冠状动脉诱发的CHF大鼠和假手术SD大鼠进行,记录电刺激心交感传入神经中枢端前后的血压和肾交感神经活动(renal sympathetic nerve activity,RSNA)变化以评价CSAR。结果显示:(1)CHF大鼠的CSAR显著增强;(2)RVLM微量注射NO合酶(NOS)抑制剂MeTC增强对照组大鼠的CSAR但对CHF大鼠的CSAR无显著影响;(3)RVLM微量注射NO供体S-nitroso-N-acetyl-penicillamine(SNAP)抑制CHF大鼠增强的CSAR;(4)S-methyl-L-thioeitruline(MeTC)仅增强对照组大鼠基础水平的RSNA,而SNAP抑制对照组和CHF大鼠基础水平的RSNA。结果表明RVLM中内源性NO的减少是导致CHF大鼠CSAR增强的重要机制之一。  相似文献   

4.
为观察延髓头端腹外侧区(rostral ventrolateral medulla,RVLM)一氧化氮(NO)在慢性心力衰竭(chronic heartfailure,CHF)大鼠增强的心交感传入反射(cardiac sympathetic afferent reflex,CSAR)中的作用,实验在去压力感受器神经支配的结扎冠状动脉诱发的CHF大鼠和假手术SD大鼠进行,记录电刺激心交感传入神经中枢端前后的血压和肾交感神经活动(renal sympathetic nerve activity,RSNA)变化以评价CSAR.结果显示:(1)CHF大鼠的CSAR显著增强;(2)RVLM微量注射NO合酶(NOS)抑制剂MeTC增强对照组大鼠的CSAR但对CHF大鼠的CSAR无显著影响;(3)RVLM微量注射NO供体S-nitroso-N-acetyl-penicillamine(SNAP)抑制CHF大鼠增强的CSAR;(4)S-methyl-L-thiocitmline(MeTC)仅增强对照组大鼠基础水平的RSNA,而SNAP抑制对照组和CHF大鼠基础水平的RSNA.结果表明RVLM中内源性NO的减少是导致CHF大鼠CSAR增强的重要机制之.  相似文献   

5.
Little is known about baroreflex control of renal nerve sympathetic activity (RSNA) or the effect of angiotensin II (ANG II) on the baroreflex in diabetes. We examined baroreflex control of RSNA and heart rate (HR) in conscious, chronically instrumented rats 2 wk after citrate vehicle (normal) or 55 mg/kg iv streptozotocin (diabetic) before and after losartan (5 mg/kg iv) or enalapril (2.5 mg/kg iv). Resting HR and RSNA were lower in diabetic versus normal rats. The range of baroreflex control of HR and the gain of baroreflex-mediated bradycardia were impaired in diabetic rats. Maximum gain was unchanged. The baroreflex control of RSNA was reset to lower pressures in the diabetic rats but remained otherwise unchanged. Losartan decreased mean arterial pressure (MAP) and increased HR and RSNA in both groups but had no influence on the baroreflex. Enalapril decreased MAP only in normal rats, yet the increase in HR and RSNA was similar in both groups. Thus in diabetic rats enalapril produced a pressure-independent increase in HR and RSNA. Enalapril exerted no effect on the baroreflex control of HR or RSNA in either group. These data indicate that in conscious rats resting RSNA is lower but baroreflex control of RSNA is preserved after 2 wk of diabetes. At this time, the baroreflex control of HR is already impaired and blockade of endogenous ANG II does not improve this dysfunction.  相似文献   

6.
The present study tested the hypothesis that there is impaired function of alpha(2)-adrenergic autoreceptors and increased transmitter release from sympathetic nerves associated with mesenteric arteries and veins from DOCA-salt rats. High-performance liquid chromatography was used to measure the overflow of ATP and norepinephrine (NE) from electrically stimulated mesenteric artery and vein preparations in vitro. In sham arteries, nerve stimulation evoked a 1.5-fold increase in NE release, whereas in DOCA-salt arteries there was a 3.9-fold increase in NE release over basal levels (P < 0.05). In contrast, stimulated ATP release was not different in DOCA-salt arteries compared with sham arteries. In sham veins, nerve stimulation evoked a 2.9-fold increase in NE release, whereas in DOCA-salt veins there was a 8.4-fold increase in NE release over basal levels (P < 0.05). In sham rats NE release, normalized to basal levels, was greater in veins than in arteries (P < 0.05). The alpha(2)-adrenergic receptor antagonist yohimbine (1 microM) increased ATP and NE release in sham but not DOCA-salt arteries. The alpha(2)-adrenergic receptor agonist UK-14304 (10 microM) decreased ATP release in sham but not DOCA-salt arteries. In sham veins, UK-14304 decreased, but yohimbine increased, NE release; effects that were not observed in DOCA-salt veins. These data show that nerve stimulation causes a greater increase in NE release from nerves associated with veins compared with arteries. In addition, impairment of alpha(2)-adrenergic autoreceptor function in sympathetic nerves associated with arteries and veins from DOCA-salt rats results in increased NE release.  相似文献   

