首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative function of IGF-I and insulin on fish muscle metabolism and growth has been investigated by the isolation and culture at different stages (myoblasts at day 1, myocytes at day 4, and myotubes at day 10) of rainbow trout muscle cells. This in vitro model avoids interactions with endogenous peptides, which could interfere with the muscle response. In these cells, the effects of IGF-I and insulin on cell proliferation, 2-deoxyglucose (2-DG), and l-alanine uptake at different development stages, and the use of inhibitors were studied and quantified. Insulin (10-1,000 nM) and IGF-I (10-100 nM) stimulated 2-DG uptake in trout myocytes at day 4 in a similar manner (maximum of 124% for insulin and of 142% for IGF-I), and this stimulation increased when cells differentiated to myotubes (maximum for IGF-I of 193%). When incubating the cells with PD-98059 and especially cytochalasin B, a reduction in 2-DG uptake was observed, suggesting that glucose transport takes place through specific facilitative transporters. IGF-I (1-100 nM) stimulated the l-alanine uptake in myocytes at day 4 (maximum of 239%), reaching higher values of stimulation than insulin (100-1,000 nM) (maximum of 160%). This stimulation decreased when cells developed to myotubes at day 10 (118% for IGF-I and 114% for insulin). IGF-I (0.125-25 nM) had a significant effect on myoblast proliferation, measured by thymidine incorporation (maximum of 170%), and required the presence of 2-5% fetal serum (FBS) to promote thymidine uptake. On the other hand, insulin was totally ineffective in stimulating thymidine uptake. We conclude that IGF-I is more effective than insulin in stimulating glucose and alanine uptake in rainbow trout myosatellite cells and that the degree of stimulation changes when cells differentiate to myotubes. IGF-I stimulates cell proliferation in this model of muscle in vitro and insulin does not. These results indicate the important role of IGF-I on growth and metabolism of fish muscle.  相似文献   

2.
We examined the possibility of culturing muscle cells of gilthead sea bream in vitro and assessed variations in insulin-like growth factor-I (IGF-I) binding during myocyte development. The viability of the cell culture was determined by fluorescence-activated cell-sorting analysis, which showed that the percentage of dead cells decreased with cell differentiation. The intracellular reduction of MTT into formazan pigment was preferentially carried out as cells differentiated (from day 4) indicating an increase in metabolic activity. IGF-I-binding assays demonstrated that the number of receptors increased from 190  ±  0.09 fmol/mg protein in myocytes at day 5 to 360 ± 0.09 fmol/mg protein in myotubes at day12. The affinity of IGF-I receptors did not change significantly during cell development (from 0.89 ± 0.09 to 0.98 ± 0.09 nM). The activation of various kinase (ERK 1/2 MAPK and Akt/PKB) proteins by IGFs and insulin was studied by means of Western blot analysis. Levels of MAPK-P increased after IGF and insulin treatment during the first stages of cell culture, with a low response being observed at day 15, whereas IGFs displayed a stimulatory effect on Akt-P throughout the cell culture period, even on day 15. This study thus shows that (1) gilthead sea bream myocytes can be cultured, (2) they express functional IGF-I receptors that increase in number as they differentiate in vitro; (3) IGF signalling transduction through IGF-I receptors stimulates the MAPK and Akt pathways, depending on the development stage of the muscle cell culture. This work was supported by grant AGL2004–06319-C02/ACU from the Ministerio de Educación y Ciencia to I.N. and grant (CRA)-2004 303038/2.2 from the Centre de Referència en Aqüicultura to J.G.  相似文献   

3.
In this study, primary cultures of trout skeletal muscle cells were used to investigate the main signal transduction pathways of insulin and IGF-I receptors in rainbow trout muscle. At different stages of in vitro development (myoblasts on day 1, myocytes on day 4, and fully developed myotubes on day 11), we detected in these cells the presence of immunoreactivity against ERK 1/2 MAPK and Akt/PKB proteins, components of the MAPK and the phosphatidylinositol 3-kinase-Akt pathways, respectively, two of the main intracellular transduction pathways for insulin and IGF-I receptors. Both insulin and IGF-I activated both pathways, although the latter provoked higher immunoreactivity of phosphorylated MAPKs and Akt proteins. At every stage, increases in total MAPK immunoreactivity levels were observed when cells were stimulated with IGF-I or insulin, while total Akt immunoreactivity levels changed little under stimulation of peptides. Total Akt and total MAPK levels increased as skeletal muscle cells differentiated in culture. Moreover, when cells were incubated with IGF-I or insulin, MAPK-P immunoreactivity levels showed greater increases over the basal levels on days 1 and 4, with no effect observed on day 11. Although Akt-P immunoreactivity displayed improved responses on days 1 and 4 as well, a stimulatory effect was still observed on day 11. In addition, the present study demonstrates that purified trout insulin receptors possess higher phosphorylative activity per unit of receptor than IGF-I receptors. In conclusion, these results indicate that trout skeletal muscle culture is a suitable model to study the insulin and IGF-I signal transduction molecules and that there is a different regulation of MAPK and Akt pathways depending on the developmental stage of the muscle cells.  相似文献   

