首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ibutilide can prolong refractory period and terminate reentry. Whether ibutilide has the same effects on pulmonary vein (PV) focal discharge (FD) is unclear. We induced sustained atrial fibrillation (AF) in seven dogs by rapid left atrial (LA) pacing for 74 +/- 46 days. Ibutilide was repeatedly infused until it terminated AF (0.02 +/- 0.01 mg/kg) or when a cumulative dose was reached (0.04 mg/kg). High-resolution computerized epicardial mapping was performed. We found intermittent FD at the PVs and reentry at the PV-LA junction during AF. Ibutilide increased the cycle length of consecutive reentry from 97 +/- 13 to 112 +/- 18 ms and increased FD from 96 +/- 7 to 113 +/- 9 ms. In four dogs with both FD and reentry at the PVs, the incidence of reentry decreased from 3.5 +/- 1.9/s at baseline to 2.2 +/- 1.8/s after ibutilide administration. However, the incidence of FD remained unchanged. The conducted wave fronts between PV and LA were significantly reduced by ibutilide (10.4 +/- 2.0/s vs. 8.0 +/- 1.6/s). The ibutilide dose needed to terminate AF correlated negatively with the baseline effective refractory period of PV and LA. We conclude that ibutilide reduces reentrant wave fronts but not PV FD in a canine model of pacing-induced sustained AF. These findings suggest that the PV FD during AF is due to nonreentrant mechanisms. High doses of ibutilide may completely terminate all reentrant activity, converting AF to PV tachycardia before the resumption of sinus rhythm.  相似文献   

2.
The thoracic vein hypothesis of chronic atrial fibrillation (AF) posits that rapid, repetitive activations from muscle sleeves within thoracic veins underlie the mechanism of sustained AF. If this is so, thoracic vein ablation should terminate sustained AF and prevent its reinduction. Six female mongrel dogs underwent chronic pulmonary vein (PV) pacing at 20 Hz to induce sustained (>48 h) AF. Bipolar electrodes were used to record from the atria and thoracic veins, including the vein of Marshall, four PVs, and the superior vena cava. Radio frequency (RF) application was applied around the PVs and superior vena cava and along the vein of Marshall until electrical activity was eliminated. Computerized mapping (1,792 electrodes, 1 mm resolution) was also performed. Sustained AF was induced in 30.6 +/- 6.5 days, and ablation was done 17.3 +/- 8.5 days afterward. Before ablation, the PVs had shorter activation cycle lengths than the atria, and rapid, repetitive activations were observed in the PVs. All dogs converted to sinus rhythm during (n = 4 dogs) or within 90 min of completion of RF ablation. Rapid atrial pacing afterward induced only nonsustained (<60 s) AF in all dogs. Average AF cycle lengths after reinduction were significantly (P = 0.01) longer (183 +/- 31.5 ms) than baseline (106 +/- 16.2 ms). There were no activation cycle length gradients after RF application. We conclude that thoracic vein ablation converts canine sustained AF into sinus rhythm and prevents the reinduction of sustained AF. These findings suggest that thoracic veins are important in the maintenance of AF in dogs.  相似文献   

3.
The importance of the ligament of Marshall (LOM) to rapid activations within the left superior pulmonary vein (LSPV) during atrial fibrillation (AF) remains poorly understood. We aimed to characterize the importance of electrical coupling between the LSPV with the left atrium (LA) and the LOM in the generation of high-frequency activations within this PV. We performed high-density mapping of the LSPV-LA-LOM junction in eight dogs, using 1,344 electrodes with a 1-mm resolution before and after posterior ostial ablation to diminish PV-LA electrical connections. A LOM potential was recordable up to 6.5 mm (SD 2.2) into the LSPV in all dogs during sinus rhythm (SR) and LA pacing. Functional LOM-LSPV electrical connections bypassing the PV-LA junction were present in five of eight dogs. Direct LOM-LSPV connections contributed to 46.5% (SD 16.0) of LSPV activations during AF, resulting in a greater propensity to develop focal activations (P < 0.05) and a higher activation rate during AF of LSPVs with direct LOM connections compared with those without (P < 0.03). Posterior LSPV ostial ablation without damaging the anterior wall or LOM slowed residual LA-PV conduction (P < 0.001). This diminished PV-LA coupling prevented the reinduction of LSPV focal activations in all dogs. However, persistent LOM focal activations in two dogs continued to activate the LSPV rapidly [cycle length 151.8 ms (SD 4.8)] via direct LOM-LSPV connections. LOM-LSPV connection forms an accessory pathway that contributes to the electrical coupling between LSPV and LA during SR and AF. This pathway may contribute to rapid activations within the LSPV during AF.  相似文献   

