首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In juvenile rats born from mothers with obstructive cholestasis during pregnancy (OCP), transient latent cholestasis together with alterations in the secretion of biliary lipids have been reported. Here we investigated whether the expression of genes involved in this function is already modified at birth and examined the effect of treating pregnant rats with ursodeoxycholic acid (UDCA; i.g., 60 microg/100 g b.w./day). Cholanemia was markedly higher in mothers with OCP, and was further increased by UDCA. In the Control pups, cholanemia increased after birth, whereas in OCP and OCP+UDCA pups, hypercholanemia decreased after birth. Steady-state mRNA levels in neonatal liver were measured by real-time quantitative RT-PCR. The expression of basolateral bile acid transporters was not affected by OCP and was unchanged (Oatp1/1a1 and Oatp4/1b2) or moderately increased (Ntcp and Oatp2/1a4) by UDCA. In both groups, the expression of ABC proteins was either not modified (Bsep, Bcrp and Mrp2) or enhanced (Mrp1 and Mrp3), that of phospholipid flippase Mdr2 was not changed, whereas that of cholesterol transporter Abcg5/Abcg8 was impaired. The expression of the nuclear receptor FXR was not affected by OCP or UDCA, whereas that of SHP and key enzymes in bile acid synthesis (Cyp7a1, Cyp8b1 and Cyp27) was increased in both groups. In conclusion, OCP affects the expression in the neonatal liver of genes involved in hepatobiliary function, which cannot be prevented, at this stage, by treating pregnant rats with UDCA, even though this treatment has been found to partially restore normal lipid secretion later during post-natal development.  相似文献   

2.
Inverse acinar regulation of Mrp2 and 3 represents an adaptive response to hepatocellular cholestatic injury. We studied whether obstructive cholestasis (bile duct ligation) and LPS treatment affect the zonal expression of Bsep (Abcb11), Mrp4 (Abcc4), Ntcp (Slc10a1), and Oatp isoforms (Slco1a1, Slco1a4, and slco1b2) in rat liver, as analyzed by semiquantitative immunofluorescence. Contribution of TNF-alpha and IL-1beta to transporter zonation in obstructive cholestasis was studied by cytokine inactivation. In normal liver Bsep, Mrp4, Ntcp, and Oatp1a1 were homogeneously distributed in the acinus, whereas Oatp1a4 and Oatp1b2 expression increased from zone 1 to 3. Glutamine synthetase-positive pericentral hepatocytes exhibited markedly lower Oatp1a4 expression than the remaining zone 3 hepatocytes. In cholestatic liver Bsep and Ntcp immunofluorescence in periportal hepatocytes significantly decreased to 66 +/- 4% (P < 0.01) and 67 +/- 7% (P < 0.05), whereas it was not altered in pericentral hepatocytes. Oatp1a4 was significantly induced in hepatocytes with a primarily low expression, i.e., in periportal hepatocytes and in glutamine synthetase-positive pericentral hepatocytes. Likewise, Oatp1b2 was upregulated in periportal hepatocytes. Mrp4 zonal induction was homogeneous. Inactivation of TNF-alpha and IL-1beta prevented periportal downregulation of Bsep. Recruitment of neutrophils and polymorphonuclear cells mainly occurred in the periportal zone. Likewise, IL-1beta induction was largely found periportally. No significant transporter zonation was seen following LPS treatment. In conclusion, zonal downregulation of Bsep in obstructive cholestasis is associated with portal inflammation and is mediated by TNF-alpha and IL-1beta. Periportal downregulation of Ntcp and induction of Oatp1a4 and Oatp1b2 may represent adaptive mechanisms to reduce cholestatic injury in hepatocytes with profound downregulation of Bsep and Mrp2.  相似文献   

3.
The effect of streptozotocin (STZ) and alloxan (ALX) on the hepatic messenger RNA (mRNA) expression of four transporters (Mrp2, Mdr1, Oct1, and Oatp1) was studied in the present work. After the healthy male Wistar rats were individually treated by a single intraperitoneal injection of ALX monohydrate (150 mg/kg) or STZ (50 mg/kg), the hepatic mRNA expression levels of Mrp2, Mdr1, Oct1, and Oatp1 were detected by real-time quantitative PCR. The results indicated that the mRNA expression levels of the Mrp2, Mdr1, Oct1, and Oatp1 in ALX-induced diabetic rats, as well as the hepatic mRNA expression of Mdr1 and Oatp1 in STZ-induced diabetic rats, were significantly decreased as compared with the control. The inhibition of ALX and STZ on hepatic transporter expression suggested that alterations of drug transporters under diabetic condition can be responsible for reduced drug clearance.KEY WORDS: alloxan, diabetic rats, streptozotocin, transporter  相似文献   