4.
Receptors for vasoactive intestinal peptide (VIP) have been characterized in rat lymphoid cells. The interaction of [125I] VIP with blood mononuclear cells was rapid, reversible, specific and saturable. At apparent equilibrium, the binding of [125I] VIP was competitively inhibited by native VIP in the 0.01-100 nM range concentration. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.050 +/- 0.009 nM and a low binding capacity (2.60 +/- 0.28 fmol/10(6) cells), and a low-affinity class with a Kd = 142 +/- 80 nM and a high binding capacity (1966 +/- 330 fmol/10(6) cells). Secretin, glucagon, insulin and somatostatin did not show any effect at a concentration as high as 100 nM. With spleen lymphoid cells, stoichiometric studies were performed. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.100 +/- 0.033 nM and a low binding capacity (4.60 +/- 1.07 fmol/10(6) cells), and low-affinity class with a Kd = 255 +/- 110 nM and high binding capacity (2915 +/- 1160 fmol/10(6) cells). With thymocytes, no binding was obtained under different conditions.  相似文献   

5.
Competitive binding studies indicated that PC12 cells have receptors for insulin-like growth factor-I (IGF-I). There are approximately 11,000 +/- 1,500 IGF-I receptors/cell; these receptors have an apparent KD for IGF-I of 7.2 +/- 0.6 nM. Covalent cross-linking of 125I-IGF-I to PC12 cells labeled a 125,000-130,000-Mr protein, presumably the alpha-subunit of the IGF-I receptor. Although PC12 cells also have insulin receptors, the 125I-IGF-I appeared to be cross-linked to IGF-I receptors, because 100 nM IGF-I competed for labeling but 100 nM insulin did not. Bovine chromaffin cells also have IGF-I receptors. The protein tyrosyl kinase activity of IGF-I receptors from bovine adrenal medulla and PC12 cells was examined after purification of the receptors by wheat germ agglutinin-Sepharose chromatography. IGF-I (10 nM) stimulated autophosphorylation of the beta-subunits of the IGF-I receptors from both preparations; the beta-subunits from both sources had Mr values of approximately 97,000. IGF-I also stimulated phosphorylation of the synthetic substrate poly(Glu:Tyr)4:1 by both receptor preparations. IGF-I (IC50 of approximately 0.2 nM) was much more potent than insulin at stimulating phosphorylation of poly(Glu:Tyr) by the bovine adrenal medulla preparation. A maximal concentration of IGF-I (10 nM) increased phosphorylation approximately threefold. IGF-I was slightly more effective than insulin at stimulating the phosphorylation of poly(Glu:Tyr) by the PC12 cell receptor preparation, but neither ligand produced a maximal effect at concentrations up to 100 nM. This result probably reflects the presence of comparable numbers of IGF-I and insulin receptors on PC12 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Frog, Rana esculenta, pituitary and testis gonadotropin-releasing hormone (GnRH) receptors were characterized by using 125I-chicken IIGnRH (cIIGnRH) as radiolabeled ligand. At 4 C equilibrium binding of 125I-cIIGnRH to pituitary homogenates was achieved after 90 min of incubation; binding of 125I-cIIGnRH to testis membrane fractions reached its maximum at 60 min of incubation. Binding of the radioligand was a function of tissue concentration, with a positive correlation over the range 0.5-2 tissue equivalents per tube. One pituitary and one testis per tube were used as standard experimental condition. Incubation of the pituitary homogenate with increasing concentrations of 125I-cIIGnRH indicated saturable binding at radioligand concentrations of 1 nM and above while for the testis membrane preparation saturation was achieved using 5 nM 125I-cIIGnRH. The binding of 125I-cIIGnRH was found to be reversible after addition of the cold analog and the displacement curves could be resolved into one linear component for both tissues. Scatchard analysis suggested the presence of one class of binding sites for both pituitary and testis (Pituitary: Kd = 1.25 +/- 0.14 nM and Bmax = 8.55 +/- 2.72 fmol/mg protein; testis: Kd = 2.23 +/- 0.89 nM and Bmax = 26.48 +/- 7.39 fmol/mg protein). Buserelin displaced the labeled 125I-cIIGnRH with a lower IC50 as compared with cIIGnRH cold standard, while Arg-vasopressin (AVP) was completely ineffective, confirming the specificity of binding.  相似文献   