4.
Focal discharges (FDs) are present in thoracic veins during atrial fibrillation (AF). We hypothesize that procainamide exerts its anti-AF action by suppressing FDs in the thoracic veins. We studied six mongrel dogs (22-27 kg) with sustained (>6 h) AF induced by 47 +/- 20 days of chronic rapid LA appendage (LAA) or pulmonary vein (PV) pacing. Procainamide was infused intravenously until AF was terminated or a cumulative dose of 20 mg/kg was reached. High-resolution mapping during AF showed FDs in the vein of Marshall, PVs, and the LAA. Procainamide significantly (P < 0.05) reduced the frequency of these FDs and suppressed the interactions of wave fronts between PVs and LA. The cumulative dose of PA needed to terminate AF correlated negatively (r =-0.9, P < 0.05) with the baseline effective refractory period (ERP) of PV and positively (r = 0.8, P < 0.05) with the baseline maximum dominant frequency (DF) of AF. In four of five dogs, AF converted to atrial tachycardia originating from the PVs before termination. Attempts to reinduce sustained AF were unsuccessful in these five dogs. AF was resistant to procainamide in the sixth dog. In conclusion, procainamide reduced the rate of FDs in the thoracic veins and the LA and suppressed the interaction between PVs and LA. Second, FDs in the PV are more resistant to procainamide's action than FDs in the atria. Third, inherent PV ERP is important in determining the antifibrillatory efficacy of procainamide.  相似文献   

5.
目的:比较在持续性房颤发生、发展过程中,房颤模型山羊左心房与肺静脉外膜碎裂电位(CFAEs)的变 化,以期探讨肺静脉外膜碎裂电位(CFAEs)在持续性房颤中的作用.方法:选取10只雌性山羊,使用左心房快速刺激,发送输出电压为6 V、周长为20 ms的脉冲1 s,间隔2 s后重复发放,以此方法建立持续性房颤模型(房颤持续...  相似文献   

6.
The parasympathetic (P) nervous system is thought to contribute significantly to focal atrial fibrillation (AF). Thus we hypothesized that P nerve fibers [and related muscarinic (M(2)) receptors] are preferentially located in the posterior left atrium (PLA) and that selective cholinergic blockade in the PLA can be successfully performed to alter vagal AF substrate. The PLA, pulmonary veins (PVs), and left atrial appendage (LAA) from six dogs were immunostained for sympathetic (S) nerves, P nerves, and M(2) receptors. Epicardial electrophysiological mapping was performed in seven additional dogs. The PLA was the most richly innervated, with nerve bundles containing P and S fibers (0.9 +/- 1, 3.2 +/- 2.5, and 0.17 +/- 0.3/cm(2) in the PV, PLA, and LAA, respectively, P < 0.001); nerve bundles were located in fibrofatty tissue as well as in surrounding myocardium. P fibers predominated over S fibers within bundles (P-to-S ratio = 4.4, 7.2, and 5.8 in PV, PLA, and LAA, respectively). M(2) distribution was also most pronounced in the PLA (17.8 +/- 8.3, 14.3 +/- 7.3, and 14.5 +/- 8 M(2)-stained cells/cm(2) in the PLA, PV, and LAA, respectively, P = 0.012). Left cervical vagal stimulation (VS) caused significant effective refractory period shortening in all regions, with easily inducible AF. Topical application of 1% tropicamide to the PLA significantly attenuated VS-induced effective refractory period shortening in the PLA, PV, and LAA and decreased AF inducibility by 92% (P < 0.001). We conclude that 1) P fibers and M(2) receptors are preferentially located in the PLA, suggesting an important role for this region in creation of vagal AF substrate and 2) targeted P blockade in the PLA is feasible and results in attenuation of vagal responses in the entire left atrium and, consequently, a change in AF substrate.  相似文献   

