首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forty ovariectomized rats were apportioned into one control and three experimental groups (n=10 each) to evaluate the role of nitric oxide in the effects of ovarian steroids on spontaneous myometrial contractility in rats. The control group (group Ov) received sesame oil once daily for 10 days, whereas rats in the experimental groups were treated with progesterone (2 mg/(rat day); group P), 17beta-estradiol (10 microg/(rat day); group E2), or progesterone and 17beta-estradiol together (group E2+P). The functionality of the arginine-nitric oxide synthase (NOS)-nitric oxide (NO) pathway in the uterine horns of sacrificed rats was evaluated in an isolated organ bath. L-Arginine, sodium nitroprusside (SNP) and 8-Br-cGMP decreased uterine contractile tension induced by electric field stimulation (EFS) in the Ov, P, and E2+P groups, but not in the E2 group. In addition, L-arginine was ineffective when applied together with a NOS inhibitor, L-nitro-N-arginine (L-NNA). The percentage of contractile inhibition was higher in the Ov and P groups compared to the E2+P group. Immunohistochemical evaluation revealed that expression of neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS) in smooth muscles and nerve cells did not differ among the groups. Expression of nNOS and eNOS was strongly evident in the E2 and E2+P groups at both surface and glandular epithelium of the endometrium. iNOS expression was increased in surface epithelium of the E2 and E2+P groups. However, iNOS expression was only increased in glandular epithelial cells of the E2+P group. In conclusion, the L-arginine-NOS-NO pathway inhibits myometrial contractions via cGMP-dependent and -independent mechanisms, and while progesterone maintains the nitric oxide effects, estrogen prevents them. These results suggest that NOS does not mediate the effects of estrogen.  相似文献   

2.
Tamura K  Yamaguchi K  Kogo H 《Life sciences》2000,66(17):PL 259-PL 264
The objective of this study was to elucidate a role of ovarian steroid hormones in the production of immunologic nitric oxide (NO) synthases in the female rat aorta in vivo. Aortic homogenates were analyzed by using western blot with isoform-specific antibodies against endothelial NOS (eNOS) and inducible NOS (iNOS). Two weeks after ovariectomy (OVX), rats (10-week-old) were treated with 17beta-estradiol (E2) and/or progesterone (P4) for 5 days, and aortae were obtained from these rats on the following day. OVX markedly increased the levels of iNOS protein in abdominal aorta, whereas treatment with E2 or a combination of E2 and P4 inhibited the induction of iNOS in the aorta. The present findings indicate that endogeneous estrogen negatively regulates the expression of iNOS in abdominal aorta, and suggest that changes in the levels of circulating estrogen may affect vascular function.  相似文献   

3.
Placental blood flow, endothelial nitric oxide (NO) production, and endothelial cell nitric oxide synthase (eNOS) expression increase during pregnancy. Shear stress, the frictional force exerted on endothelial cells by blood flow, stimulates vessel dilation, endothelial NO production, and eNOS expression. In order to study the effects of pulsatile flow/shear stress, we adapted Cellco CELLMAX artificial capillary modules to study ovine fetoplacental artery endothelial (OFPAE) cells for NO production and eNOS expression. OFPAE cells were grown in the artificial capillary modules at 3 dynes/cm2. Confluent cells were then exposed to 10, 15, or 25 dynes/cm2 for up to 24 h. NO production by OFPAE cells exposed to pulsatile shear stress was inhibited to nondetectable levels by the NOS inhibitor l-NMMA and reversed by excess NOS substrate l-arginine. NO production and expression of eNOS mRNA and protein by OFPAE cells were elevated by shear stress in a graded fashion (P < 0.05). The rise in NO production with 25 dynes/cm2 shear stress (8-fold) was greater (P < 0.05) than that observed for eNOS protein (3.6-fold) or eNOS mRNA (1.5-fold). The acute shear stress-induced rise in NO production by OFPAE cells was via eNOS activation, whereas the prolonged NO rise occurred by elevations in both eNOS expression and enzyme activation. Thus, elevations of placental blood flow and physiologic shear stress may be partly responsible for the increases in placental arterial endothelial eNOS expression and NO production during pregnancy.  相似文献   