7.
Gonadal steroids in the salmonid brain, acting through cellular receptors, may be responsible for the modulation of neuronal activity and organization of reproductive behaviors. We report our findings on the use of [3H]17beta-estradiol (E2) to identify intracellular estrogen receptors (ERs) in the hypothalamus of juvenile rainbow trout, Oncorhynchus mykiss. Specific binding (B(SP)) of [3H]E2 was tissue dependent between 0.5 and 2.25 hypothalamus equivalents for cytosol and nuclear extract preparations, respectively. B(SP) in cytosol fractions increased with time and reached maximum levels (4.18 nM) at 2.5 h incubation; by contrast, B(SP) in nuclear extract increased with time to achieve maximum levels (3.9 nM) by 2 h incubation. The association rate constants (k(+1)) for cytosol and nuclear extract preparations were 1.10 +/- 0.02 x 10(8) M(-1) min(-1) and 1.27 +/- 0.04 x 10(8) M(-1) min(-1), respectively. Equilibrium bound B(SP) dissociated from cytosol preparations with a half life (t1-2) of 42 min and a dissociation rate constant (k(-1)) of 1.01 +/- 0.03 min(-1). B(SP) dissociated from nuclear extract preparations with a t1-2 = 45 min and k(-1)= 0.92 +/- 0.01 min(-1) x B(SP) was saturable in both extract preparations with a calculated equilibrium dissociation constant (Kd) of 1.46 +/- 0.1 nM (cytosol) and 2.37 +/- 0.2 nM (nuclear), and a maximum number of binding sites (B(MAX)) of 50.85 +/- 3.2 fmol mg(-1) protein and 61.74 +/- 2.65 fmol mg(-1) protein, respectively. In both preparations, B(SP) was differentially displaced by structurally similar compounds with a rank order of potency of E2 > estrone > estriol > 17alpha-ethynyl estradiol > testosterone > progesterone = tamoxifen > cortisol > dexamethasone > > beta-sitosterol. These properties of specifically bound [3H]E2 suggest the presence of an ER in the hypothalamus of juvenile rainbow trout comparable with ERs identified in salmonid liver.  相似文献   

8.
A new technique was developed to characterize the binding of a hydrophilic beta-adrenergic antagonist, [3H]CGP-12177, to 1-mm thick slices of canine cardiac tissue. This technique was used to quantify the density (Bmax) and the affinity (Kd) of these receptors in the right ventricular conus (RVC) and the left ventricle (LV) at day 1 to 6 weeks of age, and in the adult. Binding was found to be reversible, saturable, stereospecific, of high affinity, and thermolabile. There was an increase in the density of beta-adrenergic receptors between day 1 (Bmax = 2.2 +/- 0.3 fmol/mg tissue in RVC and 2.9 +/- 0.8 fmol/mg tissue in the LV) and 2 weeks of age postnatally, after which it remained constant until 6 weeks of age (Bmax = 7.5 +/- 0.4 and 6.8 +/- 0.9 fmol/mg tissue in RVC and LV, respectively); however, by 6 weeks of age it had not reached adult levels (10.3 +/- 1.0 fmol/mg tissue). The affinity of these receptors did not change between early neonatal life (Kd = 1.3 +/- 0.4 nM) and adulthood (Kd = 1.4 +/- 0.2 nM). The density of beta-adrenergic receptors in the RVC was similar to that in the LV. This new method of quantifying beta-adrenergic receptors in cardiac tissue is simple and fast, and requires minimal tissue handling. It proved to be useful in studying the development of cardiac beta-adrenergic receptors with age.  相似文献   

