首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms that account for acetylcholine (ACh)-induced responses of skeletal muscle arterioles of mice lacking endothelial nitric oxide (NO) synthase (eNOS-KO) were investigated. Isolated, cannulated, and pressurized arterioles of gracilis muscle from male eNOS-KO (74.1 +/- 2.3 microm) and wild-type (WT, 87.2 +/- 2.1 microm) mice developed spontaneous tone accounting for 63 and 61% of their passive diameter (116.8 +/- 3.4 vs. 143.2 +/- 2.8 microm, respectively) and dilated dose-dependently to ACh (10(-9)-10(-7) M). These dilations were significantly smaller in vessels of eNOS-KO compared with WT mice (29.2 +/- 2.0 microm vs. 46.3 +/- 2.1 microm, at maximum concentration) but responses to the NO donor, sodium nitrite (NaNO(2), 10(-6)-3 x 10(-5) M), were comparable in the vessels of the two strains. N(G)-nitro-L-arginine (L-NNA, 10(-4) M), an inhibitor of eNOS, inhibited ACh-induced dilations by 60-90% in arterioles of WT mice but did not affect responses in those of eNOS-KO mice. In arterioles of eNOS-KO mice, dilations to ACh were not affected by indomethacin but were essentially abolished by inhibitors of cytochrome P-450, clotrimazole (CTZ, 2 x 10(-6) M) or miconazole (MCZ, 2 x 10(-6) M), as well as by either high K(+) (40 mM) or iberiotoxin [10(-7) M, a blocker of Ca(2+)-dependent K(+) channels (K(Ca) channels)]. On the other hand, in WT arterioles CTZ or MCZ inhibited ACh-induced dilations only by approximately 10% and only in the presence of L-NNA. These results indicate that in arterioles of eNOS-KO mice, endothelium-derived hyperpolarizing factor (EDHF), synthesized via cytochrome P-450, accounts entirely for the mediation of ACh-induced dilation via an increase in K(Ca)-channel activity. In contrast, in arterioles of WT mice, endothelium-derived NO predominantly mediates ACh-induced dilation in which participation of EDHF becomes apparent only after inhibition of NO synthesis.  相似文献   

2.
In skeletal muscle arterioles, the pathway leading to non-nitric oxide (NO), non-prostaglandin-mediated endothelium-derived hyperpolarizing factor (EDHF)-type dilations is not well characterized. To elucidate some of the steps in this process, simultaneous changes in endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) and the diameter of rat gracilis muscle arterioles (approximately 60 microm) to acetylcholine (ACh) were measured by fura 2 microfluorimetry (in the absence of NO and prostaglandins). ACh elicited rapid increases in endothelial [Ca(2+)](i) (101 +/- 7%), followed by substantial dilations (73 +/- 2%, coupling time: 1.3 +/- 0.2 s) that were prevented by endothelial loading of an intracellular Ca(2+) chelator [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid]. Arteriolar dilations to ACh were also inhibited by intraluminal administration of the Ca(2+)-activated K(+) (K(Ca)) channel blockers charybdotoxin plus apamin or by palmitoleic acid, an uncoupler of myoendothelial gap junctions without affecting changes in endothelial [Ca(2+)](i). The presence of large conductance K(Ca) channels on arteriolar endothelial cells was demonstrated with immunohistochemisty. We propose that in skeletal muscle arterioles, EDHF-type mediation is evoked by an increase in endothelial [Ca(2+)](i), which by activating endothelial K(Ca) channels elicits hyperpolarization that is conducted via myoendothelial gap junctions to the smooth muscle resulting in decreases in [Ca(2+)](i) and consequently dilation.  相似文献   