7.
An enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation in renovascular hypertension. The present study was designed to determine the role of superoxide anions in the paraventricular nucleus (PVN) in mediating the enhanced CSAR and sympathetic activity in renovascular hypertension in the two-kidney, one-clip (2K1C) model. Sinoaortic denervation and vagotomy were carried out, and renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded under anesthesia. The CSAR was evaluated by the response of RSNA to the epicardial application of capsaicin. Superoxide anion levels and NAD(P)H oxidase activity in the PVN increased in 2K1C rats and were much higher in 2K1C rats than in sham-operated (sham) rats after the epicardial application of capsaicin or PVN microinjection of ANG II. In both 2K1C and sham rats, PVN microinjection of the superoxide anion scavenger tempol or the NAD(P)H oxidase inhibitor apocynin abolished the CSAR, whereas the SOD inhibitor diethyldithiocarbamic acid (DETC) potentiated the CSAR. Tempol and apocynin decreased but DETC increased baseline RSNA and MAP. ANG II in the PVN caused larger responses of the CSAR, baseline RSNA, and baseline MAP in 2K1C rats than in sham rats. The effects of ANG II were abolished by pretreatment with tempol or apocynin in both 2K1C and sham rats and augmented by DETC in the PVN in 2K1C rats. These results indicate that superoxide anions in the PVN mediate the CSAR and the effects of ANG II in the PVN. Increased superoxide anions in the PVN contribute to the enhanced CSAR and sympathetic activity in renovascular hypertension.  相似文献   

8.
We examined the effect of alpha(2)-adrenoreceptor blockade in the nucleus of the solitary tract (NTS) on baroreflex responses elicited by electrical stimulation of the left aortic depressor nerve (ADN) in urethane-anesthetized spontaneously hypertensive rats (SHR, n = 11) and normotensive Wistar-Kyoto rats (WKY, n = 11). ADN stimulation produced a frequency-dependent decrease in mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and heart rate (HR). In SHR, unilateral microinjection of idazoxan into the NTS markedly reduced baroreflex control of MAP, RSNA, and HR and had a disproportionately greater influence on baroreflex control of MAP than of RSNA. In WKY, idazoxan microinjections did not significantly alter baroreflex function relative to control vehicle injections. These results suggest that baroreflex regulation of arterial pressure in SHR is highly dependent on NTS adrenergic mechanisms. The reflex regulation of sympathetic outflow to the kidney is less influenced by the altered alpha(2)-adrenoreceptor mechanisms in SHR.  相似文献   

9.
The neuromodulatory effect of NO on glutamatergic transmission has been studied in several brain areas. Our previous single-cell studies suggested that NO facilitates glutamatergic transmission in the nucleus of the solitary tract (NTS). In this study, we examined the effect of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) on glutamatergic and reflex transmission in the NTS. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) from Inactin-anesthetized Sprague-Dawley rats. Bilateral microinjections of L-NAME (10 nmol/100 nl) into the NTS did not cause significant changes in basal MAP, HR, or RSNA. Unilateral microinjection of (RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, 1 pmol/100 nl) into the NTS decreased MAP and RSNA. Fifteen minutes after L-NAME microinjections, AMPA-evoked cardiovascular changes were significantly reduced. N-methyl-D-aspartate (NMDA, 0.5 pmol/100 nl) microinjection into the NTS decreased MAP, HR, and RSNA. NMDA-evoked falls in MAP, HR, and RSNA were significantly reduced 30 min after L-NAME. To examine baroreceptor and cardiopulmonary reflex function, L-NAME was microinjected at multiple sites within the rostro-caudal extent of the NTS. Baroreflex function was tested with phenylephrine (PE, 25 microg iv) before and after L-NAME. Five minutes after L-NAME the decrease in RSNA caused by PE was significantly reduced. To examine cardiopulmonary reflex function, phenylbiguanide (PBG, 8 microg/kg) was injected into the right atrium. PBG-evoked hypotension, bradycardia, and RSNA reduction were significantly attenuated 5 min after L-NAME. Our results indicate that inhibition of NOS within the NTS attenuates baro- and cardiopulmonary reflexes, suggesting that NO plays a physiologically significant neuromodulatory role in cardiovascular regulation.  相似文献   