4.
5.
Nitric oxide contributes to estrogen-mediated uterine vasodilation; however, the nitric oxide synthases (NOS) involved and their location within uterine arteries are incompletely documented. We investigated the effects of repetitive daily and acute estradiol-17beta (E(2)beta) exposure on uterine hemodynamics and NOS abundance and localization in uterine arteries from nonpregnant ovariectomized ewes receiving daily intravenous E(2)beta (1 microg/kg, n = 5) or no E(2)beta (n = 7) for 5 days to determine NOS abundance, cGMP contents, and NOS immunohistochemistry. Daily E(2)beta increased basal and E(2)beta-mediated rises in uterine blood flow (UBF) 36 and 43% (<0.01), respectively, calcium-dependent NOS activity 150% (P < 0.02) in endothelium-intact and -denuded ( approximately 40% of total NOS) arteries, and cGMP contents 39% (P < 0.05). Endothelial (eNOS) was detected in luminal endothelium, whereas neuronal NOS (nNOS) protein was only in the media. A second group of ewes received E(2)beta (1 microg/kg iv) for 4 days and acute intravenous E(2)beta (n = 8) or vehicle (n = 4) on day 5. UBF rose 5.5-fold (P < 0.001) 115 min after E(2)beta, at which time only endothelium-derived calcium-dependent NOS activity increased 30 +/- 13% (P < 0.05). Daily E(2)beta enhances basal and E(2)beta-mediated increases in UBF, which parallel increases in endothelium-derived eNOS and smooth muscle-derived nNOS. Acute E(2)beta, however, selectively increases endothelium-derived eNOS.  相似文献   

6.
Although the issue of estrogen replacement therapy on cardiovascular health is debatable, it has presumable benefits for endothelial function in postmenopausal women. However, the fear of breast cancer has intimidated women contemplating estrogen treatment and limited its long-term application. An effective alternative remedy not associated with breast carcinoma is in serious demand. This study was designed to examine the effect of phytoestrogen alpha-zearalanol (alpha-ZAL) and 17beta-estradiol (E2) on nitric oxide (NO) and endothelin (ET)-1 levels, apoptosis, and apoptotic enzymes in human umbilical vein endothelial cells (HUVEC). HUVEC cells were challenged for 24 h with homocysteine (10-3 M), an independent risk factor for a variety of vascular diseases, in the presence of alpha-ZAL or E2 (10-9 to 10-6 M). Release of NO and ET-1 were measured with enzyme immunoassay. Apoptosis was evaluated by fluorescence-activated cell sorter analysis. Expression of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), Bax, and Bcl-2 were determined using Western blot. NOS activity was evaluated with 3H-arginine to 3H-citrulline conversion. Our results indicated that Hcy significantly reduced NO production, NOS activity, enhanced ET-1/NO ratio and apoptosis, upregulated iNOS, Bax, and downregulated eNOS, Bcl-2 expression. These effects were significantly attenuated by alpha-ZAL and E2. ZAL displayed a similar potency compared with E2 in antagonizing Hcy-induced effects. In summary, these results suggested that alpha-ZAL may effectively preserve Hcy-induced decrease in NO, increase in ET-1/NO ratio and apoptosis, which contributes to protective effects of phytoestrogens on endothelial function.  相似文献   

7.
Hypoadrenocorticism produces more severe hypotension during the peripartal period in pregnant ewes and women. We hypothesized that estradiol increases the severity of hypotension after withdrawal of corticosteroids and that this results from combined effects of adrenalectomy and estradiol to increase endothelial nitric oxide synthase (eNOS). In study I, blood pressure and eNOS mRNA and protein in aorta, uterine, renal, and mesenteric arteries were measured in intact ewes or adrenalectomized ewes 18-20 h after cessation of infusion of cortisol and aldosterone; half of each group ewes were treated with estradiol. In study II, adrenalectomized ewes were similarly studied 22-28 h after withdrawal of corticosteroids. Estradiol treatment in both studies significantly increased eNOS mRNA and protein in uterine artery, whereas corticosteroid withdrawal decreased expression of eNOS mRNA and protein in uterine artery. In both studies, adrenalectomy and steroid withdrawal decreased mean arterial pressure. In study II, four of six adrenalectomized ewes not treated with estradiol showed dramatic phasic variations in blood pressure and heart rate with a period of approximately 20 s, developing within 22-28 h after corticosteroid withdrawal. Although there was no effect of estradiol on blood pressure in study I, in study II, ewes treated with estradiol did not develop this pattern. Estradiol also slowed both the decline in plasma sodium and the rise in plasma potassium after corticosteroid withdrawal. These results disprove the hypothesis that estradiol increases the severity of hypotension during hypoadrenocorticism. However, the study reveals an important effect of corticosteroid withdrawal on blood pressure, consistent with corticosteroid modulation of baroreflex responsiveness.  相似文献   