3.
To determine whether nitric oxide (NO), adenosine (Ado) receptors, or ATP-sensitive potassium (K(ATP)) channels play a role in arteriolar dilations induced by muscle contraction, we used a cremaster preparation in anesthetized hamsters in which we stimulated four to five muscle fibers lying perpendicular to a transverse arteriole (maximal diameter approximately 35-65 microm). The diameter of the arteriole at the site of overlap of the stimulated muscle fibers (the local site) and at a remote site approximately 1,000 microm upstream (the upstream site) was measured before, during, and after muscle contraction. Two minutes of 4-Hz muscle stimulation (5-15 V, 0.4 ms) produced local and upstream dilations of 19 +/- 1 and 10 +/- 1 microm, respectively. N(omega)-nitro-L-arginine (10(-4) M; NO synthase inhibitor), xanthine amine congener (XAC; 10(-6) M; Ado A(1), A(2A), and A(2B) receptor antagonist), or glibenclamide (Glib; 10(-5) M; K(ATP) channel inhibitor) superfused over the preparation attenuated the local dilation (by 29.7 +/- 12.7, 61.8 +/- 9.0, and 51.9 +/- 14.9%, respectively), but only XAC and Glib attenuated the upstream dilation (by 68.9 +/- 6.8 and 89.1 +/- 6.4%, respectively). Furthermore, only Glib, when applied to the upstream site directly, attenuated the upstream dilation (48.1 +/- 9.1%). Neither XAC nor Glib applied directly to the arteriole between the local and the upstream sites had an effect on the magnitude of the upstream dilation. We conclude that NO, Ado receptors, and K(ATP) channels are involved in the local dilation initiated by contracting muscle and that both K(ATP) channels and Ado receptor stimulation, but not NO, play a role in the manifestation of the dilation at the upstream site.  相似文献   

4.
Carbon monoxide (CO) and nitric oxide (NO) are important paracrine messengers in the newborn cerebrovasculature that may act as comessengers. Here, we investigated the role of NO in CO-mediated dilations in the newborn cerebrovasculature. Arteriolar branches of the middle cerebral artery (100-200 microm) were isolated from 3- to 7-day-old piglets and cannulated at each end in a superfusion chamber, and intravascular pressure was elevated to 30 mmHg, which resulted in the development of myogenic tone. Endothelium removal abolished dilations of pressurized pial arterioles to bradykinin and to the CO-releasing molecule Mn(2)(CO)(10) [dimanganese decacarbonyl (DMDC)] but not dilations to isoproterenol. With endothelium intact, N(omega)-nitro-l-arginine (l-NNA), 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), or tetraethylammonium chloride (TEA(+)), inhibitors of NO synthase (NOS), guanylyl cyclase, and large-conductance Ca(2+)-activated K(+) (K(Ca)) channels, respectively, also blocked dilation induced by DMDC. After inhibition of NOS, a constant concentration of sodium nitroprusside (SNP), a NO donor that only dilated the vessel 6%, returned dilation to DMDC. The stable cGMP analog 8-bromo-cGMP also restored dilation to DMDC in endothelium-intact, l-NNA-treated, or endothelium-denuded arterioles, and this effect was blocked by TEA(+). Similarly, in the continued presence of ODQ, 8-bromo-cGMP restored DMDC-induced dilations. These findings suggest that endothelium-derived NO stimulates guanylyl cyclase in vascular smooth muscle cells and, thereby, permits CO to cause dilation by activating K(Ca) channels. Such a requirement for NO could explain the endothelium dependency of CO-induced dilation in piglet pial arterioles.  相似文献   