10.
Aging is associated with altered autonomic control of cardiovascular function, but baroreflex function in animal models of aging remains controversial. In this study, pressor and depressor agent-induced reflex bradycardia and tachycardia were attenuated in conscious old (24 mo) rats [57 and 59% of responses in young (10 wk) Wistar rats, respectively]. The intrinsic heart rate (HR, 339 +/- 5 vs. 410 +/- 10 beats/min) was reduced in aged animals, but no intergroup differences in resting mean arterial blood pressure (MAP, 112 +/- 3 vs. 113 +/- 5 mmHg) or HR (344 +/- 9 vs. 347 +/- 9 beats/min) existed between old and young rats, respectively. The aged group also exhibited a depressed (49%) parasympathetic contribution to the resting HR value (vagal effect) but preserved sympathetic function after intravenous methylatropine and propranolol. An implantable electrode revealed tonic renal sympathetic nerve activity (RSNA) was similar between groups. However, old rats showed impaired baroreflex control of HR and RSNA after intravenous nitroprusside (-0.63 +/- 0. 18 vs. -1.84 +/- 0.4 bars x cycle(-1) x mmHg(-1) x s(-1)). Therefore, aging in rats is associated with 1) preserved baseline MAP, HR, and RSNA, 2) impaired baroreflex control of HR and RSNA, and 3) altered autonomic control of resting HR.  相似文献   

11.
在 5 3只麻醉Sprague Dawley大鼠观察了最后区内微量注射腺苷 (1ng/ 6 0nl)对平均动脉压 (MAP)、心率(HR)和肾交感神经放电 (RSNA)的影响。实验结果如下 :(1)最后区内微量注射Ado后 ,MAP、HR和RSNA分别由13 76± 0 46kPa、35 6 2 8± 4 2 5bpm和 10 0± 0 %下降至 11 2 3± 0 49kPa (P <0 0 0 1)、336 91± 5 2 3bpm (P <0 0 1)和70 95± 5 19% (P <0 0 0 1) ;(2 )静脉注射非选择性腺苷受体拮抗剂 8 苯茶碱 (8 phenyltheophylline,15 0 μg/kg ,0 2ml)和选择性腺苷A1受体拮抗剂 (8 cyclopentyl 1,3 dipropylxanthine,5 0 0 μg /kg ,0 2ml)后 ,腺苷的上述抑制效应可被完全阻断 ;(3)静脉注射ATP敏感性钾通道阻断剂格列苯脲 (5mg/kg ,0 2ml)后 ,腺苷的上述效应也被消除。以上结果提示 ,最后区微量注射腺苷对血压、心率和肾交感神经放电有抑制作用 ,此作用与A1受体介导的ATP敏感性钾通道开放有关。  相似文献   

12.
Using neuronal NO synthase (nNOS)-specific antisense oligonucleotides, we examined the role of nitric oxide (NO) in the paraventricular nucleus (PVN) on control of blood pressure and heart rate (HR) in conscious sham rats and rats with chronic heart failure (CHF). After 6-8 wk, rats with chronic coronary ligation showed hemodynamic and echocardiographic signs of CHF. In sham rats, we found that microinjection of sodium nitroprusside (SNP, 20 nmol, 100 nl) into the PVN induced a significant decrease in mean arterial pressure (MAP). SNP also induced a significant decrease in HR over the next 10 min. In contrast, the NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA, 200 pmol, 100 nl) significantly increased MAP and HR over the next 18-20 min. After injection of nNOS antisense, MAP was significantly increased in sham rats over the next 7 h. The peak response was 27.6 +/- 4.1% above baseline pressure. However, in the CHF rats, only MAP was significantly increased. The peak magnitude was 12.9 +/- 5.4% of baseline, which was significantly attenuated compared with sham rats (P < 0.01). In sham rats, the pressor response was completely abolished by alpha-receptor blockade. HR was significantly increased from hour 1 to hour 7 in sham and CHF rats. There was no difference in magnitude of HR responses. The tachycardia could not be abolished by the beta(1)-blocker metoprolol. However, the muscarinic receptor antagonist atropine did not further augment the tachycardia. We conclude that NO induces a significant depressor and bradycardiac response in normal rats. The pressor response is mediated by an elevated sympathetic tone, whereas the tachycardia is mediated by withdrawal of parasympathetic tone in sham rats. These data are consistent with a downregulation of nNOS within the PVN in CHF.  相似文献   