7.
Hydrogen sulphide (H2S), one of the most common toxic air pollutants, is an important aetiology of atrial fibrillation (AF). Pulmonary veins (PVs) and left atrium (LA) are the most important AF trigger and substrate. We investigated whether H2S may modulate the arrhythmogenesis of PVs and atria. Conventional microelectrodes and whole‐cell patch clamp were performed in rabbit PV, sinoatrial node (SAN) or atrial cardiomyocytes before and after the perfusion of NaHS with or without chelerythrine (a selective PKC inhibitor), rottlerin (a specific PKC δ inhibitor) or KB‐R7943 (a NCX inhibitor). NaHS reduced spontaneous beating rates, but increased the occurrences of delayed afterdepolarizations and burst firing in PVs and SANs. NaHS (100 μmol/L) increased IKATP and INCX in PV and LA cardiomyocytes, which were attenuated by chelerythrine (3 μmol/L). Chelerythrine, rottlerin (10 μmol/L) or KB‐R7943 (10 μmol/L) attenuated the arrhythmogenic effects of NaHS on PVs or SANs. NaHS shortened the action potential duration in LA, but not in right atrium or in the presence of chelerythrine. NaHS increased PKC activity, but did not translocate PKC isoforms α, ε to membrane in LA. In conclusion, through protein kinase C signalling, H2S increases PV and atrial arrhythmogenesis, which may contribute to air pollution‐induced AF.  相似文献   

8.
目的建立交感神经张力异常介导的急性房颤动物模型的方法学。方法将16只随意来源犬分为三组:对照组(n=4),右侧星状神经节(aSG)组(n=6)和左侧星状神经节(LSG)组(n=6),测定心房和肺静脉不同部位的房颤诱发率、房颤持续时间。结果RSG刺激显著增加右心房(RA)的房颤诱发率和持续时间(P〈0.05),LSG刺激显著增加左心房(LA)、左上肺静脉(LSPV)、左下肺静脉(LIPV)的房颤诱发率和持续时间(P〈0.05);与刺激时相比,RSG切除显著降低RA的房颤诱发率和持续时间(P〈0.05);LSG切除显著降低LA、LSPV、LIPV的房颤诱发率和持续时间(P〈0.05)。结论星状神经节电刺激同时快速心房起搏6h可成功建立交感神经介导的急性房颤犬模型,星状神经节电刺激使心房和肺静脉部位的房颤诱发率显著升高,房颤持续时间显著延长,去星状神经节支配可减少房颤的发生和维持。  相似文献   

9.
We hypothesized that pituitary adenylate cyclase-activating polypeptide (PACAP) activates intracardiac postganglionic parasympathetic nerves and has a different effect than cervical vagal stimulation. We measured effective refractory period (ERP) and conduction velocity at four atrial sites [high right atrium (HRA), low right atrium (LRA), high left atrium (HLA), and low left atrium (LLA)] and minimum atrial fibrillation (AF) cycle length at 12 atrial sites during cervical vagal stimulation and after PACAP in 26 autonomically decentralized, open-chest, anesthetized dogs. PACAP shortened ERP to a similar extent at all four sites (HRA, 58 +/- 2.0 ms; LRA, 60 +/- 6.3 ms; HLA, 68 +/- 11.5 ms; and LLA, 60 +/- 8.3 ms). Low- and high-intensity vagal stimulation shortened ERP at the HRA, but not in the other atrial sites (low-intensity stimulation: HRA, 64 +/- 4.0 ms; LRA, 126 +/- 5.1 ms; HLA, 110 +/- 9.5 ms; and LLA, 102 +/- 11.5 ms; high-intensity stimulation: HRA, 58 +/- 4.2 ms; and HLA, 101 +/- 4.0 ms). Conduction velocity was not altered by any intervention. Minimum AF cycle length after PACAP was similar in both atria but was shorter in the right atrium than in the left atrium during vagal stimulation. After atropine administration, no interventions changed ERP. These results suggest that PACAP shortens atrial refractoriness uniformly in both atria through activation of intrinsic cardiac nerves, not all of which are activated by cervical vagal stimulation.  相似文献   

