首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Understanding the maintenance of genetic variation remains a central challenge in evolutionary biology. Recent empirical studies suggest the importance of temporally varying selection, as allele frequencies have been found to fluctuate substantially in the wild. However, previous theory suggests that the conditions for the maintenance of genetic variation under temporally fluctuating selection are quite restrictive. Using mathematical models, we demonstrate that maternal genetic effects, whereby maternal genotypes affect offspring phenotypes, can facilitate the maintenance of polymorphism in temporally varying environments. Maternal effects result in mismatches between genotypes and phenotypes, thereby buffering the influence of selection on allele frequency. This decreases the magnitude of allele‐frequency fluctuations and creates conditions for the maintenance of variation when selection causes fluctuations. Therefore, maternal effects may result in a temporal storage effect (“maternal storage effect”). On the other hand, when selection does not cause fluctuations (e.g., linear negative frequency‐dependent selection), maternal genetic effects moderate the relative importance of selection compared to genetic drift and promote stochastic allele extinction in finite populations. Thus, maternal effects can play an important role in the maintenance of polymorphism, but the direction of the effect depends on the nature of selection.  相似文献   

2.
A General Model to Account for Enzyme Variation in Natural Populations   总被引:16,自引:10,他引:6       下载免费PDF全文
Approximate conditions for genetic polymorphism in temporally and spatially varying environments are presented for loci which are intermediate at the level of fitness or at the level of gene function. The conditions suggest that polymorphism will be more likely in more variable environments while unlikely in constant environments. Biochemical evidence is presented to justify the assumption of heterozygote intermediacy. Observations on natural populations are cited which substantiate the claim that allozymic polymorphism is primarily due to selection acting on environmental variation in gene function.  相似文献   

3.
Genetic variation is the raw material upon which selection acts. The majority of environmental conditions change over time and therefore may result in variable selective effects. How temporally fluctuating environments impact the distribution of fitness effects and in turn population diversity is an unresolved question in evolutionary biology. Here, we employed continuous culturing using chemostats to establish environments that switch periodically between different nutrient limitations and compared the dynamics of selection to static conditions. We used the pooled Saccharomyces cerevisiae haploid gene deletion collection as a synthetic model for populations comprising thousands of unique genotypes. Using barcode sequencing, we find that static environments are uniquely characterized by a small number of high-fitness genotypes that rapidly dominate the population leading to dramatic decreases in genetic diversity. By contrast, fluctuating environments are enriched in genotypes with neutral fitness effects and an absence of extreme fitness genotypes contributing to the maintenance of genetic diversity. We also identified a unique class of genotypes whose frequencies oscillate sinusoidally with a period matching the environmental fluctuation. Oscillatory behavior corresponds to large differences in short-term fitness that are not observed across long timescales pointing to the importance of balancing selection in maintaining genetic diversity in fluctuating environments. Our results are consistent with a high degree of environmental specificity in the distribution of fitness effects and the combined effects of reduced and balancing selection in maintaining genetic diversity in the presence of variable selection.  相似文献   

4.
Maintenance of genetic variation at loci under selection has profound implications for adaptation under environmental change. In temporally and spatially varying habitats, non‐neutral polymorphism could be maintained by heterozygote advantage across environments (marginal overdominance), which could be greatly increased by beneficial reversal of dominance across conditions. We tested for reversal of dominance and marginal overdominance in salinity tolerance in the saltwater‐to‐freshwater invading copepod Eurytemora affinis. We compared survival of F1 offspring generated by crossing saline and freshwater inbred lines (between‐salinity F1 crosses) relative to within‐salinity F1 crosses, across three salinities. We found evidence for both beneficial reversal of dominance and marginal overdominance in salinity tolerance. In support of reversal of dominance, survival of between‐salinity F1 crosses was not different from that of freshwater F1 crosses under freshwater conditions and saltwater F1 crosses under saltwater conditions. In support of marginal overdominance, between‐salinity F1 crosses exhibited significantly higher survival across salinities relative to both freshwater and saltwater F1 crosses. Our study provides a rare empirical example of complete beneficial reversal of dominance associated with environmental change. This mechanism might be crucial for maintaining genetic variation in salinity tolerance in E. affinis populations, allowing rapid adaptation to salinity changes during habitat invasions.  相似文献   

