首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) reacts with superoxide to produce peroxynitrite, a potent oxidant and reportedly exerts cytotoxic action. Herein we validated the hypothesis that interaction of NO with superoxide exerts protection against superoxide toxicity using macrophages from mice with a knockout (KO) of inducible NO synthase (NOS2) and superoxide dismutase 1 (SOD1), either individually or both. While no difference was observed in viability between wild-type (WT) and NOS2KO macrophages, SOD1KO and SOD1-and NOS2-double knockout (DKO) macrophages were clearly vulnerable and cell death was observed within four days. A lipopolysaccharide (LPS) treatment induced the formation of NOS2, which resulted in NO production in WT and these levels were even higher in SOD1KO macrophages. The viability of the DKO macrophages but not SOD1KO macrophages were decreased by the LPS treatment. Supplementation of NOC18, a NO donor, improved the viability of SOD1KO and DKO macrophages both with and without the LPS treatment. The NOS2 inhibitor nitro-l-arginine methyl ester consistently decreased the viability of LPS-treated SOD1KO macrophages but not WT macrophages. Thus, in spite of the consequent production of peroxynitrite in LPS-stimulated macrophages, the coordinated elevation of NO appears to exert anti-oxidative affects by coping with superoxide cytotoxicity upon conditions of inflammatory stimuli.  相似文献   

2.
Enhanced cardiac generation of peroxynitrite contributes to septic cardiomyopathy. Since matrix metalloproteinases (MMPs) are activated in vitro by peroxynitrite, we hypothezised that MMPs may contribute to cardiac mechanical dysfunction in sepsis. Rats were injected (i.p.) with either lipopolysaccharide (LPS, 4mg/kg) or vehicle. MMP inhibitors, either Ro 31-9790 (20 mg/kg), doxycycline (4mg/kg), or vehicle were administered i.p. 30 min after LPS. At 6 h, when the symptoms of endotoxemia peak, hearts were excised and perfused as working hearts with Krebs-Henseleit buffer at 37°C. Cardiac work (cardiac output x peak systolic pressure product) was measured. Perfusate and ventricle samples were analyzed by gelatin zymography to quantify MMP activity.Cardiac function was significantly depressed in LPS-treated rats compared to control rats (control: 55 ± 4, LPS: 26 ± 6 mmHg*mL*min–1). LPS also caused a loss of 72 kDa MMP-2 activity in the ventricles and the perfusate. Although MMP-9 activity was not detected in the ventricles, LPS resulted in an increase in perfusate 92 kDa MMP-9 activity. The MMP inhibitors significantly improved cardiac function of LPS-treated rats (Ro31-9790: 38 ± 3, doxycycline: 51 ± 3 mmHg*mL*min–1), had no effect on the loss of MMP-2 activity, and significantly reduced the MMP-9 activity in the perfusate. These results demonstrate, for the first time, that LPS induced cardiac dysfunction is associated with a loss in ventricular MMP-2 activity and the release of MMP-9 from the heart. MMP inhibitors can significantly preserve cardiac mechanical function during septic shock.  相似文献   

3.
S Sethi  P Sharma  M Dikshit 《Nitric oxide》2001,5(5):482-493
Previous studies from this lab have shown NO-mediated modulation of free radical generation from polymorphonuclear leukocytes (PMNs), following hypoxic-reoxygenation as well as in the normoxic cells. The present study is an attempt to investigate further the regulation of NO and free radical generation in the lipopolysaccharide (LPS)-treated PMNs. PMNs were isolated from the rat blood and peritoneal cavity, 4 h after LPS (1 mg/kg, i.p.) treatment. Nitric oxide synthase (NOS) activity and nitrite content were increased in the peripheral and peritoneal PMNs following LPS treatment. An increase in the apparent V(max) for l-arginine uptake was also observed in the LPS-treated peripheral PMNs, while peritoneal PMNs exhibited increase in both apparent V(max) and affinity for l-arginine. Synthesis of nitrite did not augment after increasing the availability of substrate to control PMNs, however, peripheral and peritoneal PMNs from LPS-treated rats utilized l-arginine more efficiently for nitrite synthesis. NOS activity, l-arginine uptake, and its utilization were maximal in the peritoneal PMNs. Arachidonic acid (AA, 1 x 10(-6) M)-induced free radical generation from PMNs was also enhanced significantly after LPS treatment. Preincubation of PMNs with nitrite elevated the free radical generation and myeloperoxidase (MPO) release. MPO and antioxidant enzyme activity in the PMNs was significantly augmented after LPS treatment. NOS inhibitors, aminoguanidine and 7-nitroindazole, inhibited arachidonic acid-induced free radical generation from LPS treated PMNs. The results obtained thus indicate that augmentation of free radical generation from rat PMNs following LPS treatment appears to be regulated by NO and MPO.  相似文献   