9.
Nicotine induced a phasic contraction in the rabbit urinary bladder. The response was abolished by hexamethonium and partially reduced by atropine and capsaicin. Simultaneous atropine and capsaicin treatment did not abolish the contraction. These findings suggest that the response to nicotine is due to acetylcholine, tachykinins, and unknown mediator release. In contrast, nicotine-induced contraction diminished following the chronic nicotine treatment without a change of its pharmacological properties. These results suggest the possibility that chronic nicotine treatment causes a decrease in nicotinic receptor numbers. Therefore, the binding properties of (-)-[3H]nicotine on rabbit urinary detrusor muscle membrane fractions were studied to evaluate the effects of chronic nicotine treatment on nicotinic receptors. Specific (-)-[3H]nicotine binding reached saturation and Scatchard plots were curvilinear, suggesting the existence of two different affinity sites for (-)-[3H]nicotine. Dissociation constants (KD) and maximum binding sites (Bmax) were KD1 = 4.91 +/- 1.88 nM, Bmax1 = 2.42 +/- 0.22 fmol/mg protein and KD2 = 263 +/- 56 nM, Bmax2 = 25.0 +/- 4.3 fmol/mg protein. In urinary bladder membrane fractions from chronic nicotine-treated rabbits, KD and Bmax values were KD1 = 3.96 +/- 0.38 nM, Bmax1 = 1.07 +/- 0.25 fmol/mg protein and KD2 = 249 +/- 12 nM, Bmax2 = 10.8 +/- 1.5 fmol/mg protein. Dissociation constants for both sites following chronic nicotine treatment did not change but maximum binding site numbers for both sites significantly decreased (p less than 0.05). These results suggest that the decrease in contractile response evoked by nicotine after chronic nicotine treatment in rabbit urinary bladder is due to a decrease in numbers of nicotinic receptors.  相似文献   

10.
We have studied insulin-like-growth-factor (IGF) binding in two subclones of the C2 myogenic cell line. In the permissive parental subclone, myoblasts differentiate spontaneously into myotubes in medium supplemented with fetal calf serum. Unlike permissive myoblasts, inducible myoblasts require high concentrations of insulin (1.6 microM) or lower concentrations of IGF-I (25 nM) to differentiate, and expression of MyoD1 is not constitutive. IGF receptors were studied in microsomal membranes of proliferating and quiescent myoblasts and myotubes. IGF-II binding was also studied in inducible myoblasts transfected with the MyoD1 cDNA (clone EP5). Both inducible and permissive cells exhibited a single class of binding sites with similar affinity for IGF-I (Kd 0.8-1.2 nM). Affinity cross-linking of [125I]IGF-I to microsomal membranes, under reducing conditions, revealed a binding moiety with an apparent molecular mass of 130 kDa in permissive cells and 140 kDa in inducible cells, which corresponded to the alpha subunit of the IGF-I receptor. In permissive quiescent myoblasts, linear Scatchard plots suggested that [125I]IGF-II bound to a single class of binding sites (Kd 0.6 nM) compatible with binding to the IGF-II/M6P receptor. This was confirmed by affinity cross-linking experiments showing a labeled complex with an apparent molecular mass of 260 kDa and 220 kDa when studied under reducing and non-reducing conditions, respectively. In contrast, competitive inhibition of [125I]IGF-II binding to inducible quiescent myoblasts generated curvilinear Scatchard plots which could be resolved into two single classes of binding sites. One of them corresponded to the IGF-II/M6P receptor (Kd 0.2 nM) as evidenced by cross-linking experiments. The second was the binding site of highest affinity (Kd 0.04 nM) which was less inhibited by IGF-I than by IGF-II and was not inhibited by insulin. It migrated in SDS/PAGE at a position equivalent a molecular mass of 140 kDa, under reducing conditions, and at approximately 300 kDa, under non-reducing conditions. The labeling of this atypical binding moiety was not inhibited by anti(IGF-II/M6P-receptor) immunoglobulin. It was also observed in permissive and inducible myoblasts at proliferating stage. It was absent for permissive quiescent myoblasts and from permissive and inducible myotubes. Forced expression of MyoD1 in inducible cells (EP5 cells) dramatically reduced [125I]IGF-II binding to this atypical receptor. It emerges from these experiments that C2 cells express a putative alpha 2 beta 2 IGF-II receptor structurally related to the insulin/IGF-I receptor family. It is present in myoblasts but not in myotubes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The binding and displacement of beta-adrenoceptor blockers, [3H]propranolol ([3H]PRP) and [3H]dihydroalprenolol ([3H]DHA), were studied on isolated rat erythrocytes, their membranes and ghosts; the binding of [3H]DHA and a M-cholinoceptor blocker, [3H]quinuclidinylbenzylate ([3H]QNB), on cerebral cortex membranes. In all experiments, ligand-receptor interactions conformed to a model of two pools of receptors in the same effector system and the binding of two ligand molecules to the receptor. The results were similar for the displacement of [3H]PRP, [3H]DHA and [3H]QNB with propranolol, dihydroalprenolol and quinuclidinyl-benzylate, respectively. The parameters of [3H]PRP to beta-adrenoceptor binding for intact erythrocytes were: Kd1 = 0.74+/-0.07 nM, Kd2 = 14.40+/-0.41 nM, B1 = 24+/-2 unit/cell, B2 = 263+/-5 unit/cell; for ghosts, Kd1 = 0.70+/-0.17 nM, Kd2 = 19.59+/-2.59 nM, B1 = 9+/-1 fmol/mg protein, B2 = 39+/-4 fmol/mg protein. Receptor affinities were similar in erythrocytes and ghosts; on the ghost membrane, the number of receptors was considerably lower (B1 = 2 unit/cell, B2 = 6 unit/cell). The parameters of [3H]QNB to M-cholinoceptor binding of the cerebral cortex membrane were the following: Kd1 = 0.43 nM, Kd2 = 2.83 nM, B1 = 712 fmol/mg, B2 = 677 fmol/mg.  相似文献   