5.
We hypothesized that hydrogen peroxide (H2O2) has a role in the local regulation of skeletal muscle blood flow, thus significantly affecting the myogenic tone of arterioles. In our study, we investigated the effects of exogenous H2O2 on the diameter of isolated, pressurized (at 80 mmHg) rat gracilis skeletal muscle arterioles (diameter of approximately 150 microm). Lower concentrations of H2O2 (10(-6)-3 x 10(-5) M) elicited constrictions, whereas higher concentrations of H2O2 (6 x 10(-5)-3 x 10(-4) M), after initial constrictions, caused dilations of arterioles (at 10(-4) M H2O2, -19 +/- 1% constriction and 66 +/- 4% dilation). Endothelium removal reduced both constrictions (to -10 +/- 1%) and dilations (to 33 +/- 3%) due to H2O2. Constrictions due to H2O2 were completely abolished by indomethacin and the prostaglandin H2/thromboxane A2 (PGH2/TxA2) receptor antagonist SQ-29548. Dilations due to H2O2 were significantly reduced by inhibition of nitric oxide synthase (to 38 +/- 7%) but were unaffected by clotrimazole or sulfaphenazole (inhibitors of cytochrome P-450 enzymes), indomethacin, or SQ-29548. In endothelium-denuded arterioles, clotrimazole had no effect, whereas H2O2-induced dilations were significantly reduced by charybdotoxin plus apamin, inhibitors of Ca(2+)-activated K+ channels (to 24 +/- 3%), the selective blocker of ATP-sensitive K+ channels glybenclamide (to 14 +/- 2%), and the nonselective K(+)-channel inhibitor tetrabutylammonium (to -1 +/- 1%). Thus exogenous administration of H2O2 elicits 1) release of PGH2/TxA2 from both endothelium and smooth muscle, 2) release of nitric oxide from the endothelium, and 3) activation of K+ channels, such as Ca(2+)-activated and ATP-sensitive K+ channels in the smooth muscle resulting in biphasic changes of arteriolar diameter. Because H2O2 at low micromolar concentrations activates several intrinsic mechanisms, we suggest that H2O2 contributes to the local regulation of skeletal muscle blood flow in various physiological and pathophysiological conditions.  相似文献   

6.
Obesity frequently leads to the development of hypertension. We hypothesized that high-fat diet (HFD)-induced obesity impairs the endothelium-dependent dilation of arterioles. Male Wistar rats were fed with normal (control) or HFD (60% of saturated fat, for 10 wk). In rats with HFD, body weight, mean arterial blood pressure, and serum insulin, cholesterol, and glucose were elevated. In isolated gracilis muscle arterioles (diameter: approximately 160 microm) of HFD, rat dilations to ACh (at 1 microM, maximum: 83 +/- 3%) and histamine (at 10 microM, maximum: 16 +/- 4%) were significantly (P < 0.05) decreased compared with those of control responses (maximum: 90 +/- 2 and 46 +/- 4%, respectively). Dilations to the NO donor sodium nitroprusside were similar in the two groups. Inhibition of NO synthesis by N(omega)-nitro-l-arginine methyl ester reduced ACh- and histamine-induced dilations in control arterioles but had no effect on microvessels of HFD rats. The superoxide dismutase mimetic Tiron or xanthine oxidase inhibitor allopurinol enhanced ACh (maximum: 90 +/- 2 and 93 +/- 2%, respectively)- and histamine (maximum: 30 +/- 7 and 37 +/- 8%, respectively)-induced dilations in HFD arterioles, whereas the NAD(P)H oxidase inhibitor apocynin had no significant effect. Correspondingly, in carotid arteries of HFD rats, an enhanced superoxide production was shown by lucigenin-enhanced chemiluminescence, in association with an increased xanthine oxidase, but not NAD(P)H oxidase activity. In addition, a marked xanthine oxidase immunostaining was detected in the endothelial layer of the gracilis arterioles of HFD, but not in control rats. These findings suggest that, in obese rats, NO mediation of endothelium-dependent dilation of skeletal muscle arterioles is reduced because of an enhanced xanthine oxidase-derived superoxide production. These alterations demonstrate substantial dysregulation of arteriolar tone by the endothelium in HFD-induced obesity, which may contribute to disturbed tissue blood flow and development of increased peripheral resistance.  相似文献   