5.
The paradox of high genetic variation observed in traits under stabilizing selection is a long‐standing problem in evolutionary theory, as mutation rates appear too low to explain observed levels of standing genetic variation under classic models of mutation–selection balance. Spatially or temporally heterogeneous environments can maintain more standing genetic variation within populations than homogeneous environments, but it is unclear whether such conditions can resolve the above discrepancy between theory and observation. Here, we use individual‐based simulations to explore the effect of various types of environmental heterogeneity on the maintenance of genetic variation (VA) for a quantitative trait under stabilizing selection. We find that VA is maximized at intermediate migration rates in spatially heterogeneous environments and that the observed patterns are robust to changes in population size. Spatial environmental heterogeneity increased variation by as much as 10‐fold over mutation–selection balance alone, whereas pure temporal environmental heterogeneity increased variance by only 45% at max. Our results show that some combinations of spatial heterogeneity and migration can maintain considerably more variation than mutation–selection balance, potentially reconciling the discrepancy between theoretical predictions and empirical observations. However, given the narrow regions of parameter space required for this effect, this is unlikely to provide a general explanation for the maintenance of variation. Nonetheless, our results suggest that habitat fragmentation may affect the maintenance of VA and thereby reduce the adaptive capacity of populations.  相似文献   

6.
A fundamental goal of evolutionary biology is to understand how ecological diversity arises and is maintained in natural populations. We have investigated the contributions of gene flow and divergent selection to the distribution of genetic variation in an ecologically differentiated population of a thermophilic cyanobacterium (Mastigocladus laminosus) found along the temperature gradient of a nitrogen‐limited stream in Yellowstone National Park. For most loci sampled, gene flow appears to be sufficient to prevent substantial genetic divergence. However, one locus (rfbC) exhibited a comparatively low migration rate as well as other signatures expected for a gene experiencing spatially varying selection, including an excess of common variants, an elevated level of polymorphism and extreme genetic differentiation along the gradient. rfbC is part of an expression island involved in the production of the polysaccharide component of the protective envelope of the heterocyst, the specialized nitrogen‐fixing cell of these bacteria. SNP genotyping in the vicinity of rfbC revealed a ~5‐kbp region including a gene content polymorphism that is tightly associated with environmental temperature and therefore likely contains the target of selection. Two genes have been deleted both in the predominant haplotype found in the downstream region of White Creek and in strains from other Yellowstone populations of M. laminosus, which may result in the production of heterocysts with different envelope properties. This study implicates spatially varying selection in the maintenance of variation related to thermal performance at White Creek despite on‐going or recent gene flow.  相似文献   

7.
Although there have many studies of the population genetical consequences of environmental variation, little is known about the combined effects of genetic drift and fluctuating selection in structured populations. Here we use diffusion theory to investigate the effects of temporally and spatially varying selection on a population of haploid individuals subdivided into a large number of demes. Using a perturbation method for processes with multiple time scales, we show that as the number of demes tends to infinity, the overall frequency converges to a diffusion process that is also the diffusion approximation for a finite, panmictic population subject to temporally fluctuating selection. We find that the coefficients of this process have a complicated dependence on deme size and migration rate, and that changes in these demographic parameters can determine both the balance between the dispersive and stabilizing effects of environmental variation and whether selection favors alleles with lower or higher fitness variance.  相似文献   