8.
9.
10.
Yang D  Fu XD  Li YY  Tan Z  Wang TH  Pan JY 《生理学报》2003,55(6):684-691
利用大鼠血管平滑肌细胞(vascular smooth muscle cells,VSMC)作为模型,观察17β-雌二醇(17β-estradiol,E2)对VSMC诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)活性和蛋白表达的影响,并探讨其在内皮素-1(endothlin 1,ET-1)刺激的VSMC周期循环中的作用。检测指标包括同位素法测定iNOS的活性,免疫印迹法(western blot)检测iNOS蛋白表达,流式细胞仪检测细胞周期,观察一氧化氮合酶(nitric oxide synthase,NOS)抑制剂N^G-硝基左旋精氨酸甲酯(N^G-nitro—L—arginine methylester,L—NAME)对E2抑制VSMC细胞周期的影响。结果显示,E2明显增加iNOS的活性和蛋白表达,在30min和12h时能诱导VSMC的iNOS活性明显增加,而60min和24h时VSMC的iNOS活性与对照组无显著差异,不呈明显浓度依赖性,雌激素受体(estrogen receptor,ER)拮抗剂Tamoxifen和L—NAME能明显抑制E2诱导的VSMC iNOS活性增加;E2增加VSMC的iNOS蛋白表达的作用在3h时起效,12h达高峰,以后逐渐下降,呈浓度依赖性,Tamoxifen能明显抑制马诱导的VSMC iNOS蛋白表达;E2明显抑制ET-1诱导的S期细胞百分比和G2 S/G1增加,使VSMC在G1期发生细胞周期阻滞,这些作用可被预先给予L—NAME所明显减轻。上述结果提示,E2使ET—l刺激的VSMC细胞周期循环在G1期发生阻滞与增加VSMC iNOS活性有关,该作用至少部分通过ER介导。  相似文献   

11.
During the third trimester, fetoplacental and uterine blood flows increase dramatically to meet the high metabolic demands of the growing fetus. We hypothesized that the expression of endothelial nitric oxide synthase (eNOS) in fetoplacental artery endothelium and the concentrations of nitric oxide (NO) and cyclic GMP (cGMP) in amniotic fluid (AF) are increased during the third trimester of ovine gestation. Placental arteries and AF were collected from ewes at 110, 120, 130, and 142 days of gestation (n = 24; mean +/- SEM term = 145 +/- 3 days). Expression of eNOS protein was measured in intact and denuded placental arteries and in endothelium-derived protein by Western analysis and confirmed by immunohistochemistry. Concentrations of NO (nitrates plus nitrites) and cGMP were determined in AF. Placental artery eNOS protein expression was localized to the endothelium, where it was markedly greater than in vascular smooth muscle. Placental artery endothelium-derived eNOS expression and AF cGMP concentrations were similar at 110 and 120 days of gestation; however, both peaked at 130 days at levels two- to threefold above baseline (P < 0.05) before returning to baseline at 142 days of pregnancy. The AF NO (nitrates plus nitrites) levels, however, increased progressively between 120 days of gestation and term (P < 0.05). We concluded that endothelium-derived placental artery eNOS levels, AF NO (nitrates plus nitrites), and AF cGMP were markedly increased during the third trimester, thus supporting a role for NO-mediated elevations in cGMP in the control of fetoplacental blood flow.  相似文献   