13.
The parasubthalamic nucleus (PSTN) projects extensively to the nucleus of the solitary tract (NTS); however, the function of PSTN in cardiovascular regulation is unknown. Experiments were done in alpha-chloralose anesthetized, paralyzed, and artificially ventilated rats to investigate the effect of glutamate (10 nl, 0.25 M) activation of PSTN neurons on mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA). Glutamate stimulation of PSTN elicited depressor (-20.4 +/- 0.7 mmHg) and bradycardia (-26.0 +/- 1.0 beats/min) responses and decreases in RSNA (67 +/- 17%). Administration (intravenous) of atropine methyl bromide attenuated the bradycardia response (46%), but had no effect on the MAP response. Subsequent intravenous administration of hexamethonium bromide blocked both the remaining bradycardia and depressor responses. Bilateral microinjection of the synaptic blocker CoCl(2) into the caudal NTS region attenuated the PSTN depressor and bradycardia responses by 92% and 94%, respectively. Additionally, prior glutamate activation of neurons in the ipsilateral NTS did not alter the magnitude of the MAP response to stimulation of PSTN, but potentiated HR response by 35%. Finally, PSTN stimulation increased the magnitude of the reflex bradycardia to activation of arterial baroreceptors. These data indicate that activation of neurons in the PSTN elicits a decrease in MAP due to sympathoinhibition and a cardiac slowing that involves both vagal excitation and sympathoinhibition. In addition, these data suggest that the PSTN depressor effects on circulation are mediated in part through activation of NTS neurons involved in baroreflex function.  相似文献   

14.
Xue BJ  He RR 《生理学报》2000,52(5):435-439
在36只麻醉Sprague-Dawley大鼠, 观察了最后区内微量注射辣椒素(10 μmol/L, 50 nl)对平均动脉压(MAP)、心率(HR)和肾交感神经放电(RSNA)的影响.实验结果如下:(1)最后区内注射辣椒素可引起 MAP、HR 和RSNA明显增加, 分别由12.34±0.53 kPa、 328.52±7.54 bpm 和100±0% 增至15.17±0.25 kPa (P<0.001)、 354.81±8.54 bpm (P<0.001) 和156.95±7.57% (P<0.001);(2) 静脉注射辣椒素受体阻断剂钌红(100 mmol/L, 0.2 ml) 后, 辣椒素的上述效应可被明显抑制;(3) 预先应用NMDA 受体阻断剂MK-801 (500 μg/kg, 0.2 ml, iv)也明显抑制辣椒素的兴奋效应.以上结果提示, 最后区微量注射辣椒素对血压、心率和肾交感神经放电有兴奋作用, 而此作用由辣椒素受体介导并有谷氨酸参与.  相似文献   

15.
Previously, we have demonstrated that an altered endogenous nitric oxide (NO) mechanism within the paraventricular nucleus (PVN) contributes to increased renal sympathetic nerve activity (RSNA) in heart failure (HF) rats. The goal of this study was to examine the effect of exercise training (ExT) in improving the endogenous NO mechanism within the PVN involved in the regulation of RSNA in rats with HF. ExT significantly restored the decreased number of neuronal NO synthase (nNOS)-positive neurons in the PVN (129 +/- 17 vs. 99 +/- 6). nNOS mRNA expression and protein levels in the PVN were also significantly increased in HF-ExT rats compared with HF-sedentary rats. To examine the functional role of NO within the PVN, an inhibitor of NOS, N(G)-monomethyl-L-arginine, was microinjected into the PVN. Dose-dependent increases in RSNA, arterial blood pressure (BP), and heart rate (HR) were produced in all rats. There was a blunted increase in these parameters in HF rats compared with the sham-operated rats. ExT significantly augmented RSNA responses in rats with HF (33% vs. 20% at the highest dose), thus normalizing the responses. The NO donor sodium nitroprusside, microinjected into the PVN, produced dose-dependent decreases in RSNA, BP, and HR in both sham and HF rats. ExT significantly improved the blunted decrease in RSNA in HF rats (36% vs. 17% at the highest dose). In conclusion, our data indicate that ExT improves the altered NO mechanism within the PVN and restores NO-mediated changes in RSNA in rats with HF.  相似文献   