4.
Recent studies have shown that some nonsteroidal antiinflammatory drugs (NSAIDS) inhibited the inducible NO synthase (iNOS) without direct effect on the catalytic activity of this enzyme. This study was conducted to investigate the in vitro and in vivo effects of lysine clonixinate (LC) and indomethacin (INDO) on NOS activity in rat lung preparation. LC is a drug with antiinflammatory, antipyretic, and analgesic action. In the in vitro experiments, rats were injected with saline or lipopolysaccharide (LPS) and killed 6 h after treatment. Lung preparations were incubated with LC at 2.3 x 10(-5) M or 3.8 x 10(-5) M. The minimum concentration did not modify NOS activity in control or LPS-treated rats but the maximum dose inhibited increased NO production induced by LPS. Furthermore, INDO at 10(-6) M had no effect on enzymatic activity in control or LPS-treated rats. In the in vivo experiments, 40 mg/kg of LC were injected ip. Such a dose did not affect basal production of NO. When LC and LPS were injected simultaneously 6 h before sacrifice, a significant decrease in LPS-induced NOS activity was observed. INDO 10 mg/kg injected in control animals had no effect on NOS activity and did not block LPS induced stimulation of NO production when injected simultaneously. Finally, when LC (40 mg/kg) was injected 3 h after LPS, the enzymatic activity remained unchanged. Expression of iNOS was detected by Western blotting in rats treated with LPS plus 4, 10, 20, and 40 mg/kg of LC. The lowest dose was the only one showing no effect on LPS-induced increase of iNOS. In short, LC is a NSAID with inhibitory action on the expression of LPS-induced NOS, effect that was not seen with INDO in our experimental conditions.  相似文献   

5.
Induction of the inducible isoform of nitric oxide (NO) synthase (iNOS) in the myocardium is implicated as a mechanism in the development of cardiac depression in immune activated states associated with an enhanced release of cytokines, such as septic shock. We evaluated the in vivo synthesis of NO and tetrahydrobiopterin (BH4), a cofactor of NOS, in the heart tissue using a model of LPS injection in rats (LPS: 10 mg/kg, i.v.). In control rats, iNOS activity or iNOS mRNA in the heart was negligible. Three hours after LPS administration, a marked induction of iNOS mRNA and activity was observed in the heart. A significant increase in BH4 content and GTP cyclohydrolase mRNA abundance was also observed in the heart from LPS-treated rats. Our results demonstrate induction of NO synthesis and parallel increase in BH4 concentration in the heart of rats after LPS treatment in vivo and may provide molecular evidence responsible for the increased production of BH4 which may up-regulate iNOS activity in the heart in vivo. (Mol Cell Biochem 166: 177-181, 1997)  相似文献   