4.
It is hypothesized that during cholestasis, the liver, kidney, and intestine alter gene expression to prevent BA accumulation; enhance urinary excretion of BA; and decrease BA absorption, respectively. To test this hypothesis, mice were subjected to either sham or bile-duct ligation (BDL) surgery and liver, kidney, duodenum, ileum, and serum samples were collected at 1, 3, 7, and 14 days after surgery. Serum total BA concentrations were 1-5 mumol/l in sham-operated mice and were elevated at 1, 3, 7, and 14 days after BDL, respectively. BDL decreased liver Ntcp, Oatp1a1, 1a5, and 1b2 mRNA expression and increased Bsep, Oatp1a4, and Mrp1-5 mRNA levels. In kidney, BDL decreased Oatp1a1 and increased Mrp1-5 mRNA levels. In intestine, BDL increased Mrp3 and Ibat mRNA levels in ileum. BDL increased Mrp1, 3, 4, and 5 protein expression in mouse liver. These data indicate that the compensatory regulation of transporters in liver, kidney, and intestine is unable to fully compensate for the loss of hepatic BA excretion because serum BA concentration remained elevated after 14 days of BDL. Additionally, hepatic and renal Oatp and Mrp genes are regulated similarly during extrahepatic cholestasis, and may suggest that transporter expression is regulated not to remove bile constituents from the body, but instead to remove bile constituents from tissues.  相似文献   

5.
It is hypothesized that during cholestasis, the liver, kidney, and intestine alter gene expression to prevent BA accumulation; enhance urinary excretion of BA; and decrease BA absorption, respectively. To test this hypothesis, mice were subjected to either sham or bile-duct ligation (BDL) surgery and liver, kidney, duodenum, ileum, and serum samples were collected at 1, 3, 7, and 14 days after surgery. Serum total BA concentrations were 1-5 μmol/l in sham-operated mice and were elevated at 1, 3, 7, and 14 days after BDL, respectively. BDL decreased liver Ntcp, Oatp1a1, 1a5, and 1b2 mRNA expression and increased Bsep, Oatp1a4, and Mrp1-5 mRNA levels. In kidney, BDL decreased Oatp1a1 and increased Mrp1-5 mRNA levels. In intestine, BDL increased Mrp3 and Ibat mRNA levels in ileum. BDL increased Mrp1, 3, 4, and 5 protein expression in mouse liver. These data indicate that the compensatory regulation of transporters in liver, kidney, and intestine is unable to fully compensate for the loss of hepatic BA excretion because serum BA concentration remained elevated after 14 days of BDL. Additionally, hepatic and renal Oatp and Mrp genes are regulated similarly during extrahepatic cholestasis, and may suggest that transporter expression is regulated not to remove bile constituents from the body, but instead to remove bile constituents from tissues.  相似文献   

6.
Physiological cholestasis linked to immature hepatobiliary transport systems for organic anions occurs in rat and human neonates. In utero, the placenta facilitates vectorial transfer of certain fetal-derived solutes to the maternal circulation for elimination. We compared the ontogenesis of organic anion transporters in the placenta and the fetal liver of the rat to assess their relative abundance throughout gestation and to determine whether the placenta compensates for the late maturation of transporters in the developing liver. The mRNA of members of the organic anion transporting polypeptide (Oatp) superfamily, the multidrug resistance protein (Mrp) family, one organic anion transporter (OAT), and the bile acid carriers Na(+)-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) was quantified by real-time PCR. The most abundant placental transporters were Oatp4a1, whose mRNA increased 10-fold during gestation, and Mrp1. Mrp1 immunolocalized predominantly to epithelial cells of the endoplacental yolk sac, suggesting an excretory role that sequesters fetal-derived solutes in the yolk sac cavity, and faintly to the basal syncytiotrophoblast surface. The mRNA levels of Oatp2b1, Mrp3, and Bsep in the placenta exceeded those in the fetal liver until day 20 of gestation, suggesting that the fetus relies on placental clearance of substrates when expression in the developing liver is low. Mrp3 immunolocalized to the epithelium of the endoplacental yolk sac and less abundantly in the labyrinth zone and endothelium of the maternal arteries. The placental expression of Oatp1a1, Oatp1a4, Oatp1a5, Oatp1b2, Oat, Ntcp, Mrp2, and Mrp6 was low.  相似文献   