16.
A chromosome 1 blood pressure quantitative trait locus (QTL) was introgressed from the stroke-prone spontaneously hypertensive rats (SHRSP) to Wistar-Kyoto (WKY) rats. This congenic strain (WKYpch1.0) showed an exaggerated pressor response to both restraint and cold stress. In this study, we evaluated cardiovascular and sympathetic response to an air-jet stress and also examined the role of the brain renin-angiotensin system (RAS) in the stress response of WKYpch1.0. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) responses to air-jet stress in WKYpch1.0, WKY, and SHRSP. We also examined effects of intracerebroventricular administration of candesartan, an ANG II type 1 receptor blocker, on MAP and HR responses to air-jet stress. Baseline MAP in the WKYpch1.0 and WKY rats were comparable, while it was lower than that in SHRSP rats. Baseline HR did not differ among the strains. In WKYpch1.0, air-jet stress caused greater increase in MAP and RSNA than in WKY. The increase in RSNA was as large as that in SHRSP, whereas the increase in MAP was smaller than in SHRSP. Intracerebroventricular injection of a nondepressor dose of candesartan inhibited the stress-induced pressor response to a greater extent in WKYpch1.0 than in WKY. Intravenous injection of phenylephrine caused a presser effect comparable between WKYpch1.0 and WKY. These results suggest that the chromosome 1 blood pressure QTL congenic rat has a sympathetic hyperreactivity to an air-jet stress, which causes exaggerated pressor responses. The exaggerated response is at least partly mediated by the brain RAS.  相似文献   

17.
最后区注射腺苷对大鼠血压,心率和肾交感神经放电影响   总被引:1,自引:0,他引:1  
Chen S  Li DP  He RR 《生理学报》2000,52(4):313-317
The effects of microinjection of adenosine (Ado) into area postrema (AP) on mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were examined in 53 anesthetized Sprague Dawley rats. The results obtained are as follows. (1) Following microinjection of Ado (1 ng/60 nl) into AP, MAP, HR and RSNA were decreased from 13.76+/-0.46 kPa, 356.28+/-4.25 bpm and 100+/-0% to 11.23+/-0.49 kPa (P<0.001), 336.91+/-5.23 bpm (P<0.01) and 70.95+/-5.19% (P<0.001), respectively; (2) 8-phenyltheophylline (150 microgram/kg, 0.2 ml,iv), a nonselective adenosine receptor antagonist, and 8-cyclopentyl-1,3-dipropylxanthine (500 microgram/kg, 0.2 ml, iv), a selective A(1) adenosine receptor antagonist, blocked the inhibitory effect of Ado completely; and (3) glibenclamide (5 mg/kg, 0.2 ml, iv), a blocker of ATP-sensitive potassium channel, also abolished the effect of Ado. The above results indicate that microinjection of Ado into AP induces inhibitory effects on MAP, HR and RSNA, which may be related to activation of ATP-sensitive potassium channels mediated by A(1) receptors.  相似文献   

18.
Recent evidence suggests that a central mechanism may be contributing to the sympathetic abnormality in diabetes. Nitric oxide (NO) has been known as a neurotransmitter in the central nervous system. The goal of this study was to examine the role of the endogenous NO system of the paraventricular nucleus (PVN) in regulation of renal sympathetic nerve activity (RSNA) in streptozotocin (STZ)-induced diabetic rats. The change in number of NADPH-diaphorase-positive neurons [a marker for neuronal NO synthase (nNOS) activity] in the PVN was measured. Diabetic rats were found to have significantly fewer nNOS positive cells in the PVN than in the control group (120 +/- 11 vs. 149 +/- 13, P < 0.05). Using RT PCR, Western blotting and immunofluorescent staining, it was also found that nNOS mRNA expression and protein level in the PVN were significantly decreased in the diabetic rats. Furthermore, using an in vivo microdialysis technique, we found that there was a lower NO(x) release from the PVN perfusates in rats with diabetes compared with the control rats (142 +/- 33 nM vs. 228 +/- 29 nM, P < 0.05). In alpha-chloralose- and urethane-anesthetized rats, an inhibitor of NO synthase, l-NMMA, microinjected into the PVN produced a dose-dependent increase in RSNA, mean arterial pressure (MAP), and heart rate (HR) in both control and diabetic rats. These responses were significantly attenuated in rats with diabetes compared with control rats (RSNA: 11 +/- 3% vs. 35 +/- 3%, P < 0.05). On the other hand, an NO donor, sodium nitroprusside (SNP), microinjected into the PVN produced a dose-dependent decrease in RSNA, MAP, and HR in the control and diabetic rats. RSNA (17 +/- 3%, vs. 41 +/- 6%, P < 0.05) and MAP in response to SNP were significantly blunted in the diabetic group compared with the control group. In conclusion, these data indicate an altered NO mechanism in the PVN of diabetic rats. This altered mechanism may contribute to the increased renal sympathetic neural activity observed in diabetes.  相似文献   