6.
7.
Macrophages (Mps) can exert the defense against invading pathogens. During sepsis, bacterial lipopolisaccharide (LPS) activates the production of inflammatory mediators by Mps. Nitric oxide synthase (NOS) derived‐nitric oxide (NO) is one of them. Besides, Mps may produce pro‐angiogenic molecules such as vascular endothelial growth factor‐A (VEGF‐A) and metalloproteinases (MMPs). The mechanisms involved in the cardiac neovascular response by Mps during sepsis are not completely known. We investigated the ability of LPS‐treated Mps from septic mice to modulate the behavior of cardiac cells as producers of NO and angiogenic molecules. In vivo LPS treatment (0.1 mg/mouse) increased NO production more than fourfold and induced de novo NOS2 expression in Mps. Immunoblotting assays also showed an induction in VEGF‐A and MMP‐9 expression in lysates obtained from LPS‐treated Mps, and MMP‐9 activity was detected by zymography in cell supernatants. LPS‐activated Mps co‐cultured with normal heart induced the expression of CD31 and VEGF‐A in heart homogenates and increased MMP‐9 activity in the supernatants. By immunohistochemistry, we detected new blood vessel formation in hearts cultured with LPS treated Mps. When LPS‐stimulated Mps were co‐cultured with isolated cardiomyocytes in a transwell assay, the expression of NOS2, VEGF‐A and MMP‐9 was induced in cardiac cells. In addition, MMP‐9 activity was up‐regulated in the supernatant of cardiomyocytes. The latter was due to NOS2 induction in Mps from in vivo LPS‐treated mice. In conclusion LPS‐treated Mps are inducers of inflammatory/angiogenic mediators in cardiac cells, which could be triggering neovascularization, as an attempt to improve cardiac performance in sepsis. J. Cell. Physiol. 228: 1584–1593, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
We have shown that immunostimulated astrocytes produce excess nitric oxide (NO) and eventually peroxynitrite (ONOO(-)) that was closely associated with the glucose deprivation-potentiated death of astrocytes. The present study shows that activated p38 MAPK regulates ONOO(-) generation from lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma)-stimulated astrocytes. LPS+IFN-gamma-induced p38 MAPK activation and ONOO(-) generation were attenuated by SB203580 or SKF-86002, specific inhibitors of p38 MAPK. ONOO(-) generation was blocked by NADPH oxidase inhibitor, diphenyleneiodonium chloride, and nitric oxide synthase (NOS) inhibitor, N omega-nitro-L-arginine methyl ester, suggesting both enzymes are involved in ONOO(-) generation. Inhibition of p38 MAPK suppressed LPS+IFN-gamma-induced NO production through down-regulating inducible form of NOS expression. It also suppressed LPS+IFN-gamma-induced NADPH oxidase activation and eventually, the inducible form of superoxide production. Transfection with dominant negative vector of p38 alpha reduced LPS+IFN-gamma-induced ONOO(-) generation through blocking both iNOS-derived NO production and NADPH oxidase-derived O2(-) production. Our results suggest that activated p38 MAPK may serve as a potential signaling molecule in ONOO(-) generation through dual regulatory mechanisms, involving iNOS induction and NADPH oxidase activation.  相似文献   

9.
Effects of iNOS-related NO on hearts exposed to liposoluble iron   总被引:3,自引:0,他引:3  
Inducible nitric oxide synthase (iNOS) protects heart against ischemia/reperfusion injury. However, it is unknown whether the beneficial effects of iNOS are mediated by the interaction of NO with radical oxygen species (ROS). To address this issue, we examined the effects of liposoluble iron-induced ROS generation in isolated perfused hearts from rats treated with lipopolysaccharide (LPS). LPS administration (10 mg/kg, i.p., 6 h before heart removal) induced iNOS expression and increased NO production as indicated by a 3-fold elevation of nitrite level in coronary effluents relative to control hearts. An enhanced expression of hemeoxygenase 1 protein was also observed in septic hearts compared to control. Iron-induced perfusion and contractile deficits were ameliorated by LPS with more important coronary than myocardial benefits. In iron-loaded hearts, oxidative stress as measured by the 2,3 dihydroxybenzoic acid/salicylic acid concentration ratio in cardiac tissue was 23% lower in septic than in control heart although the difference did not reach significance. In addition, the presence of the NO synthase inhibitor N-nitro-L-arginine in the perfusion medium totally blocked NO production but did not reverse the protective effects of LPS. The results indicate that LPS protects from iron-induced cardiac dysfunction by mechanisms independent on ex vivo NO production and suggest that NO acts as a trigger rather than a direct mediator of the cardioprotective effects of LPS in heart exposed to iron.  相似文献   

10.
Forman  L. J.  Liu  P.  Nagele  R. G.  Yin  K.  Wong  P. Y-K 《Neurochemical research》1998,23(2):141-148
The effect of ischemia produced by bilateral occlusion of the common carotid arteries (30 min) followed by 4 hours of reperfusion on total and inducible nitric oxide synthase (NOS) activity and the production of nitric oxide (NO), superoxide and peroxynitrite in the cerebral hemispheres was determined in the rat. Compared to sham-operated controls, cerebral ischemia-reperfusion resulted in a significant increase in total and inducible NOS activity and a significant increase in the production of NO and superoxide in the cerebral hemispheres. The level of NO in the plasma and the peripheral leukocyte count were also significantly increased. Immunohistochemical staining for nitrotyrosine (a marker of peroxynitrite production) showed that ischemia-reperfusion resulted in increased synthesis of cerebral peroxynitrite. Administration of the irreversible NOS inhibitor, N-nitro-L-arginine (L-NA), increased superoxide levels in the brain and significantly reduced plasma NO. Total and inducible NOS activity as well as NO and immunoreactive nitrotyrosine, in the cerebral hemispheres were reduced with L-NA administration. The number of leukocytes in the plasma was unaffected by administration of L-NA. These findings suggest that cerebral ischemia-reperfusion causes increased production of reactive oxygen species in the cerebral hemispheres and that the production of peroxynitrite, and not superoxide, may be dependent upon the availability of NO.  相似文献   