12.
Nitric oxide (NO) and the expression of endothelial (eNOS) and inducible (iNOS) isoforms of nitric oxide synthase (NOS) are recognized as important mediators of physiological and pathological processes of renal ischemia/reperfusion (I/R) injury, but little is known about their role in apoptosis. The ability of the eNOS/NO system to regulate the iNOS/NO system and thus promote apoptosis was assessed during experimental renal I/R. Renal caspase-3 activity and the number of TUNEL-positive cells increased with I/R, but decreased when NOS/NO systems were blocked with L-NIO (eNOS), 1400W (iNOS), and N-nitro-l-arginine methyl ester (L-NAME; a nonselective NOS inhibitor). I/R increased renal eNOS and iNOS expression as well as NO production. The NO increase was eNOS- and iNOS-dependent. Blockage of NOS/NO systems with L-NIO or L-NAME also resulted in a lower renal expression of iNOS and iNOS mRNA; in contrast, eNOS expression was not affected by iNOS-specific blockage. In conclusion, two pathways define the role of NOS/NO systems in the development of apoptosis during experimental renal I/R: a direct route, through eNOS overexpression and NO production, and an indirect route, through expression/activation of the iNOS/NO system, induced by eNOS.  相似文献   

13.
14.
Nitric oxide (NO), a mediator of various physiological and pathophysiological processes, is synthesized by three isozymes of nitric oxide synthase (NOS). Potential candidate clinical drugs should be devoid of inhibitory activity against endothelial NOS (eNOS), since eNOS plays an important role in maintaining normal blood pressure and flow. A new series of aminopiperidines as potent inhibitors of iNOS were identified from a HTS lead. From this study, we identified compound 33 as a potent iNOS inhibitor, with >25-fold selectivity over eNOS and 16-fold selectivity over nNOS.  相似文献   

15.
Nitric oxide (NO), produced by NO synthase (NOS), plays a critical role in multiple processes in the lung during the perinatal period. To better understand the regulation of pulmonary NO production in the developing primate, we determined the cell specificity and developmental changes in NOS isoform expression and action in the lungs of third-trimester fetal baboons. Immunohistochemistry in lungs obtained at 175 days (d) of gestation (term = 185 d) revealed that all three NOS isoforms, neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS), are primarily expressed in proximal airway epithelium. In proximal lung, there was a marked increase in total NOS enzymatic activity from 125 to 140 d gestation due to elevations in nNOS and eNOS, whereas iNOS expression and activity were minimal. Total NOS activity was constant from 140 to 175 d gestation, and during the latter stage (160-175 d gestation), a dramatic fall in nNOS and eNOS was replaced by a rise in iNOS. Studies done within 1 h of delivery at 125 or 140 d gestation revealed that the principal increase in NOS during the third trimester is associated with an elevation in exhaled NO levels, a decline in expiratory resistance, and greater pulmonary compliance. Thus, there are developmental increases in pulmonary NOS expression and NO production during the early third trimester in the primate that may enhance airway and parenchymal function in the immediate postnatal period.  相似文献   

16.
Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.  相似文献   

17.
Although previous studies demonstrated beneficial effects of estrogen on cardiovascular function, the Women's Health Initiative has reported an increased incidence of coronary heart disease and stroke in postmenopausal women taking hormone replacement therapy. The objective of the present study was to identify a molecular mechanism whereby estrogen, a vasodilatory hormone, could possibly increase the risk of cardiovascular disease. Isometric contractile force recordings were performed on endothelium-denuded porcine coronary arteries, whereas molecular and fluorescence studies identified estrogen signaling molecules in coronary smooth muscle. Estrogen (1-1,000 nM) relaxed arteries in an endothelium-independent fashion; however, when arteries were pretreated with agents to uncouple nitric oxide (NO) production from NO synthase (NOS), estrogen contracted coronary arteries with an EC(50) of 7.3 +/- 4 nM. Estrogen-induced contraction was attenuated by reducing superoxide (O(2)(-)). Estrogen-stimulated O(2)(-) production was detected in NOS-uncoupled coronary myocytes. Interestingly, only the type 1 neuronal NOS isoform (nNOS) was detected in myocytes, making this protein a likely target mediating both estrogen-induced relaxation and contraction of endothelium-denuded coronary arteries. Estrogen-induced contraction was completely inhibited by 1 muM nifedipine or 10 muM indomethacin, indicating involvement of dihydropyridine-sensitive calcium channels and contractile prostaglandins. We propose that a single molecular mechanism can mediate the dual and opposite effect of estrogen on coronary arteries: by stimulating type 1 nNOS in coronary arteries, estrogen produces either vasodilation via NO or vasoconstriction via O(2)(-).  相似文献   