12.
Erythrocyte insulin-like growth factor I (IGF-I) and insulin receptors were characterized in 10 normal prepubertal children (5 girls and 5 boys) aged 4-11 yrs and 10 normal adults (4 women and 6 men) aged 32-47 yrs. erythrocytes were purified from 5 ml of blood by Ficoll-Paque gradient centrifugation. Reticulocytes count in the erythrocyte suspensions were lower than 1%. Insulin and IGF-I binding assays were performed simultaneously. Maximal percent binding of [125I] labelled IGF-I was significantly higher in prepubertal children than in adults (8.7 +/- 0.7% versus 6.2 +/- 0.5% at a concentration of 5 x 10(9) erythrocytes/ml). Scatchard analysis revealed the high affinity constant was better in prepubertal children (Ka = 4.6 +/- 1.3 nM-1 versus 1.8 +/- 0.2 nM-1), whereas the binding capacity was similar (5.8 +/- 1.1 versus 7.7 +/- 0.8 high affinity binding sites/cell). In both groups, unlabelled IGF-I inhibited tracer-binding half maximally at about 1 nM. Insulin was 100-fold less potent. In adults, specific binding of [125I] labelled IGF-I was higher in women (7.6 +/- 0.7%) than in men (5.3 +/- 0.4%). No significant difference was observed in maximal specific binding of [125I] labelled insulin between prepubertal children (8.2 +/- 0.5%) and adults (7.2 +/- 0.7%). In both groups, competition by unlabelled insulin for [125I] labelled insulin binding gave 50% displacement for approximately 0.25 nM and IGF-I was about 80-fold less potent. Both IGF-I and insulin binding parameters were not significantly correlated with plasma hormone levels. In prepubertal children, the high-affinity IGF-I receptors number decreased with increasing high-affinity insulin receptors number.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Binding of insulin and insulin-like growth factor-I (IGF-I) to the choroid plexus was quantitatively characterized using autoradiography and computer densitometry. Slide-mounted brain slices were incubated in 0.1 nM [125I]-insulin or [125I]-[Thr59]IGF-I. To determine specificity of the binding sites, the labeled peptides were mixed with unlabeled analogues. Autoradiography was done with LKB Ultrofilm and analyzed with a computer image analysis system and program for densitometry. Results showed that binding was time and temperature dependent and reversible. Binding of the iodinated insulin and IGF-I was inhibited by unlabeled peptides in a dose-dependent manner. The rank order of potency of these peptides in competing for the choroid plexus iodoinsulin binding sites was: chicken insulin greater than porcine insulin greater than desoctapeptide insulin greater than IGF-I. IGF-I was more potent than porcine insulin in competing for the choroid plexus iodolGF-I binding sites. Somatostatin was ineffective. Non-linear regression analysis revealed the presence of high- (Kd 1.3 +/- 0.2 nM) and low-affinity (Kd 36 +/- 1.4 nM) binding sites for insulin and a single high-affinity binding site (Kd 3.1 +/- 0.3 nM) for IGF-I in the choroid plexus. There were approximately 50 times more binding sites (Bmax) for IGF-I than for insulin high-affinity sites, whereas the number of low-affinity sites for insulin was about equal to the number of IGF-I high-affinity sites. The results of these binding studies with iodinated insulin and [Thr59]IGF-I support the conclusion that the rat choroid plexus has separate high-affinity receptors for insulin and IGF-I, and that the IGF-I receptors outnumber the insulin receptors.  相似文献   