7.
Vascular coordination in the microcirculation depends on gap junctional intercellular communication (GJIC), which is reflected by the conduction of locally initiated vasomotor responses. However, little is known about the regulation of GJIC in vivo. We hypothesized that endothelial NO regulates GJIC and therefore studied whether conduction of constrictions and dilations along the vessel wall is modulated by modifying the level of microcirculatory NO. Arterioles were focally stimulated using high K(+) or acetylcholine in the cremaster muscle in situ, and diameter changes were assessed at the local and remote upstream sites by intravital microscopy. Local stimulation with K(+) initiated a constriction that conducted along the arteriole with diminishing amplitude (length constant lambda: 371 +/- 42 mum). After N(omega)-nitro-l-arginine (l-NNA), lambda increased to 507 +/- 30 mum, indicating that GJIC is attenuated by endogenous NO. Exogenous NO, but not adenosine, reduced lambda after l-NNA in a reversible, concentration-dependent, and mainly cGMP-dependent manner as assessed by inhibition of soluble guanylate cyclase. In endothelial NO synthase-deficient mice, lambda was 530 +/- 80 mum and thus similar to that in wild-type mice after l-NNA. Exogenous NO likewise reduced lambda in these mice. The effects of NO were comparable to those of wild-type animals in Cx40-deficient mice, which excludes Cx40 as a specific target of NO. In contrast to constrictions, the amplitude of conducted dilations on acetylcholine did not diminish up to 1,300 mum and were not altered by l-NNA or exogenous NO. We conclude that endogenously released NO attenuates the conduction of vasoconstrictions most likely due to a modulation of gap junctional conductivity. We suggest that this effect is specific for smooth muscle cells, which probably transmit constricting signals, and involves connexins other than Cx40. This mechanism may support the dilatory potency of NO by preventing the conduction of remote vasoconstrictions into areas with basal or activated NO release.  相似文献   

8.
Our previous studies implicated that oxidized low-density lipoprotein (oxLDL), a putative atherogenic agent, impairs endothelium-dependent, nitric oxide (NO)-mediated dilation of isolated coronary arterioles to pharmacological agonists. However, it is not known whether oxLDL specifically affects NO-mediated dilation or generally impairs endothelium-dependent function, including the release of hyperpolarizing factors. In this regard, we investigated the dilation of isolated porcine coronary arterioles (50- to 100-microm luminal diameter) in response to the activation of various endothelium-dependent pathways before and after intraluminal incubation of the vessels with oxLDL (0.5 mg protein/ml for 60 min). In the absence of oxLDL, all vessels developed basal tone and dilated in response to the activation of NO synthase (by flow and adenosine), cyclooxygenase (by arachidonic acid), cytochrome P-450 monooxygenase (by bradykinin), and endothelial membrane hyperpolarization (by sucrose-induced hyperosmolarity). Incubation of the vessels with oxLDL for 60 min did not alter basal tone but did inhibit the vasodilatory responses to increased flow and adenosine in a manner similar to that of the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester. Vasodilations in response to flow and adenosine were not affected by intraluminal incubation of the vessels with either a vehicle solution or the native LDL (0.5 mg protein/ml, 60 min). In contrast with the NO-mediated response, hyperosmotic vasodilation mediated by endothelial hyperpolarization was not affected by oxLDL. Endothelium-dependent dilations to the cyclooxygenase activator arachidonic acid and to the cytochrome P-450 monooxygenase activator bradykinin and endothelium-independent vasodilation to sodium nitroprusside were also not altered by oxLDL. Collectively, these results indicate that oxLDL has a selective effect on endothelium-dependent dilation with specific impairment of the NO-mediated response, whereas cyclooxygenase and cytochrome P-450 monooxygenase-mediated dilations are spared from this inhibitory effect. In addition, oxLDL does not appear to affect vasodilation mediated by hyperpolarization of the endothelium.  相似文献   