7.
Temporal changes in physiological spaces, protein expression of transporters and enzymes, and enalapril removal were appraised in the metastatic liver tumor model developed from male Wag/Rij rats after the intraportal injection of CC531 colon adenocarcinoma cells; sham-operated preparations received PBS. Liver tissue spaces, investigated with multiple indicator dilution technique in liver perfusion studies, were unchanged at week 3 after tumor induction. At week 4, however, the sinusoidal blood volume and albumin Disse space in tumor-bearing livers were slightly lower compared with those of shams. Increased levels of the canalicular ATP transporters, P-glycoprotein, multidrug resistance-associated protein 2 (Mrp2), and bile salt export pump (Bsep) at week 2 (P < 0.05), unchanged levels of Ntcp, Oatp1a1, Oatp1a4, and Mct2, but decreased levels of cytochrome P450 3a2 (Cyp3a2) and glutathione S-transferase (Gst4-4) at week 4 (P < 0.05) were observed in peritumor vs. sham-operated liver tissues with Western blotting. The steady-state extraction ratio of enalapril, a substrate that enters the liver rapidly via Oatp1a1 and primarily undergoes metabolism by the carboxylesterases, was unaffected by liver metastasis at week 4 regardless of its delivery via the portal vein or hepatic artery into the perfused liver preparations.  相似文献   

8.
Fetal liver immaturity is accompanied by active heme catabolism. Thus fetal biliary pigments must be excreted toward the mother by the placenta. To investigate biliverdin handling by the placenta-maternal liver tandem, biliverdin-IXalpha was administered to 21-day pregnant rats through the jugular vein or the umbilical artery of an in situ perfused placenta. Jugular administration resulted in the secretion into maternal bile of both bilirubin and biliverdin (3:1). However, when biliverdin was administered to the placenta, most of it was transformed into bilirubin before being transferred to the maternal blood. Injecting Xenopus laevis oocytes with mRNA from rat liver or placenta enhanced their ability to take up biliverdin, which was inhibited by estradiol 17beta-d-glucuronide. The expression of three OATP isoforms in this system revealed that they have a varying degrees of ability to transport biliverdin (Oatp1/1a1 > Oatp2/1a4 > Oatp4/1b2). The abundance of their mRNA in rat trophoblast was Oatp1/1a1 > Oatp4/1b2 > Oatp2/1a4. The expression of biliverdin-IXalpha reductase in rat placenta was detected by RT-PCR/sequencing and Western blot analysis. The relative abundance of biliverdin-IXalpha reductase mRNA (determined by real-time quantitative RT-PCR) was fetal liver > placenta > maternal liver. Common bile duct ligation in the last week of pregnancy induced an upregulation of biliverdin-IXalpha reductase in maternal liver but had no effect on fetal liver and placenta. In conclusion, several members of the OATP family may contribute to the uptake of fetal biliverdin by the rat placenta. Before being transferred to the mother, biliverdin is extensively converted into bilirubin by biliverdin-IXalpha reductase, whose expression is maintained even though bilirubin excretion into maternal bile is impaired.  相似文献   

9.
The objective was to determine whether protective effects of JBP485 on biliary obstruction induced by alpha-naphthylisothiocyanate (ANIT) are mediated by the organic anion transporters Oat1, Oat3 and the multidrug resistance-associated protein Mrp2. The ANIT-induced increases in bilirubin (BIL), alanine aminotransferase (ALT) and aspartate transaminase (AST) in rat serum were inhibited significantly by oral administration of JBP485. The plasma concentration of JBP485 which is the substrate of Oat1 and Oat3 determined by LC–MS/MS was markedly increased after intravenous administration in ANIT-treated rats, whereas cumulative urinary excretion of JBP485 in vivo and the uptake of JBP485 in kidney slices were decreased remarkably. RT-PCR and Western blot showed the decreased expression of Oat1 and Oat3, increased expression of Mrp2 in ANIT-induced rats, meanwhile, the expression levels of Mrp2 and Oat1 were up-regulated after administration of JBP485. The up-regulation of Mrp2 and Oat1 was associated with a concomitant increase in urinary BIL after treatment with JBP485 in ANIT-treated rats. The mechanism for JBP485 to restore liver function might be related to improvement of the expression and function for Oat1 and Mrp2 as well as facilitation of urinary excretion for hepatoxic substance.  相似文献   