14.
Subhash MN  Srinivas BN  Vinod KY 《Life sciences》2002,71(13):1559-1567
The in vivo effect of trazodone on the density of [(3)H]5-HT binding sites and 5-HT(1A) receptors and adenylyl cyclase (AC) response was studied in regions of rat brain. The chronic administration of trazodone (10 mg/Kg body wt, 40 days) resulted in a significant downregulation of [(3)H]5-HT binding sites and 5-HT(1A) receptors in cortex and hippocampus. Trazodone significantly (p < 0.0001) decreased the density of [(3)H]5-HT binding sites in cortex (42.6 +/- 3.6 fmol/mg protein, 65%) and hippocampus (12.6 +/- 1.6 fmol/mg protein, 87%) when compared to control values of 121.9 +/- 5.4 and 99.3 +/- 7.5 fmol/mg protein in these regions, respectively. Similarly there was a significant (p < 0.0001) decrease in the density of 5-HT(1A) receptors in both cortex (7.2 +/- 0.5 fmol/mg protein, 70%) and hippocampus (6.3 +/- 1.2 fmol/mg protein, 79%) when compared to control values of 24.2 +/- 2.1 and 30.6 +/- 3.7 fmol/mg protein, in these regions respectively. However, the affinity of [(3)H]5-HT to 5-HT binding sites (1.83 +/- 0.26 nM, p < 0.0001) and [(3)H]8-OH-DPAT to 5-HT(1A) receptors (0.60 +/- 0.06 nM, p < 0.05) was significantly decreased only in cortex when compared to the control K(d) values of 0.88 +/- 0.04 nM and 0.47 +/- 0.02 nM in these regions, respectively.The basal AC activity did not alter in treated rats, where as, the inhibition of forskolin-stimulated AC activity by 5-HT (10 microM) was significantly (p < 0.0001) decreased both in cortex (43%) and hippocampus (40%) when compared to control levels. In conclusion, chronic treatment with trazodone results in downregulation of 5-HT(1A) receptors in cortex and hippocampus along with concomitant increased AC response, suggesting the involvement of 5-HT(1A) receptor-mediated AC response in the mechanism of action of trazodone.  相似文献   

15.
In the present study adrenergic receptors have been investigated in liver parenchyma, obtained at the resection of extrahepatic portal hypertension children without parenchymal affection (control group, n-7) and the resection of children in parenchymal affection (group of chronic hepatitis children, n-6). It has been shown, that the binding of beta-adrenergic radioligand 3H-dihydroalprenolol (3H-DHA) in liver parenchyma membranes of both control and chronic hepatitis groups was saturable and showed high affinity. The Scatchard analysis of the binding data indicated that the binding site was characterized by Kd and Bmax of 1.2 +/- 0.5 nM, 261.2 +/- 50 fmol/mg, respectively, for the control group; and 0.9 +/- 0.15 nM, 68.5 +/- 18.8 fmol/mg, respectively, for the group of chronic hepatitis patients; (mean+SEM). The binding of alpha 1-adrenergic antagonist 3H-prazosin (3H-PRZ) in liver parenchyma was also saturable and showed high affinity. The binding site is characterized by Kd = 0.6 +/- 0.12 nM, Bmax = 92.8 +/- 8.0 fmol/mg, for the control group; and Kd = 0.8 +/- 0.15 nM, Bmax = 195.0 +/- 22.0 fmol/mg, for the group of chronic hepatitis. It has been found that the number of binding sites of 3H-DHA significantly decreased and the number of binding sites of 3H-PRZ did not change in chronic hepatitis liver parenchyma in comparison with the control group. The results obtained suggest the important role of beta-adrenergic receptors in the pathogenesis of chronic hepatitis and in liver regeneration in children.  相似文献   