11.
To define the mechanism of nitric oxide (NO) action in the glomerulus, we attempted to identify genes that are regulated by NO in rat glomerular mesangial cells. We identified a Cu/Zn superoxide dismutase (SOD) that was strongly induced in these cells by treatment with S-nitroso-glutathione as a NO-donating agent. Bacterial lipopolysaccharide (LPS) acutely decreased Cu/Zn SOD mRNA levels. The LPS-mediated decrease in Cu/Zn SOD is reversed by endogenously produced NO, as LPS also induced a delayed strong iNOS expression in these cells in vitro, which is accompanied by increased Cu/Zn SOD expression. NO dependency of Cu/Zn SOD mRNA recovery could be demonstrated by inhibition of this process by L-NG-monomethylarginine, an inhibitor of NOS enzymatic activity. To demonstrate the in vivo relevance of our observations, we have chosen LPS-treated rats as a model for induction of a systemic inflammatory response. In these animals, we demonstrate a direct coupling of Cu/Zn SOD expression levels to the presence of NO, as Cu/Zn SOD mRNA levels declined during acute inflammation in the presence of a selective inhibitor of iNOS. We propose that the up-regulation of Cu/Zn SOD by endogenous NO may serve as an adaptive, protective mechanism to prevent the formation of toxic quantities of peroxynitrite in conditions associated with iNOS induction during endotoxic shock.  相似文献   

12.
Previous in vivo studies indicate that inhaled nitric oxide (NO) decreases nitric oxide synthase (NOS) activity and that this decrease is associated with significant increases in pulmonary vascular resistance (PVR) upon the acute withdrawal of inhaled NO (rebound pulmonary hypertension). In vitro studies suggest that superoxide and peroxynitrite production during inhaled NO therapy may mediate these effects, but in vivo data are lacking. The objective of this study was to determine the role of superoxide in the decrease in NOS activity and rebound pulmonary hypertension associated with inhaled NO therapy in vivo. In control lambs, 24 h of inhaled NO (40 ppm) decreased NOS activity by 40% (P<0.05) and increased endothelin-1 levels by 64% (P<0.05). Withdrawal of NO resulted in an acute increase in PVR (60.7%, P<0.05). Associated with these changes, superoxide and peroxynitrite levels increased more than twofold (P<0.05) following 24 h of inhaled NO therapy. However, in lambs treated with polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) during inhaled NO therapy, there was no change in NOS activity, no increase in superoxide or peroxynitrite levels, and no increase in PVR upon the withdrawal of inhaled NO. In addition, endothelial NOS nitration was 18-fold higher (P<0.05) in control lambs than in PEG-SOD-treated lambs following 24 h of inhaled NO. These data suggest that superoxide and peroxynitrite participate in the decrease in NOS activity and rebound pulmonary hypertension associated with inhaled NO therapy. Reactive oxygen species scavenging may be a useful therapeutic strategy to ameliorate alterations in endogenous NO signaling during inhaled NO therapy.  相似文献   