10.
Catheter-directed intervention to treat atrial fibrillation (AF) is becoming widely accepted procedure in current clinical practice. For assessment of pulmonary vein (PV) anatomy, angiography of left atrium (LA) and/or PV is often performed. We present a new, simple angiographic method for PVs and LA opacification using SL1 sheath. Total of 100 patients in our clinic underwent this procedure. In all of the cases good angiographic results were achieved. No immediate or late complications related to this procedure were observed.  相似文献   

11.
BackgroundThe Arctic Front Cryoballoon System is a technology in which substrate alterations in patients with atrial fibrillation (AF) recurrence have not been well characterized. In this study, we evaluated sites of pulmonary vein (PV) reconnections and the accuracy of the Achieve? circular mapping catheter in detecting these reconnections after cryoablation.MethodsThis study included 15 patients undergoing redo AF ablation after a prior single cryoablation procedure. PV reconnection sites were determined by measuring PV signals and high output pacing from 4 vectors of the Achieve catheter. The results were compared with a roving mapping catheter guided by rotational intracardiac echocardiography (ICE) in the left atrium.ResultsAll patients had PV reconnections (2.1 ± 0.8 veins/patient). The left superior PV was most commonly reconnected (n = 11), whereas the right inferior PV was least likely (n = 3). Both carinas (left: n = 11; right: n = 7) and left atrial appendage ridge (n = 11) were also frequently reconnected. Mapping with the Achieve catheter showed a positive predictive value (PPV) 100% and negative predictive value (NPV) 96% when compared with ICE guided mapping. In 2 patients, right superior PV reconnection was not identified by the Achieve.ConclusionDuring redo AF ablation after index cryoablation, multiple PVs are usually reconnected, with both carinas and left atrial appendage ridge being common sites of reconnection. The Achieve mapping catheter was able to identify reconnection with high positive and negative predictive values.  相似文献   

12.
The mechanism of atrial flutter and fibrillation induced by rapid pacing in 22 dogs with 3-day-old sterile pericarditis was investigated by computerized epicardial mapping of atrial activation before and after administration of agents known to modify atrial electrophysiologic properties: procainamide, isoproterenol, and electrical stimulation of the vagosympathetic trunks. Before the administration of any of these agents, a total of 30 episodes of sustained atrial flutter (greater than 1 min duration, monomorphic; regular cycle length, 127 +/- 12 ms, mean +/- SD) was induced in 15 out of 22 dogs and 9 episodes of unstable atrial flutter (duration, less than 1 min; cycle length, 129 +/- 34 ms; monomorphic, alternating with fibrillation) were induced in the remaining 7 preparations. In the latter, administration of procainamide transformed unstable atrial flutter and atrial fibrillation to sustained atrial flutter (cycle length, 142 +/- 33 ms; n = 9 episodes). During control atrial flutter, atrial maps displayed circus movement of excitation in the right atrial free wall with faster conduction parallel to the orientation of intra-atrial myocardial bundles. Vagal stimulation changed atrial flutter to atrial fibrillation in 32 of 73 trials; this was associated with acceleration of conduction in the lower right atrium, leading to fragmentation of the major wave front. Isoproterenol produced a 6-25% increase of the atrial rate in 6 out of 14 trials of atrial flutter and induced atrial fibrillation in 4. After procainamide, the reentrant pathway was lengthened and conduction was slowed further in the right atrium. Maps obtained during unstable atrial flutter showed incomplete circuits involving the right atrium. Following procainamide infusion, the area of functional dissociation or block was enlarged and a stable circus movement pattern, which was similar to the pattern seen in control atrial flutter, was established in the right atrium. We conclude that (1) the transitions among atrial fibrillation, atrial flutter, and sinus rhythm occur between different functional states of the same circus movement substratum primarily located in the lower right atrial free wall, and (2) the anisotropic conduction properties of the right atrium may contribute to these reentrant arrhythmias and may be potentiated by acute pericarditis.  相似文献   