16.
D P Geraghty  E Burcher 《Peptides》1992,13(2):409-411
Binding sites for [125I]-Bolton-Hunter substance P (BHSP) were investigated in homogenates of rat submandibular gland, colon smooth muscle, and urinary bladder. In vehicle-treated animals, the equilibrium dissociation constant (KD) was similar for both submandibular gland (0.46 +/- 0.03 nM) and colon (0.57 +/- 0.04 nM), although the maximum density of binding sites (Bmax) was about six-fold higher in submandibular gland compared with colon. These binding parameters remained unchanged in capsaicin-pretreated animals (140 mg/kg IP). In contrast, capsaicin pretreatment reduced (p less than 0.05) the Bmax in urinary bladder by twenty-five percent (0.56 fmol/mg wet weight) when compared to vehicle-treated controls (0.73 fmol/mg wet weight), although the KD was unchanged (vehicle, 0.29 +/- 0.08 nM; capsaicin, 0.24 +/- 0.04 nM). These data demonstrate that the NK1 receptors in submandibular gland and colon smooth muscle are not associated with or dependent upon intact primary afferent sensory neurons. However, a minority of NK1 receptors in the urinary bladder were lost after capsaicin, indicating that these receptors are located on sensory terminals, or may be dependent on growth factors or other chemicals released from these nerves.  相似文献   

17.
Oligodendrocyte progenitor cells were prepared by mechanical dissociation of 1-day-old rat brain cultures. These cells undergo proliferation and differentiation into oligodendrocytes as demonstrated by the expression of proliferation and differentiation-related specific antigens. We have used this unique culture system to characterize insulin-like growth factor I (IGF-I) receptors and their action in the central nervous system (CNS). 125I-IGF-I specifically binds to these cultures with high affinity. Competition-inhibition data suggest that IGF-I is most potent in competing for 125I-IGF-I binding, followed by IGF-II and insulin. Scatchard analyses of the binding data indicate a curvilinear plot with a Kd for high affinity of 0.2 nM, and a Bmax of 247 fmol/mg, and a Kd for low affinity of 3.2 nM and Bmax of 1213 fmol/mg protein. Covalent cross-linking followed by SDS-PAGE analysis demonstrated a radioactive band of Mr 135,000 which corresponds to the alpha subunit of the IGF-I receptor. Solution hybridization/RNase protection assay produced a single protected band corresponding to IGF-I receptor messenger RNA, further confirming the presence of these receptors. Incubation of progenitor cells with IGF-I resulted in a time- and concentration-dependent increase in [3H]thymidine incorporation and cell numbers. This effect appears to be mediated by IGF-I receptors since IGF-II and insulin were proportionately less potent. In addition to its effect on proliferation, IGF-I also increased the number of 4E7- and GC-antigen positive cells. These observations indicate that oligodendrocytes in primary culture express specific IGF-I receptors and that the interaction of IGF-I with these receptors results in the proliferation as well as differentiation of oligodendrocytes.  相似文献   