9.
N-methyl-D-aspartate (NMDA) elicits pial arteriolar dilation that has been associated with neuronal nitric oxide (NO) production. However, endothelial factors or glial P-450 epoxygenase products may play a role. We tested whether NMDA-induced pial vasodilation 1) primarily involves NO diffusion from the parenchyma to the surface arterioles, 2) involves intact endothelial function, and 3) involves a miconazole-sensitive component. Arteriolar diameters were determined using closed cranial window-intravital microscopy in anesthetized piglets. NMDA (10-100 microM) elicited virtually identical dose-dependent dilations in paired arterioles (r = 0.94, n = 15). However, NMDA- but not bradykinin (BK)-induced dilations of arteriolar sections over large veins were reduced by 31 +/- 1% (means +/- SE, P < 0.05, n = 4) compared with adjacent sections on the cortical surface. Also, 100 microM NMDA increased cerebrospinal fluid levels of NO metabolites from 3.7 +/- 1.0 to 5.3 +/- 1.2 microM (P < 0.05, n = 6). Endothelial stunning by intracarotid injection of phorbol 12,13-dibutyrate did not affect NMDA-induced vasodilation but attenuated vascular responses to hypercapnia and BK by approximately 70% (n = 7). Finally, miconazole (n = 6, 20 microM) pretreatment and coapplication with NMDA did not alter vascular responses to NMDA. In conclusion, NMDA appears to dilate pial arterioles exclusively through release and diffusion of NO from neurons to the pial surface in piglets.  相似文献   

10.
Thrombin (Thromb), activated as part of the clotting cascade, dilates conduit arteries through an endothelial pertussis toxin (PTX)-sensitive G-protein receptor and releases nitric oxide (NO). Thromb also acts on downstream microvessels. Therefore, we examined whether Thromb dilates human coronary arterioles (HCA). HCA from right atrial appendages were constricted by 30-50% with endothelin-1. Dilation to Thromb (10(-4)-1 U/ml) was assessed before and after inhibitors with videomicroscopy. There was no tachyphylaxis to Thromb dilation (maximum dilation = 87.0%, ED(50) = 1.49 x 10(-2)). Dilation to Thromb was abolished with either hirudin or denudation but was not affected by PTX. Neither N(omega)-nitro-l-arginine methyl ester (n = 7), indomethacin (n = 9), (1)H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (n = 6), tetraethylammonium chloride (n = 5), nor iberiotoxin (n = 4) reduced dilation to Thromb. However, KCl (maximum dilation = 89 +/- 5 vs. 20 +/- 10%; P < 0.05; n = 7), tetrabutylammonium chloride (maximum dilation = 79 +/- 7 vs. 21 +/- 4%; P < 0.05; n = 5), and charybdotoxin (maximum dilation = 89 +/- 4 vs. 10 +/- 2%; P < 0.05; n = 4) attenuated dilation to Thromb. In contrast to animal models, Thromb-induced dilation in human arterioles is independent of G(i)-protein activation and NO release. However, Thromb dilation is endothelium dependent, is maintained on consecutive applications, and involves activation of K(+) channels. We speculate that an endothelium-derived hyperpolarizing factor contributes to Thromb-induced dilation in HCA.  相似文献   

11.
In coronary resistance vessels, endothelium-derived hyperpolarizing factor (EDHF) plays an important role in endothelium-dependent vasodilation. EDHF has been proposed to be formed through cytochrome P-450 monooxygenase metabolism of arachidonic acid (AA). Our hypothesis was that AA-induced coronary microvascular dilation is mediated in part through a cytochrome P-450 pathway. The canine coronary microcirculation was studied in vivo (beating heart preparation) and in vitro (isolated microvessels). Nitric oxide synthase (NOS) (N(omega)-nitro-L-arginine, 100 microM) and cyclooxygenase (indomethacin, 10 microM) or cytochrome P-450 (clotrimazole, 2 microM) inhibition did not alter AA-induced dilation. However, when a Ca(2+)-activated K(+) channel channel or cytochrome P-450 antagonist was used in combination with NOS and cyclooxygenase inhibitors, AA-induced dilation was attenuated. We also show a negative feedback by NO on NOS-cyclooxygenase-resistant AA-induced dilation. We conclude that AA-induced dilation is attenuated by cytochrome P-450 inhibitors, but only when combined with inhibitors of cyclooxygenase and NOS. Therefore, redundant pathways appear to mediate the AA response in the canine coronary microcirculation.  相似文献   