13.
Several animal models of atrial fibrillation (AF) have been developed that demonstrate either atrial structural remodeling or atrial electrical remodeling, but the characteristics and spatiotemporal organization of the AF between the models have not been compared. Thirty-nine dogs were divided into five groups: rapid atrial pacing (RAP), chronic mitral regurgitation (MR), congestive heart failure (CHF), methylcholine (Meth), and control. Right and left atria (RA and LA, respectively) were simultaneously mapped during episodes of AF in each animal using high-density (240 electrodes) epicardial arrays. Multiple 30-s AF epochs were recorded in each dog. Fast Fourier transform was calculated every 1 s over a sliding 2-s window, and dominant frequency (DF) was determined. Stable, discrete, high-frequency areas were seen in none of the RAP or control dogs, four of nine MR dogs, four of six CHF dogs, and seven of nine Meth dogs in either the RA or LA or both. Average DFs in the Meth model were significantly greater than in all other models in both LA and RA except LA DFs in the RAP model. The RAP model was the only one with a consistent LA-to-RA DF gradient (9.5 +/- 0.2 vs. 8.3 +/- 0.3 Hz, P < 0.00005). The Meth model had a higher spatial and temporal variance of DFs and lower measured organization levels compared with the other AF models, and it was the only model to show a linear relationship between the highest DF and dispersion (R(2) = 0.86). These data indicate that structural remodeling of atria (models known to have predominantly altered conduction) leads to an AF characterized by a stable high-frequency area, whereas electrical remodeling of atria (models known to have predominantly shortened refractoriness without significant conduction abnormalities) leads to an AF characterized by multiple high-frequency areas and multiple wavelets.  相似文献   

14.
Background: Pulmonary vein isolation (PVI) is an established treatment for atrial fibrillation (AF). During PVI an electrical conduction block between pulmonary vein (PV) and left atrium (LA) is created. This conduction block prevents AF, which is triggered by irregular electric activity originating from the PV. However, transmural atrial lesions are required which can be challenging. Re-conduction and AF recurrence occur in 20 - 40% of the cases. Robotic catheter systems aim to improve catheter steerability. Here, a procedure with a new remote catheter system (RCS), is presented. Objective of this article is to show feasibility of robotic AF ablation with a novel system. Materials and Methods: After interatrial trans-septal puncture is performed using a long sheath and needle under fluoroscopic guidance. The needle is removed and a guide wire is placed in the left superior PV. Then an ablation catheter is positioned in the LA, using the sheath and wire as guide to the LA. LA angiography is performed over the sheath. A circular mapping catheter is positioned via the long sheath into the LA and a three-dimensional (3-D) anatomical reconstruction of the LA is performed. The handle of the ablation catheter is positioned in the robotic arm of the Amigo system and the ablation procedure begins. During the ablation procedure, the operator manipulates the ablation catheter via the robotic arm with the use of a remote control. The ablation is performed by creating point-by-point lesions around the left and right PV ostia. Contact force is measured at the catheter tip to provide feedback of catheter-tissue contact. Conduction block is confirmed by recording the PV potentials on the circular mapping catheter and by pacing maneuvers. The operator stays out of the radiationfield during ablation. Conclusion: The novel catheter system allows ablation with high stability on low operator fluoroscopy exposure.  相似文献   