19.
Central nervous system (CNS) effects of mineralocorticoids participate in the development of salt-sensitive hypertension. In the brain, mineralocorticoids activate amiloride-sensitive sodium channels, and we hypothesized that this would lead to increased release of ouabainlike compounds (OLC) and thereby sympathetic hyperactivity and hypertension. In conscious Wistar rats, intracerebroventricular infusion of aldosterone at 300 or 900 ng/h in artificial cerebrospinal fluid (aCSF) with 0.145 M Na+ for 2 h did not change baseline mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), or heart rate (HR). Intracerebroventricular infusion of aCSF containing 0.16 M Na+ (versus 0.145 M Na+ in regular aCSF) did not change MAP or RSNA, but significant increases in MAP, RSNA, and HR were observed after intracerebroventricular infusion of aldosterone at 300 ng/h for 2 h. Intracerebroventricular infusion of aCSF containing 0.3 M Na+ increased MAP, RSNA, and HR significantly more after intracerebroventricular infusion of aldosterone versus vehicle. After intracerebroventricular infusion of aldosterone, the MAP, RSNA, and HR responses to intracerebroventricular infusion of aCSF containing 0.16 M Na+ were blocked by blockade of brain OLC with intracerebroventricular infusion of Fab fragments or of brain sodium channels with intracerebroventricular benzamil. Chronic intracerebroventricular infusion of aldosterone at 25 ng/h in aCSF with 0.15 M Na+ for 2 wk increased MAP by 15-20 mmHg and increased hypothalamic OLC by 30% and pituitary OLC by 60%. Benzamil blocked all these responses to aldosterone. These findings indicate that in the brain, mineralocorticoids activate brain sodium channels, with small increases in CSF Na+ leading to increases in brain OLC, sympathetic outflow, and blood pressure.  相似文献   

20.
Six-week-old Dahl salt-sensitive (S) and -resistant (R) rats received for 2 wk an intracerebroventricular infusion of aldosterone (Aldo) (22.5 ng/h) or vehicle containing artificial cerebrospinal fluid (aCSF) with 0.15 M Na+. At 8 wk, mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in conscious rats at rest, in response to air stress, and to an intracerebroventricular injection of the alpha2-adrenoceptor agonists guanabenz or ouabain. Baroreflex control of RSNA and HR was estimated by using intravenous phenylephrine and nitroprusside. In Dahl S but not Dahl R rats, Aldo raised resting MAP by 20-25 mmHg, doubled sympathoexcitatory and pressor responses to air stress and sympathoinhibitory and depressor responses to guanabenz, and impaired baroreflex function. In Dahl S but not Dahl R rats, Aldo significantly increased content of ouabain-like compounds (OLC) in the hypothalamus and attenuated excitatory responses to ouabain. Aldo did not affect water intake, plasma electrolytes, or OLC in plasma and adrenal glands. In another set of three groups of Dahl S rats, Aldo dissolved in aCSF containing 0.16, 0.15, or 0.14 M Na+ was infused intracerebroventricularly for 2 wk. CSF Na+ concentration ([Na+]) showed only a nonsignificant increase, but resting MAP increased from 111 +/- 3 mmHg in rats with Aldo in 0.14 M Na+ to 131 +/- 3 and 147 +/- 3 mmHg with Aldo in 0.15 and 0.16 M Na+, respectively (P < 0.05 for both). These findings indicate that in Dahl S rats, intracerebroventricular infusion of Aldo causes similar central responses as high salt intake, i.e., increases in brain OLC content, sympathetic hyperreactivity, and hypertension. The extent of the increase in blood pressure (BP) by intracerebroventricular Aldo depends on the [Na+] in the vehicle. In Dahl R rats, intracerebroventricular Aldo did not increase brain OLC, sympathetic reactivity, and BP, suggesting that in this rat strain, a decrease in central responsiveness to mineralocorticoids may contribute to its salt-resistant nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号