12.
The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity.  相似文献   

13.
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.  相似文献   

14.
Adrenomedullin (ADM) is a vasodilator produced by vascular endothelium and smooth muscle cells. Although plasma ADM levels are increased in patients with hypertension, heart failure, and myocardial infarction, little information exists regarding the microvascular response to ADM in the human heart. In the present study we tested the hypothesis that ADM produces coronary arteriolar dilation in humans and examined the mechanism of this dilation. Human coronary arterioles were dissected and cannulated with micropipettes. Internal diameter was measured by video microscopy. In vessels constricted with ACh, the diameter response to cumulative doses of ADM (10(-12)-10(-7) M) was measured in the presence and absence of human ADM-(22-52), calcitonin gene-related peptide-(8-37), N(omega)-nitro-L-arginine methyl ester (L-NAME), indomethacin (Indo), (1)H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, SQ-22536, or KCl (60 mM). ADM dilated human coronary arterioles through specific ADM receptors (maximum dilation = 69 +/- 11%). L-NAME or N-monomethyl-L-arginine attenuated dilation to ADM (for L-NAME, maximum dilation = 66 +/- 7 vs. 41 +/- 13%, P < 0.05). Thus the mechanism of ADM-induced dilation involves generation of nitric oxide. However, neither (1)H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one, SQ-22536, nor Indo alone altered dilation to ADM. High concentrations of KCl blocked dilation to ADM. The magnitude of ADM dilation was reduced in subjects with hypertension. We propose that, in human coronary arterioles, ADM elicits vasodilation in part through production of nitric oxide and in part through activation of K(+) channels, with little contribution from adenylyl cyclase. The former dilator mechanism is independent of the more traditional pathway involving activation of soluble guanylate cyclase.  相似文献   

15.
Carbon monoxide (CO) is an endogenous dilator in the newborn cerebral microcirculation. Other dilators include prostanoids and nitric oxide (NO), and interactions among the systems are likely. Experiments on anesthetized piglets with cranial windows address the hypothesis that CO-induced dilation of pial arterioles involves interaction with the prostanoid and NO systems. Topical application of CO or the heme oxygenase substrate heme-L-lysinate (HLL) produced dilation. Indomethacin, N(omega)-nitro-L-arginine (L-NNA), and either iberiotoxin or tetraethylammonium chloride (TEA) were used to inhibit prostanoids, NO, and Ca(2+)-activated K(+) (K(Ca)) channels, respectively. Indomethacin, L-NNA, iberiotoxin, or TEA blocked cerebral vasodilation to CO and HLL. Vasodilations to both CO and HLL were returned to indomethacin-treated piglets by topical application of iloprost. Vasodilations to both CO and HLL were returned to L-NNA-treated piglets by sodium nitroprusside but not iloprost. In iberiotoxin- or TEA-treated piglets, dilations to CO and HLL could not be restored by either iloprost or sodium nitroprusside. The dilator actions of CO involve prostacyclin and NO as permissive enablers. The permissive actions of prostacyclin and NO may alter the K(Ca) channel response to CO because neither iloprost nor sodium nitroprusside could restore dilation to CO when these channels were blocked.  相似文献   

16.
The purpose of this study was to test the hypothesis that endothelium-dependent dilation is impaired in soleus resistance arteries from hindlimb-unweighted (HLU) rats. Male Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 14) or weight-bearing control (Con, n = 14) conditions for 14 days. After the 14-day treatment period, soleus first-order (1A) arterioles were isolated and cannulated with micropipettes to assess vasodilator responses to an endothelium-dependent dilator, ACh (10(-9)-10(-4) M), and an endothelium-independent dilator, sodium nitroprusside (SNP, 10(-9)-10(-4) M). Arterioles from HLU rats were smaller than Con arterioles (maximal passive diameter = 140 +/- 4 and 121 +/- 4 microm in Con and HLU, respectively) but developed similar spontaneous myogenic tone (43 +/- 3 and 45 +/- 3% in Con and HLU, respectively). Arteries from Con and HLU rats dilated in response to increasing doses of ACh, but dilation was impaired in arterioles from HLU rats (P = 0.03), as was maximal dilation to ACh (85 +/- 4 and 65 +/- 4% possible dilation in Con and HLU, respectively). Inhibition of nitric oxide (NO) synthase (NOS) with N(omega)-nitro-L-arginine (300 microM) reduced ACh dilation by approximately 40% in arterioles from Con rats and eliminated dilation in arterioles from HLU rats. The cyclooxygenase inhibitor indomethacin (50 microM) did not significantly alter dilation to ACh in either group. Treatment with N(omega)-nitro-L-arginine + indomethacin eliminated all ACh dilation in Con and HLU rats. Dilation to sodium nitroprusside was not different between groups (P = 0.98). To determine whether HLU decreased expression of endothelial cell NOS (ecNOS), mRNA and protein levels were measured in single arterioles with RT-PCR and immunoblot analysis. The ecNOS mRNA and protein expression was significantly lower in arterioles from HLU rats than in Con arterioles (20 and 65%, respectively). Collectively, these data indicate that HLU impairs ACh dilation in soleus 1A arterioles, in part because of alterations in the NO pathway.  相似文献   