15.
Atrial conduction properties have been shown to differ among animal atrial fibrillation (AF) models of rapid atrial pacing (RAP), chronic mitral regurgitation (MR), and control. We hypothesized that these conduction differences would continue with the onset of AF, which would affect AF spatiotemporal organization, resulting in model-specific characteristics of AF. With frequency domain analysis of electrograms acquired from high-density optical mapping, AF from the right (RA) and left (LA) atrium in animals with RAP and MR were compared with control animals. At follow-up, the hearts were excised and perfused, and optical action potentials were recorded from a 2 x 2-cm area each of the RA and LA free wall with a 16 x 16 photodiode array. AF was induced with extra stimuli, several 2.4-s AF episodes were recorded in each dog, and a fast Fourier transform was calculated. The dominant frequency (DF) was determined, and the organization (organization index, OI) was calculated as the ratio of the area under the dominant peak and its harmonics to the total area of the spectrum. All possible pairs of electrograms for each episode were cross-correlated. LA AF in the chronic MR model showed an increase in the highest DF, the number of DF domains, and in frequency gradient compared with AF in control or RAP models. In addition, there was a decrease in OI and in the correlation coefficients in the LA of the MR model. These results suggest that the AF substrate in the MR model may be different from that of control or RAP models.  相似文献   

16.
The purpose of the present study was to determine whether thoracic veins may act as ectopic pacemakers and whether nodelike cells and rich sympathetic innervation are present at the ectopic sites. We used a 1,792-electrode mapping system with 1-mm resolution to map ectopic atrial arrhythmias in eight normal dogs during in vivo right and left stellate ganglia (SG) stimulation before and after sinus node crushing. SG stimulation triggered significant elevations of transcardiac norepinephrine levels, sinus tachycardia in all dogs, and atrial tachycardia in two of eight dogs. Sinus node crushing resulted in a slow junctional rhythm (51 +/- 6 beats/min). Subsequent SG stimulation induced 20 episodes of ectopic beats in seven dogs and seven episodes of pulmonary vein tachycardia in three dogs (cycle length 273 +/- 35 ms, duration 16 +/- 4 s). The ectopic beats arose from the pulmonary vein (n = 11), right atrium (n = 5), left atrium (n = 2), and the vein of Marshall (n = 2). There was no difference in arrhythmogenic effects of left vs. right SG stimulation (13/29 vs. 16/29 episodes, P = nonsignificant). There was a greater density of periodic acid Schiff-positive cells (P < 0.05) and sympathetic nerves (P < 0.05) at the ectopic sites compared with other nonectopic atrial sites. We conclude that, in the absence of a sinus node, thoracic veins may function as subsidiary pacemakers under heightened sympathetic tone, becoming the dominant sites of initiation of focal atrial arrhythmias that arise from sites with abundant sympathetic nerves and periodic acid Schiff-positive cells.  相似文献   

17.
The potential of chronic nicotine exposure for atrial fibrillation (AF) and atrial flutter (AFL) in hearts with and without chronic myocardial infarction (MI) remains poorly explored. MI was created in dogs by permanent occlusion of the left anterior descending coronary artery, and dogs were administered nicotine (5 mg.kg(-1).day(-1) sc) for 1 mo using osmotic minipumps. High-resolution epicardial (1,792 bipolar electrodes) and endocardial Halo catheters were used to map activation during induced atrial rhythms. Nicotine promoted inducible sustained AFL at a mean cycle length of 134 +/- 10 ms in all MI dogs (n = 6) requiring pacing and electrical shocks for termination. No AFL could be induced in MI dogs (n = 6), control (non-MI) dogs (n = 3) not exposed to nicotine, and dogs with no MI and exposed to nicotine (n = 3). Activation maps during AFL showed a single reentrant wavefront in the right atrium that rotated either clockwise (60%) or counterclockwise (40%) around the crista terminalis and through the isthmus. Ablation of the isthmus prevented the induction of AFL. Nicotine caused a significant (P < 0.01) but highly heterogeneous increase in atrial interstitial fibrosis (2- to 10-fold increase in left and right atria, respectively) in the MI group but only a 2-fold increase in the right atrium in the non-MI group. Nicotine also flattened (P < 0.05) the slope of the epicardial monophasic action potential duration (electrical restitution) curve of both atria in the MI but not in non-MI dogs. Two-dimensional simulation in an excitable matrix containing an isthmus and nicotine's restitutional and reduced gap junctional coupling (fibrosis) parameters replicated the experiments. Chronic nicotine in hearts with MI promotes AFL that closely resembles typical human AFL. Increased atrial interstitial fibrosis and flattened electrical restitution are important substrates for the AFL.  相似文献   

18.