10.
Non‐alcoholic fatty liver disease can result in changes to drug metabolism and disposition potentiating adverse drug reactions. Furthermore, arsenite exposure during development compounds the severity of diet‐induced fatty liver disease. This study examines the effects of arsenite potentiated diet‐induced fatty liver disease on hepatic transport in male mice. Changes were detected for Mrp2/3/4 hepatic transporter gene expression as well as for Oatp1a4/2b1/1b2. Plasma concentrations of Mrp and Oatp substrates were increased in arsenic exposure groups compared with diet‐only controls. In addition, murine embryonic hepatocytes and adult primary hepatocytes show significantly altered transporter expression after exposure to arsenite alone: a previously unreported phenomenon. These data indicate that developmental exposure to arsenite leads to changes in hepatic transport which could increase the risk for ADRs during fatty liver disease.  相似文献   

11.
Estrogen‐induced cholestasis is characterized by impaired hepatic uptake and biliary bile acids secretion because of changes in hepatocyte transporter expression. The induction of heme oxygenase‐1 (HMOX1), the inducible isozyme in heme catabolism, is mediated via the Bach1/Nrf2 pathway, and protects livers from toxic, oxidative and inflammatory insults. However, its role in cholestasis remains unknown. Here, we investigated the effects of HMOX1 induction by heme on ethinylestradiol‐induced cholestasis and possible underlying mechanisms. Wistar rats were given ethinylestradiol (5 mg/kg s.c.) for 5 days. HMOX1 was induced by heme (15 μmol/kg i.p.) 24 hrs prior to ethinylestradiol. Serum cholestatic markers, hepatocyte and renal membrane transporter expression, and biliary and urinary bile acids excretion were quantified. Ethinylestradiol significantly increased cholestatic markers (P ≤ 0.01), decreased biliary bile acid excretion (39%, P = 0.01), down‐regulated hepatocyte transporters (Ntcp/Oatp1b2/Oatp1a4/Mrp2, P ≤ 0.05), and up‐regulated Mrp3 (348%, P ≤ 0.05). Heme pre‐treatment normalized cholestatic markers, increased biliary bile acid excretion (167%, P ≤ 0.05) and up‐regulated hepatocyte transporter expression. Moreover, heme induced Mrp3 expression in control (319%, P ≤ 0.05) and ethinylestradiol‐treated rats (512%, P ≤ 0.05). In primary rat hepatocytes, Nrf2 silencing completely abolished heme‐induced Mrp3 expression. Additionally, heme significantly increased urinary bile acid clearance via up‐regulation (Mrp2/Mrp4) or down‐regulation (Mrp3) of renal transporters (P ≤ 0.05). We conclude that HMOX1 induction by heme increases hepatocyte transporter expression, subsequently stimulating bile flow in cholestasis. Also, heme stimulates hepatic Mrp3 expression via a Nrf2‐dependent mechanism. Bile acids transported by Mrp3 to the plasma are highly cleared into the urine, resulting in normal plasma bile acid levels. Thus, HMOX1 induction may be a potential therapeutic strategy for the treatment of ethinylestradiol‐induced cholestasis.  相似文献   

12.
13.
Earlier studies suggest that Mrp1 may mediate ATP-dependent cellular extrusion of unconjugated bilirubin (UCB). We studied the serial responses of expression of Mrp1 mRNA and protein in rats with increased bilirubin production due to hemolysis induced by phenylhydrazine (PHZ) treatment. Mrp1 mRNA was analyzed by quantitative PCR and protein by Western blot. Hepatic expression of Mrp1 mRNA and protein peaked at day 3 of PHZ treatment. Splenic expression of Mrp1 mRNA peaked within 24h and returned to baseline at day 5 whereas Mrp1 protein expression peaked at day 3. Pretreatment with heme-oxygenase inhibitor, tin mesoporphyrin, blunted the increase in serum UCB and erased the overexpression of Mrp1 both in liver and spleen. Thus, the upregulation of Mrp1 in hemolysis is mediated by UCB and/or other products of heme oxygenase, further supporting a role of Mrp1 in UCB transport and protection from its cellular toxicity.  相似文献   