17.
Large-conductance calcium-activated potassium (K(Ca)) channels regulate the physiological functions of many tissues, including cerebrovascular smooth muscle. l-Glutamic acid (glutamate) is the principal excitatory neurotransmitter in the central nervous system, and oxygen tension is a dominant local regulator of vascular tone. In vivo, glutamate and hypoxia dilate newborn pig cerebral arterioles, and both dilations are blocked by inhibition of carbon monoxide (CO) production. CO dilates cerebral arterioles by activating K(Ca) channels. Therefore, the present study was designed to investigate the effects of glutamate and hypoxia on cerebral CO production and the role of K(Ca) channels in the cerebral arteriolar dilations to glutamate and hypoxia. In the presence of iberiotoxin or paxilline that block dilation to the K(Ca) channel opener, NS-1619, neither CO nor glutamate dilated pial arterioles. Conversely, neither paxilline nor iberiotoxin inhibited dilation to acute severe or moderate prolonged hypoxia. Both glutamate and hypoxia increased cerebrospinal fluid (CSF) CO concentration. Iberiotoxin that blocked dilation to glutamate did not attenuate the increase in CSF CO. The guanylyl cyclase inhibitor, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), which blocked dilation to sodium nitroprusside, did not inhibit dilation to hypoxia. These data suggest that dilation of newborn pig pial arterioles to glutamate is mediated by activation of K(Ca) channels, consistent with the intermediary signal being CO. Surprisingly, although 1) heme oxygenase (HO) inhibition attenuates dilation to hypoxia, 2) hypoxia increases CSF CO concentration, and 3) K(Ca) channel antagonists block dilation to CO, neither K(Ca) channel blockers nor ODQ altered dilation to hypoxia, suggesting the contribution of the HO/CO system to hypoxia-induced dilation is not by stimulating vascular smooth muscle K(Ca) channels or guanylyl cyclase.  相似文献   

18.
Functional hyperemia requires the coordination of smooth muscle cell relaxation along and between branches of the arteriolar network. Vasodilation is conducted from cell to cell along the arteriolar wall through gap junction channels composed of connexin protein subunits. Within skeletal muscle, it is unclear whether arteriolar endothelium, smooth muscle, or both cell layers provide the cellular pathway for conduction. Furthermore, the constitutive profile of connexin expression within the microcirculation is unknown. We tested the hypothesis that conducted vasodilation and connexin expression are intrinsic to the endothelium of arterioles (17 +/- 1 microm diameter) that supply the skeletal muscle fibers in the cremaster of anesthetized C57BL/6 mice. ACh delivered to an arteriole (500 ms, 1-microA pulse; 1-microm micropipette) produced local dilation of 17 +/- 1 microm; conducted vasodilation observed 1 mm upstream was 9 +/- 1 microm (n = 5). After light-dye treatment to selectively disrupt endothelium (250-microm segment centered 500 microm upstream, confirmed by loss of local response to ACh while constriction to phenylephrine and dilation to sodium nitroprusside remained intact), we found that conducted vasodilation was nearly abolished (2 +/- 1 microm; P < 0.05). Whole-mount immunohistochemistry for connexins revealed punctate labeling at borders of arteriolar endothelial cells, with connexin40 and connexin37 in all branches and connexin43 only in the largest branches. Immunoreactivity for connexins was not apparent in smooth muscle or in capillary or venular endothelium, despite robust immunolabeling for alpha-actin and platelet endothelial cell adhesion molecule-1, respectively. We conclude that vasodilation is conducted along the endothelium of mouse skeletal muscle arterioles and that connexin40 and connexin37 are the primary connexins forming gap junction channels between arteriolar endothelial cells.  相似文献   