13.
Oxygen consumption rate (OCR) and generation of superoxide and nitric oxide (NO) in mouse aortic endothelial cells (MAECs) treated with lipopolysaccharide (LPS) were studied. The OCR was determined in cell suspensions at 37 °C by electron paramagnetic resonance (EPR) spectroscopy. LPS significantly altered the OCR in a dose and time-dependent fashion. The OCR was significantly elevated immediately following the treatment of MAECs with LPS (5 and 10 μg/ml) and NADPH (100 μM) whereas the same was depressed 1 h after exposure to similar conditions of incubation. Under similar experimental conditions, superoxide generation was also determined by EPR spectroscopy and cytochrome c reduction assays. A marginal increase in the superoxide production was observed when the cells were treated with LPS and NADPH alone whereas the same was further enhanced significantly when the cells were treated with LPS and NADPH together. The increase in oxygen consumption and superoxide production caused by LPS was inhibited by diphenyleneiodonium (DPI), suggesting the involvement of NAD(P)H oxidase. A significant increase in the NO production by MAECs was noticed 1 h after treatment with LPS and was inhibited by L-NAME, further suggesting the involvement of nitric oxide synthase (NOS). Thus, on a temporal scale, LPS-induced alterations in oxygen consumption by MAECs may be under the control of dual regulation by NAD(P)H oxidase and NOS. (Mol Cell Biochem 278: 119–127, 2005)  相似文献   

14.
Previously, we have demonstrated that increased superoxide generation plays a role in the nitric oxide (NO)-mediated inhibition of endothelial NO synthase (NOS III) in endothelial cells (ECs). In this study we demonstrate that the source of the superoxide is likely due to both NADPH oxidase and NOS III itself. Further, this increase appears to be linked to the activation of PKC, as PMA could mimic the increase and PKC inhibition ameliorate the increase. To further investigate this phenomenon we determined the effect of overexpression of copper-zinc superoxide dismutase (CuZn-SOD) and Manganese-SOD (Mn-SOD) on the inhibitory effects of NO. Using adenoviral infection we demonstrated that SOD activity was increased and superoxide levels decreased, in both CuZn-SOD and Mn-SOD overexpressing cells compared to cells infected with an adenovirus expressing bacterial beta-galactosidase protein. However, only the CuZn-SOD overexpression reduced the NO-mediated inhibition of NOS III. In addition, the level of NO-induced peroxynitrite generation and nitrated NOS III protein were reduced only in the CuZn-SOD overexpressing cells. In conclusion, our results indicate that superoxide and peroxynitrite are involved in the inhibition of NOS III by NO, and that the scavenging of superoxide may be necessary to prevent NOS III inhibition during treatments that involve inhaled NO or NO donors.  相似文献   

15.
16.
The effect of female sex hormones on nitric oxide (NO) production was studied in alveolar macrophages (AMs). Male rats were treated with endotoxin (LPS) intratracheally or saline as control. AMs were obtained by bronchoalveolar lavage 90 min later and were cultured in the presence or in the absence of LPS and 17β-estradiol or progesterone (10−9to 10−4M). NO production was assessed by measurement of nitrites in the medium. In some experiments, NO production by AMs was measured in intratracheally LPS-treated orchidectomized rats or in female control and ovariectomized rats. Both spontaneous and stimulated NO production were higher in AMs from female than from male rats, but without statistical significance. However, ovariectomy induced significant inhibition in spontaneous production of NO by AMs. In orchidectomized rats, the NO response by AMs to LPS stimulation relative to spontaneous NO production was significantly downregulated. Female sex hormones in physiological concentrations seem to be necessary for spontaneous NO production in female rats. Pharmacological doses of estradiol inhibitedin vitroLPS-stimulated NO production in AMs of both saline- and LPS-treated rats, and basal NO production only in LPS-treated male rats. Progesterone at 10−4M inhibited basal andin vitroLPS-stimulated NO generation by AMs of both saline- and LPS-treated male rats. In LPS-treated female ratsin vitroLPS-stimulated NO production was not affected by estradiol treatment. In ovariectomized LPS-treated female rats progesterone at 10−5M significantly inhibited NO production byin vitro-stimulated AMs. Thus female sex hormones may contribute to the gender-related differences in the immune response.  相似文献   

17.
18.
Leukocyte accumulation has been shown to be increased in sepsis. Moreover, in inducible nitric oxide synthase (iNOS) knockout mice, a further increase in leukocyte accumulation has been observed during sepsis, suggesting that nitric oxide (NO) may affect leukocyte/endothelial interaction. Accelerated peroxynitrite formation also occurs during sepsis. In the present study, the effect of peroxynitrite or NO on leukocyte adhesion to nitric oxide synthase (NOS)-inhibited or endotoxin-treated endothelium was examined. Bovine aortic endothelial cells were treated with either L-NAME or lipopolysaccharide (LPS) and interferon-gamma for 4 hr and subsequent leukocyte adhesion was measured. Both L-NAME and LPS treatment resulted in increased leukocyte adhesion compared with control. Neither a peroxynitrite donor, SIN-1, nor a direct NO donor, DETA-NO, had any effect on leukocyte adhesion to untreated endothelium. However, when the L-NAME or LPS-treated endothelial cells were treated simultaneously with either SIN-1 or DETA-NO, there was a significant reduction in leukocyte adhesion. Moreover, at the concentrations used in the present study, neither peroxynitrite nor NO showed harmful effects on normal cultured endothelial cells. These data demonstrating inhibition of leukocyte adhesion to endotoxin-treated endothelium suggest that peroxynitrite or NO may exert a beneficial effect during sepsis.  相似文献   