14.
Chemicals that activate nuclear factor-E2-related factor 2 (Nrf2) often increase multidrug-resistance-associated protein (Mrp) expression in liver. Hepatocyte-specific deletion of Kelch-like ECH-associated protein 1 (Keap1) activates Nrf2. Use of hepatocyte-specific Keap1 deletion represents a nonpharmacological method to determine whether constitutive Nrf2 activation upregulates liver transporter expression in vivo. The mRNA, protein expression, and localization of several biotransformation and transporters were determined in livers of wild-type and hepatocyte-specific Keap1-null mice. Sulfotransferase 2a1/2, NADP(H):quinone oxidoreductase 1, cytochrome P450 2b10, 3a11, and glutamate-cysteine ligase catalytic subunit expression were increased in livers of Keap1-null mice. Organic anion-transporting polypeptide 1a1 expression was nearly abolished, as compared to that detected in livers of wild-type mice. By contrast, Mrp 1-5 mRNA and protein levels were increased in Keap1-null mouse livers, with Mrp4 expression being more than 15-fold higher than wild types. In summary, Nrf2 has a significant role in affecting Oatp and Mrp expressions.  相似文献   

15.
The effect of oral taurine supplementation on endotoxin-induced cholestasis was investigated in rat liver. At 12h following lipopolysaccharide (LPS) injection (4mg/kg body weight i.p.) bile flow and bromosulfophthalein (BSP) and taurocholate (TC) excretion were determined in the perfused liver and the expression of the canalicular transporters multidrug resistance protein 2 (Mrp2) and bile salt export pump (Bsep) was analyzed. Injection of LPS induced a significant decrease of bile flow ( 2.2+/-0.2 microl/g liver wet weight/min vs 3.3+/-0.1 microl/g liver wet weight in controls), biliary BSP excretion (10.8+/-2.2 nmol/g/min vs 21.0+/-3.8 nmol/g/min), and biliary TC excretion (114+/-23 nmol/g/min vs 228+/-8 nmol/g/min). These effects were due to transporter retrieval from the canalicular membrane and downregulation of Mrp2 and Bsep expression. In taurine-supplemented rats bile flow was 30% higher than that in untreated rats and the expression of Mrp2 and Bsep protein was increased two- to threefold. In taurine-supplemented rats there was no significant reduction of bile flow or of BSP and TC excretion at 12h following LPS injection. This protective effect of taurine was due to higher Mrp2 and Bsep protein levels compared to nonsupplemented LPS-treated rats, whereas relative Mrp2 retrieval from the canalicular membrane induced by LPS was not significantly different. LPS-induced tumor necrosis factor alpha and interleukin-1beta release were lower in taurine-fed rats; however, downregulation of Mrp2 and Bsep expression by LPS was delayed but not prevented. The data show that oral supplementation of taurine induces Mrp2 and Bsep expression and may prevent LPS-induced cholestasis.  相似文献   

16.
The short-term regulation of multidrug resistance-associated protein 3 (Mrp3/MRP3) by cAMP and PKC was investigated in sandwich-cultured rat and human hepatocytes and isolated perfused rat livers. The modulator glucagon (500 nM) and the phorbol ester PMA (0.1 muM) were utilized to increase intracellular cAMP and PKC levels, respectively. In glucagon-treated rat hepatocytes, efflux of the Mrp3 substrate 5-(6)-carboxy-2',7'-dichlorofluorescein (CDF) increased approximately 1.5-fold, even in hepatocytes treated with the organic anion transporter (Oatp) inhibitor sulfobromophthalein (BSP). Confocal microscopy revealed more concentrated Mrp3 fluorescence in the basolateral membrane (less diffuse staining pattern) with glucagon treatment. PMA had no effect on Mrp3 activity or localization in sandwich-cultured rat hepatocytes. Glucagon and PMA treatment in isolated perfused rat livers resulted in a threefold increase (14 +/- 4.6 mul.min(-1).g liver(-1)) and a fourfold decrease (1.3 +/- 0.3 mul.min(-1).g liver(-1)) in CDF basolateral clearance compared with control livers (4.7 +/- 2.3 mul.min(-1).g liver(-1)), whereas CDF biliary clearance was not statistically different. In sandwich-cultured human hepatocytes, glucagon treatment resulted in a 1.3-fold increase in CDF efflux and a concomitant increase in MRP3 fluorescence in the basolateral membrane. In summary, cAMP and PKC appear to be involved in the short-term regulation of Mrp3/MRP3, as demonstrated by alterations in activity and localization in rat and human hepatocytes.  相似文献   