8.
Covariation between population‐mean phenotypes and environmental variables, sometimes termed a “phenotype–environment association” (PEA), can result from phenotypic plasticity, genetic responses to natural selection, or both. PEAs can potentially provide information on the evolutionary dynamics of a particular set of populations, but this requires a full theoretical characterization of PEAs and their evolution. Here, we derive formulas for the expected PEA in a temporally fluctuating environment for a quantitative trait with a linear reaction norm. We compare several biologically relevant scenarios, including constant versus evolving plasticity, and the situation in which an environment affects both development and selection but at different time periods. We find that PEAs are determined not only by biological factors (e.g., magnitude of plasticity, genetic variation), but also environmental factors, such as the association between the environments of development and of selection, and in some cases the level of temporal autocorrelation. We also describe how a PEA can be used to estimate the relationship between an optimum phenotype and an environmental variable (i.e., the environmental sensitivity of selection), an important parameter for determining the extinction risk of populations experiencing environmental change. We illustrate this ability using published data on the predator‐induced morphological responses of tadpoles to predation risk.  相似文献   

9.
Heterogeneous environments are typically expected to maintain more genetic variation in fitness within populations than homogeneous environments. However, the accuracy of this claim depends on the form of heterogeneity as well as the genetic basis of fitness traits and how similar the assay environment is to the environment of past selection. Here, we measure quantitative genetic (QG) variance for three traits important for fitness using replicated experimental populations of Drosophila melanogaster evolving under four selective regimes: constant salt‐enriched medium (Salt), constant cadmium‐enriched medium (Cad), and two heterogeneous regimes that vary either temporally (Temp) or spatially (Spatial). As theory predicts, we found that Spatial populations tend to harbor more genetic variation than Temp populations or those maintained in a constant environment that is the same as the assay environment. Contrary to expectation, Salt populations tend to have more genetic variation than Cad populations in both assay environments. We discuss the patterns for QG variances across regimes in relation to previously reported data on genome‐wide sequence diversity. For some traits, the QG patterns are similar to the diversity patterns of ecological selected SNPs, whereas the QG patterns for some other traits resembled that of neutral SNPs.  相似文献   

10.
Little is known about how quickly natural populations adapt to changes in their environment and how temporal and spatial variation in selection pressures interact to shape patterns of genetic diversity. We here address these issues with a series of genome scans in four overfished populations of Atlantic cod (Gadus morhua) studied over an 80‐year period. Screening of >1000 gene‐associated single‐nucleotide polymorphisms (SNPs) identified 77 loci that showed highly elevated levels of differentiation, likely as an effect of directional selection, in either time, space or both. Exploratory analysis suggested that temporal allele frequency shifts at certain loci may correlate with local temperature variation and with life history changes suggested to be fisheries induced. Interestingly, however, largely nonoverlapping sets of loci were temporal outliers in the different populations and outliers from the 1928 to 1960 period showed almost complete stability during later decades. The contrasting microevolutionary trajectories among populations resulted in sequential shifts in spatial outliers, with no locus maintaining elevated spatial differentiation throughout the study period. Simulations of migration coupled with observations of temporally stable spatial structure at neutral loci suggest that population replacement or gene flow alone could not explain all the observed allele frequency variation. Thus, the genetic changes are likely to at least partly be driven by highly dynamic temporally and spatially varying selection. These findings have important implications for our understanding of local adaptation and evolutionary potential in high gene flow organisms and underscore the need to carefully consider all dimensions of biocomplexity for evolutionarily sustainable management.  相似文献   

11.
Temporally varying selection is known to maintain genetic polymorphism under certain restricted conditions. However, if part of a population can escape from selective pressure, a condition called the “storage effect” is produced, which greatly promotes balanced polymorphism. We investigate whether seasonally fluctuating selection can maintain polymorphism at multiple loci, if cyclically fluctuating selection is not acting on a subpopulation called a “refuge.” A phenotype with a seasonally oscillating optimum is determined by alleles at multiple sites, across which the effects of mutations on phenotype are distributed randomly. This model resulted in long‐term polymorphism at multiple sites, during which allele frequencies oscillate heavily, greatly increasing the level of nonneutral polymorphism. The level of polymorphism at linked neutral sites was either higher or lower than expected for unlinked neutral loci. Overall, these results suggest that for a protein‐coding sequence, the nonsynonymous‐to‐synonymous ratio of polymorphism may exceed one. In addition, under randomly perturbed environmental oscillation, different sets of sites may take turns harboring long‐term polymorphism, thus making trans‐species polymorphism (which has been predicted as a classical signature of balancing selection) less likely.  相似文献   