18.
Florian M  Lu Y  Angle M  Magder S 《Steroids》2004,69(10):637-645
OBJECTIVES: Acute administration of estrogen results in vasodilation and increased nitric oxide (NO) production. We examined the hypothesis that this is due to activation of Akt/PKB which subsequently increases eNOS activity. METHODS AND RESULTS: Treatment of bovine microvascular and human umbilical endothelial cells (HUVEC) with 17-beta-estradiol (E2) (10(-9) to 10(-5)M) increased phosphorylation of Akt within 1 min and this was followed by phosphorylation of eNOS. These effects were blocked by wortmannin, a PI(3)K inhibitor and the upstream activator of Akt. The estrogen receptor antagonist, ICI 182,780, inhibited eNOS phosphorylation. E2 increased calcium dependent NOS activity and nitrite production and this was inhibited by wortmannin and ICI 182,780. E2 increased the vasodilatory response of aortic rings to acetylcholine and wortmannin blocked the effect. E2 (10(-9)M) dilated cerebral microvascular vessels under conditions of no flow, constant flow and increasing flow and this was blocked by wortmannin. Tamoxifen, a partial estrogen receptor antagonist, also dilated the microvessels. CONCLUSIONS:: E2 increases NO production through an Akt/PKB dependent pathway. This is associated with increased sensitivity to endothelial dependent dilation. In cerebral microvessels, E2 and tamoxifen produce significant dilation at low concentrations with and without acetylcholine induced stimulation of endothelial vasodilation.  相似文献   

19.
Chronic estrogen treatment increases endothelial vasodilator function in cerebral arteries. Endothelial nitric oxide (NO) synthase (eNOS) is a primary target of the hormone, but other endothelial factors may be modulated as well. In light of possible interactions between NO and prostaglandins, we tested the hypothesis that estrogen treatment increases prostanoid-mediated dilation using NOS-deficient female mouse models, i.e., mice treated with a NOS inhibitor [N(G)-nitro-l-arginine methyl ester (l-NAME)] for 21 days or transgenic mice with the eNOS gene disrupted (eNOS(-/-)). All mice were ovariectomized; some in each group were treated chronically with estrogen. Cerebral blood vessels then were isolated for biochemical and functional analyses. In vessels from control mice, estrogen increased protein levels of eNOS but had no significant effect on cyclooxygenase (COX)-1 protein, prostacyclin production, or constriction of pressurized, middle cerebral arteries to indomethacin, a COX inhibitor. In l-NAME-treated mice, however, cerebrovascular COX-1 levels, prostacyclin production, and constriction to indomethacin, as well as eNOS protein, were all greater in estrogen-treated animals. In vessels from eNOS(-/-) mice, estrogen treatment also increased levels of COX-1 protein and constriction to indomethacin, but no effect on prostacyclin production was detected. Thus cerebral blood vessels of control mice did not exhibit effects of estrogen on the prostacyclin pathway. However, when NO production was dysfunctional, the impact of estrogen on a COX-sensitive vasodilator was revealed. Estrogen has multiple endothelial targets; estrogen effects may be modified by interactions among these factors.  相似文献   

20.
Hyperoxia may affect lung physiology in different ways. We investigated the effect of hyperoxia on the protein expression of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS), nitric oxide (NO) production, and hypoxic pulmonary vasoconstriction (HPV) in rat lung. Twenty-four male rats were divided into hyperoxic and normoxic groups. Hyperoxic rats were placed in > 90% F1O2 for 60 h prior to experiments. After baseline in vitro analysis, the rats underwent isolated, perfused lung experiments. Two consecutive hypoxic challenges (10 min each) were administered with the administration of a non-specific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), in between. We measured intravascular NO production, pulmonary arterial pressure, and protein expression of eNOS and iNOS by immunohistochemistry. We found that hyperoxia rats exhibited increased baseline NO production (P < 0.001) and blunted HPV response (P < 0.001) during hypoxic challenges compared to normoxia rats. We also detected a temporal association between the attenuation in HPV and increased NO production level with a negative pre-L-NAME correlation between HPV and NO (R = 0.52, P < 0.05). After L-NAME administration, a second hypoxic challenge restored the HPV response in the hyperoxic group. There were increased protein expression of eNOS (12.6 +/- 3.1-fold, n = 3) (X200) and iNOS (8.1 +/- 2.6-fold, n = 3) (X200) in the hyperoxia group. We conclude that hyperoxia increases the protein expression of eNOS and iNOS with a subsequent increased release of endogenous NO, which attenuates the HPV response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号