17.
Small hepatocytes (SHs) are hepatic progenitor cells with hepatic characteristics. They can proliferate to form colonies in culture and change their morphology from flat to rising/piled-up with bile canaliculi (BC), which results in maturation. In this study, we examined whether SHs could express hepatic transporters with polarity, whether the transporters could transport organic anion substrates into BC, and whether the secreted substances could be recovered from BC. Immunocytochemistry and RT-PCR were carried out. [(3)H]-labeled estrogen derivatives were used to measure the functions of the transporters in SHs isolated from normal and multidrug resistance-associated protein (Mrp) 2-deficient rats. The results showed that organic anion-transporting proteins (Oatps) 1 and 2, Na(+)-dependent taurocholate co-transporting polypeptide (Ntcp), Mrp2, and bile-salt export pump (Bsep) were well expressed in rising/piled-up cells and that their expression was correlated to that of hepatocyte nuclear factor 4alpha. Although small SHs expressed not Oatps and Mrp2 but Mrp3, rising/piled-up SHs expressed Oatp1 and 2 and Mrp2 proteins in the sinusoidal and BC membranes, respectively. On the other hand, breast cancer resistant protein (Bcrp) and Mrp3 expression decreased as SHs matured. The substrate transported via Oatps and Mrp2 was secreted into BC and it accumulated in both BC and cyst-like structures. The secreted substrate could be efficiently recovered from BC reconstructed by SHs derived from a normal rat, but not from an Mrp2-deficient rat. In conclusion, SHs can reconstitute hepatic organoids expressing functional organic anion transporters in culture. This culture system may be useful to analyze the metabolism and excretion mechanisms of drugs.  相似文献   

18.
To determine which efflux carriers are involved in hepatic phalloidin elimination, hepatobiliary [(3)H]-demethylphalloin (DMP) excretion was studied in normal Wistar rats and in Mrp2 deficient TR(-) Wistar rats as well as in normal wild-type FVB mice, Mdr1a,b(-/-) knockout mice, and Bcrp1(-/-) knockout mice by in situ bile duct/gallbladder cannulation. A subtoxic dose of 0.03 mg DMP/kg b.w. was used, which did not induce cholestasis in any tested animal. Excretion of DMP into bile was not altered in Mdr1a,b(-/-) mice or in Bcrp1(-/-) mice compared with wild-type FVB mice. Whereas 17.6% of the applied dose was excreted into bile of normal Wistar rats, hepatobiliary excretion decreased to 7.9% in TR(-) rats within 2 h after intravenous application. This decrease was not due to reduced cellular DMP uptake, as shown by normal expression of Oatp1b2 in livers of TR(-) rats and functional DMP uptake into isolated TR(-) rat hepatocytes. Tissue concentrations of phalloidin were also not altered in any of the transgenic mice. Interestingly, the decrease of biliary DMP excretion in the TR(-) rats was not followed by any increase of phalloidin accumulation in the liver but yielded a compensatory excretion of the toxin into urine, indicating that hepatocytes of TR(-) rats expelled phalloidin back into blood circulation.  相似文献   

19.
20.
We analyzed the expression of multidrug resistance-associated protein 2 (mrp2) in the small intestine of control female rats and in rats during late pregnancy (19-20 days of pregnancy) and lactation (2-4, 10-14, and 21 days after delivery). Western blot analysis was performed on brush-border membranes prepared from different regions of the small intestine. Expression of mrp2 was maximal in the proximal segments for all experimental groups, was preserved in pregnant rats, and increased by 100% in postpartum rats by late lactation with respect to control animals. Northern blot analysis of mrp2 mRNA revealed a positive correlation with protein levels. Transport of S-glutathione-dinitrophenol (DNP-SG) from the intestinal cell to the lumen was analyzed in the everted intestinal sac model. Secretion of DNP-SG was not altered in pregnant rats but increased in lactating animals by late lactation. Intestinal mrp2 mRNA, protein, and transport activity are increased in lactating rats, suggesting that this may represent an adaptive mechanism to minimize the toxicity of dietary xenobiotics in response to increased postpartum food consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号