12.
Philip W. Hedrick 《Genetics》1976,84(1):145-157
The maintenance of genetic variation is investigated in a finite population where selection at an autosomal locus with two alleles varies temporally between two environments and the heterozygote has an intermediate fitness value. When there is additive gene action and equal selection in both environments, the autocorrelation between subsequent environments must be negative for more maintenance of genetic variation than for neutrality. The maximum maintenance occurs when there is equal selection in the two environments and the autocorrelation approaches -1.0 (for a stochastic model), or when there is short repeating cycle such as one related to seasons. Also comparison of the effects of stochastic variation in selection in finite and infinite populations is made by using Monte Carlo simulation. One situation was found where temporal environmental variation maintains genetic variation very effectively even in a small population and that is when there is evolution of dominance, i.e., the heterozygote is closer in fitness to the favored homozygote than the other homozygote. An important conclusion is that in a finite population genetic tracing of environmental change, particularly when there is a positive autocorrelation between environments or a long environmental cycle, leads to an increased loss of genetic variation making such a response undesirable in the long term, a result different from that in infinite populations.  相似文献   

13.
Sexual selection can increase rates of adaptation by imposing strong selection in males, thereby allowing efficient purging of the mutation load on population fitness at a low demographic cost. Indeed, sexual selection tends to be male‐biased throughout the animal kingdom, but little empirical work has explored the ecological sensitivity of this sex difference. In this study, we generated theoretical predictions of sex‐specific strengths of selection, environmental sensitivities and genotype‐by‐environment interactions and tested them in seed beetles by manipulating either larval host plant or rearing temperature. Using fourteen isofemale lines, we measured sex‐specific reductions in fitness components, genotype‐by‐environment interactions and the strength of selection (variance in fitness) in the juvenile and adult stage. As predicted, variance in fitness increased with stress, was consistently greater in males than females for adult reproductive success (implying strong sexual selection), but was similar in the sexes in terms of juvenile survival across all levels of stress. Although genetic variance in fitness increased in magnitude under severe stress, heritability decreased and particularly so in males. Moreover, genotype‐by‐environment interactions for fitness were common but specific to the type of stress, sex and life stage, suggesting that new environments may change the relative alignment and strength of selection in males and females. Our study thus exemplifies how environmental stress can influence the relative forces of natural and sexual selection, as well as concomitant changes in genetic variance in fitness, which are predicted to have consequences for rates of adaptation in sexual populations.  相似文献   

14.
Genetic correlations between traits determine the multivariate response to selection in the short term, and thereby play a causal role in evolutionary change. Although individual studies have documented environmentally induced changes in genetic correlations, the nature and extent of environmental effects on multivariate genetic architecture across species and environments remain largely uncharacterized. We reviewed the literature for estimates of the genetic variance–covariance ( G ) matrix in multiple environments, and compared differences in G between environments to the divergence in G between conspecific populations (measured in a common garden). We found that the predicted evolutionary trajectory differed as strongly between environments as it did between populations. Between‐environment differences in the underlying structure of G (total genetic variance and the relative magnitude and orientation of genetic correlations) were equal to or greater than between‐population differences. Neither environmental novelty, nor the difference in mean phenotype predicted these differences in G . Our results suggest that environmental effects on multivariate genetic architecture may be comparable to the divergence that accumulates over dozens or hundreds of generations between populations. We outline avenues of future research to address the limitations of existing data and characterize the extent to which lability in genetic correlations shapes evolution in changing environments.  相似文献   