18.
High affinity receptors for angiotensin II have been identified on purified cardiac sarcolemmal membranes. Equilibrium binding studies were performed with 125I-labeled angiotensin II and purified sarcolemmal vesicles from calf ventricle. The curvilinear Scatchard plots were evaluated by nonlinear regression analysis using a two-site model which identified a high affinity site Kd1 = 1.08 +/- 0.3 nM and N1 = 52 +/- 10 fmol/mg of protein and a low affinity site Kd2 = 52 +/- 16 nM and N2 = 988 +/- 170 fmol/mg of protein. Monovalent and divalent cations inhibited the binding of 125I-angiotensin II by 50%. The affinity of angiotensin II analogs for the receptor was determined using competitive binding assays; sarcosine, leucine-angiotensin II (Sar,Leu-angiotensin II), Kd = 0.53 nM; angiotensin II, Kd = 2.5 nM; des-aspartic acid-angiotensin II, Kd = 4.81 nM; angiotensin I, Kd = 77.6 nM. There is a positive correlation between potency in inducing positive inotropic response in myocardial preparations reported by others and potency for the hormone receptor observed in the binding assays. Pseudo-Hill plots of the binding data showed that agonists display biphasic binding with Hill numbers around 0.65 while antagonists recognized a single class of high affinity receptors with Hill numbers close to unity. These data were confirmed using 125I-Sar,Leu-angiotensin II in equilibrium binding studies which showed that this antagonist bound to a single class of receptor sites; Kd = 0.42 +/- 0.04 nM and N = 1050 +/- 110 fmol/mg of protein. Competition-binding experiments with this 125I-peptide yielded monophasic curves with Hill numbers close to unity for both agonists and antagonists. Membrane-bound 125I-angiotensin II was covalently linked to its receptor by the use of bifunctional cross-linking reagents such as dithiobis(succinimidyl propionate) and bis[2-(succinimidooxycarbonyloxy)ethyl]sulfone. Analysis of the membranes showed the labeling of a component with an apparent Mr = 116,000. The affinity labeled species showed characteristics expected of a functional component of the high affinity receptor. The affinity labeling of this membrane component was inhibited by nanomolar angiotensin II or Sar,Leu-angiotensin II. Together these data indicate that high affinity receptors exist for angiotensin II that most likely mediate the positive inotropic effects of this hormone on myocardial cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Steroid binding sites with high affinity for progesterone (Kd=40+/-14 nM determined by binding, and Kd=71+/-22 nM determined by displacement studies) and lower affinity for 21-hydroxyprogesterone and for testosterone, but no affinity for estradiol-17beta, onapristone and alpha-naphthoflavone were detected in the enriched plasma membrane fraction of the fungus Rhizopus nigricans. The amount of steroid binding sites is in accordance with the value of B(max)=744+/-151 fmol (mg protein)(-1). In the membrane fraction, progesterone induced about 30% activation of G proteins over basal level, as determined by GTPase activity (EC50=32+/-8 nM) and by the guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding rate (EC50=61+/-21 nM). The affinity of receptors for progesterone was substantially decreased in the presence of GTPgammaS and of cholera toxin. Our results suggest the existence of progesterone receptors in the membrane of Rhizopus nigricans and their coupling to G proteins.  相似文献   

20.
We have discovered that endothelin-1 (ET-1) vasoconstriction is significantly enhanced in aortas of young (8-16-week-old) apolipoprotein E-deficient (ApoE-/-) mice devoid of atherosclerotic lesions (maximum response expressed as a percentage of the mean response to 100 mM KCl (E(MAX)) = 55.7% +/- 19.5% KCl, n = 5) compared to age-matched C57BL/6/J control animals (E(MAX) = 12.6% +/- 2.5% KCl, n = 8), indicating that alterations in the endothelin system may contribute to disease progression, at least in this animal model. There was no difference in the potency of ET-1 to contract aorta from the two groups (C57BL/6/J pD2 = 8.74 +/- 0.30; ApoE-/- pD2 = 8.50 +/- 0.15, P > 0.05). This increased response was specific to ET-1, as it was not observed with phenylephrine or U46619, nor was it due to a non-receptor mediated increase in contractile sensitivity, as there was no change in response to KCl between the two groups. [125I]ET-1 bound with subnanomolar affinity (K(D)) to aorta (K(D) = 0.018 +/- 0.002 nM, n = 4) and, with an order of magnitude lower affinity, to heart (K(D) = 0.47 +/- 0.05, n = 5) of C57BL/6/J mice with binding densities (B(MAX)) of 9.3 +/- 2.4 fmol mg(-1)protein and 100 +/- 14 fmol mg(-1) protein, respectively. Alterations in vascular reactivity to ET-1 could not be explained by increased endothelin receptor density or affinity, as these were not altered in aorta (K(D) = 0.011 +/- 0.003 nM; B(MAX) = 10.1 +/- 3.9 fmol mg(-1), n = 4) and heart (K(D) = 0.43 +/- 0.04 nM; B(MAX) = 115 +/- 26 fmol mg(-1), n == 6) of ApoE-/- animals. The ratio of ET(A) to ET(B) receptors in heart of control and ApoE-/- mice was similar, comprising 89% and 85% ET(A) receptors, respectively. In isolated aorta from ApoE-/- mice on the Western diet, which more closely resembled more advanced stages of the disease in man, the augmented ET-1 vasoconstrictor response was maintained (E(MAX) = 25.2% +/- 6.8% KCl, n = 9); however, it was completely prevented in animals that had received 10 weeks of oral atorvastatin (30 mg kg(-1) day(-1)) (E(MAX) = 4.0% +/- 1.5% KCl, n = 5), a concentration that was chosen because it did not affect plasma cholesterol and triglyceride levels. Therefore, this protective prevention of enhanced ET-1 vasoconstriction in ApoE-/- mice by atorvastatin was independent of its lipid-lowering properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号