19.
This study examines the effects of male sex hormones on the vasoconstrictor response to electrical field stimulation (EFS), as well as neuronal NO modulation of this response. For this purpose, denuded superior mesenteric artery from orchidectomized and control male Sprague-Dawley rats was used. EFS induced similar frequency-dependent contractions in segments from both groups. The NO synthase (NOS) inhibitor N(omega)-nitro-L-arginine methyl ester strengthened EFS-elicited contractions more in arteries from orchidectomized than from control male rats. The expression of nNOS was more pronounced in segments from control than from orchidectomized animals. Basal and EFS-induced NO release was similar in segments from both groups. In noradrenaline (NA)-precontracted segments, sodium nitroprusside (SNP) induced a concentration-dependent relaxation, that was greater in segments from orchidectomized than control male rats. 8-Bromo-cGMP induced a similar concentration-dependent relaxation in NA-precontracted segments from either group, and the cGMP levels induced by SNP were also similar in the two groups. Superoxide dismutase (SOD), a superoxide anion scavenger, did not modify the relaxation in segments from control male rats. In contrast, SOD enhanced the relaxation induced by SNP in segments from orchidectomized rats, and the effect was reversed by preincubation with SOD plus catalase. The generation of superoxide anion and of peroxynitrite was greater in segments from orchidectomized than control rats. In NA-precontracted segments from control or orchidectomized rats, exogenous peroxynitrite and H(2)O(2) induced a concentration-dependent relaxation. These results suggest that EFS induces a similar nNOS-derived NO release in segments from orchidectomized and control male rats, despite the decrease in nNOS expression in orchidectomized rats. The NO metabolism is higher in segments from orchidectomized male rats due to the increases in anion superoxide generation and peroxynitrite formation. The vasodilator effects of the peroxynitrite and H(2)O(2)0 generated from the NO metabolism are what enhance the functional role of the nNOS-derived NO release in the orchidectomized rats.  相似文献   

20.
Resident rat peritoneal macrophages synthesize a variety of prostanoids and leukotrienes from arachidonic acid. Overnight treatment with lipopolysaccharide (LPS) induces the synthesis of cyclooxygenase-2 (COX-2) and an altered prostanoid profile that emphasizes the preferential conversion of arachidonic acid to prostacyclin and prostaglandin E2. In these studies, we report that exposure to LPS also caused a strong suppression of 5-lipoxygenase but not 12-lipoxygenase activity, indicated by the inhibition of synthesis of both leukotriene B4 and 5-hydroxyeicosatetraenoic acid (5-HETE), but not of 12-HETE. Inhibition of 5-lipoxygenase activity by LPS was both time- and dose-dependent. Treatment of macrophages with prostaglandin E2 partially inhibited leukotriene synthesis, and cyclooxygenase inhibitors partially blocked the inhibition of leukotriene generation in LPS-treated cells. In addition to COX-2, nitric oxide synthase (NOS) was also induced by LPS. Treatment of macrophages with an NO donor mimicked the ability of LPS to significantly reduce leukotriene B4 synthesis. Inhibition of NOS activity in LPS-treated cells blunted the suppression of leukotriene synthesis. Inhibition of both inducible NOS and COX completely eliminated leukotriene suppression. Finally, macrophages exposed to prolonged LPS demonstrated impaired killing of Klebsiella pneumoniae and the combination of NOS and COX inhibitors restored killing to the control level. These results indicate that prolonged exposure to LPS severely inhibits leukotriene production via the combined action of COX and NOS products. The shift in mediator profile, to one that minimizes leukotrienes and emphasizes prostacyclin, prostaglandin E2 and NO, provides a signal that reduces leukocyte function, as indicated by impaired killing of Gram-negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号