Background  

Several lines of evidence point to a particularly important role of the left atrium (LA) in initiating and maintaining atrial fibrillation (AF). This role may be related to the location of pulmonary veins (PVs) in the LA. The aim of the present study was to investigate the action potential (AP) and ionic currents in LA-PV cardiomyocytes isolated from Bio14.6 myopathic Syrian hamsters (36-57 week-old) versus age-matched F1B healthy control hamsters.  相似文献   

19.
Maintenance of paroxysmal atrial fibrillation (AF) by fast rotors in the left atrium (LA) or at the pulmonary veins (PVs) is not fully understood. To gain insight into this dynamic and complex process, we studied the role of the heterogeneous distribution of transmembrane currents in the PVs and LA junction (PV-LAJ) in the localization of rotors in the PVs. We also investigated whether simple pacing protocols could be used to predict rotor drift in the PV-LAJ. Experimentally observed heterogeneities in IK1, IKs, IKr, Ito, and ICaL in the PV-LAJ were incorporated into two- and pseudo three-dimensional models of Courtemanche-Ramirez-Nattel-Kneller human atrial kinetics to simulate various conditions and investigate rotor drifting mechanisms. Spatial gradients in the currents resulted in shorter action potential duration, minimum diastolic potential that was less negative, and slower upstroke and conduction velocity for rotors in the PV region than in the LA. Rotors under such conditions drifted toward the PV and stabilized at the shortest action potential duration and less-excitable region, consistent with drift direction under intercellular coupling heterogeneities and regardless of the geometrical constraint in the PVs. Simulations with various IK1 gradient conditions and current-voltage relationships substantiated its major role in the rotor drift. In our 1:1 pacing protocol, we found that among various action potential properties, only the minimum diastolic potential gradient was a rate-independent predictor of rotor drift direction. Consistent with experimental and clinical AF studies, simulations in an electrophysiologically heterogeneous model of the PV-LAJ showed rotor attraction toward the PV. Our simulations suggest that IK1 heterogeneity is dominant compared to other currents in determining the drift direction through its impact on the excitability gradient. These results provide a believed novel framework for understanding the complex dynamics of rotors in AF.  相似文献   

20.
Chronic rapid atrial pacing (RAP) leads to changes that perpetuate atrial fibrillation (AF). Chronic atrial dilatation due to mitral regurgitation (MR) also increases AF inducibility, but it is not clear whether the underlying mechanism is similar. Therefore, we have investigated atrial electrophysiology in a canine MR model (mitral valve avulsion, 1 mo) using high-resolution optical mapping and compared it with control dogs and with the canine RAP model (6-8 wk of atrial pacing at 600 beats/min, atrioventricular block, and ventricular pacing at 100 beats/min). At followup, optical action potentials were recorded using a 16 x 16 photodiode array from 2 x 2-cm left atrial (LA) and right atrial (RA) areas in perfused preparations, with pacing electrodes around the field of view to study direction dependency of conduction. Action potential duration at 80% repolarization (APD(80)) was not different between control and MR but was reduced in RAP atria. Conduction velocities during normal pacing were not different between groups. However, the MR LA showed increased conduction heterogeneity during pacing at short cycle lengths and during premature extrastimuli, which frequently caused pronounced regional conduction slowing. Conduction in the MR LA during extrastimulation also displayed a marked dependence on propagation direction. These phenomena were not observed in the MR RA and in control and RAP atria. Thus both models form distinctly different AF substrates; in RAP dogs, the decrease in APD(80) may stabilize reentry. In MR dogs, regional LA conduction slowing and increased directional dependency, allowing unidirectional conduction block and preferential paths of conduction, may account for increased AF inducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号