19.
K(+) dilate and constrict cerebral vessels in a dose-dependent fashion. Modest elevations of abluminal K(+) cause vasodilatation, whereas larger extracellular K(+) concentration ([K(+)](out)) changes decrease cerebral blood flow. These dilations are believed to be mediated by opening of inward-rectifier potassium channels sensitive to Ba(2+). Because BaCl(2) also blocks ATP-sensitive K(+) channels (K(ATP)), we challenged K(+) dilations in penetrating, resistance-size (<60 mmu) rat neocortical vessels with the K(ATP) channel blocker glibenclamide (1 microM). Glibenclamide reduced K(+) responses from 138 +/- 8 to 110 +/- 0.8%. K(+) constrictions were not affected by glibenclamide. The Na(+)-K(+)-pump inhibitor ouabain (200 microM) did not significantly change resting vessel diameter but decreased K(+) dilations (from 153 +/- 9 to 99 +/- 2%). BaCl(2) blocked K(+) dilations with a half-maximal dissociation constant of 2.9 microM and reduced dilations to the specific K(ATP) agonist pinacidil with equal potency. We conclude that, in resistance vessels, K(+) dilations are mediated by K(ATP); we hypothesize that [K(+)](out) causes activation of Na(+)-K(+) pumps, depletion of intracellular ATP concentration, and subsequent opening of K(ATP). This latter hypothesis is supported by the blocking effect of ouabain.  相似文献   

20.
We previously demonstrated a role for voltage-dependent K(+) (K(V)) channels in coronary vasodilation elicited by myocardial metabolism and exogenous H(2)O(2), as responses were attenuated by the K(V) channel blocker 4-aminopyridine (4-AP). Here we tested the hypothesis that K(V) channels participate in coronary reactive hyperemia and examined the role of K(V) channels in responses to nitric oxide (NO) and adenosine, two putative mediators. Reactive hyperemia (30-s occlusion) was measured in open-chest dogs before and during 4-AP treatment [intracoronary (ic), plasma concentration 0.3 mM]. 4-AP reduced baseline flow 34 +/- 5% and inhibited hyperemic volume 32 +/- 5%. Administration of 8-phenyltheophylline (8-PT; 0.3 mM ic or 5 mg/kg iv) or N(G)-nitro-L-arginine methyl ester (L-NAME; 1 mg/min ic) inhibited early and late portions of hyperemic flow, supporting roles for adenosine and NO. 4-AP further inhibited hyperemia in the presence of 8-PT or L-NAME. Adenosine-induced blood flow responses were attenuated by 4-AP (52 +/- 6% block at 9 microg/min). Dilation of arterioles to adenosine was attenuated by 0.3 mM 4-AP and 1 microM correolide, a selective K(V)1 antagonist (76 +/- 7% and 47 +/- 2% block, respectively, at 1 microM). Dilation in response to sodium nitroprusside, an NO donor, was attenuated by 4-AP in vivo (41 +/- 6% block at 10 microg/min) and by correolide in vitro (29 +/- 4% block at 1 microM). K(V) current in smooth muscle cells was inhibited by 4-AP (IC(50) 1.1 +/- 0.1 mM) and virtually eliminated by correolide. Expression of mRNA for K(V)1 family members was detected in coronary arteries. Our data indicate that K(V) channels play an important role in regulating resting coronary blood flow, determining duration of reactive hyperemia, and mediating adenosine- and NO-induced vasodilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号