15.
Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations.  相似文献   

16.
Populations can persist in directionally changing environments by evolving. Quantitative genetic theory aims to predict critical rates of environmental change beyond which populations go extinct. Here, we point out that all current predictions effectively assume the same specific fitness function. This function causes selection on the standing genetic variance of quantitative traits to become increasingly strong as mean trait values depart from their optima. Hence, there is no bound on the rate of evolution and persistence is determined by the critical rate of environmental change at which populations cease to grow. We then show that biologically reasonable changes to the underlying fitness function can impose a qualitatively different extinction threshold. In particular, inflection points caused by weakening selection create local extrema in the strength of selection and thus in the rate of evolution. These extrema can produce evolutionary tipping points, where long‐run population growth rates drop from positive to negative values without ever crossing zero. Generic early‐warning signs of tipping points are found to have little power to detect imminent extinction, and require hard‐to‐gather data. Furthermore, we show how evolutionary tipping points produce evolutionary hysteresis, creating extinction debts.  相似文献   

17.
Leaf shape is one of the most variable plant traits. Previous work has provided much indirect evidence that leaf-shape variation is adaptive and that leaf shape influences thermoregulation, water balance, and resistance to natural enemies. Nevertheless, there is little direct evidence that leaf shape actually affects plant fitness. In this study, we first demonstrate that populations of the ivyleaf morning glory, Ipomoea hederacea, in North and South Carolina are frequently polymorphic at a locus that influences leaf shape. We then employ several field experiments to show that this polymorphism is subject to selection. In two of the experiments, at different sites, heterozygotes enjoyed a fitness advantage over both homozygotes. At a third site, in one year directional selection favored lobed leaves, whereas in a second year the pattern of fitnesses was consistent with similar directional selection or heterozygote superiority. Computer simulations of heterozygote advantage under the high selfing rates of I. hederacea indicate that balancing selection of the magnitude observed can by itself stabilize the polymorphism, although spatially and temporally variable selection may also contribute to its long-term maintenance.  相似文献   

18.
19.
Conceptual issues in local adaptation   总被引:10,自引:0,他引:10  
Studies of local adaptation provide important insights into the power of natural selection relative to gene flow and other evolutionary forces. They are a paradigm for testing evolutionary hypotheses about traits favoured by particular environmental factors. This paper is an attempt to summarize the conceptual framework for local adaptation studies. We first review theoretical work relevant for local adaptation. Then we discuss reciprocal transplant and common garden experiments designed to detect local adaptation in the pattern of deme × habitat interaction for fitness. Finally, we review research questions and approaches to studying the processes of local adaptation – divergent natural selection, dispersal and gene flow, and other processes affecting adaptive differentiation of local demes. We advocate multifaceted approaches to the study of local adaptation, and stress the need for experiments explicitly addressing hypotheses about the role of particular ecological and genetic factors that promote or hinder local adaptation. Experimental evolution of replicated populations in controlled spatially heterogeneous environments allow direct tests of such hypotheses, and thus would be a valuable way to complement research on natural populations.  相似文献   

20.
Here, I suggest that colour polymorphic study systems have been underutilized to answer general questions about evolutionary processes, such as morph frequency dynamics between generations and population divergence in morph frequencies. Colour polymorphisms can be used to study fundamental evolutionary processes like frequency‐dependent selection, gene flow, recombination and correlational selection for adaptive character combinations. However, many previous studies of colour polymorphism often suffer from weak connections to population genetic theory. I argue that too much focus has been directed towards noticeable visual traits (colour) at the expense of understanding the evolutionary processes shaping genetic variation and covariation associated with polymorphisms in general. There is thus no need for a specific evolutionary theory for colour polymorphisms beyond the general theory of the maintenance of polymorphisms in spatially or temporally variable environments or through positive or negative frequency‐dependent selection. I outline an integrative research programme incorporating these processes and suggest some fruitful avenues in future investigations of colour polymorphisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号