首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Some recent models suggest a new role for evolutionary arms races between males and females in sexual selection. Female resistance to males is proposed to be driven by the direct advantage to the female of avoiding male-imposed reductions in the number of offspring she can produce, rather than by the indirect advantage of selecting among possible sires for her offspring, as in some traditional models of sexual selection by female choice. This article uses the massive but hitherto under-utilized taxonomic literature on genitalic evolution to test, in a two-step process, whether such new models of arms races between males and females have been responsible for rapid divergent evolution of male genitalia. The test revolves around the prediction that 'new arms races' are less likely to occur in species in which females are largely or completely protected from unwanted sexual attentions from males (e.g. species which mate in leks or in male swarms, in which males attract females from a distance, or in which females initiate contact by attracting males from a distance). The multiple possible mechanical functions of male genitalia are summarized, and functions of male genitalic structures in 43 species in 21 families of Diptera are compiled. Functions associated with intromission and insemination (e.g. seizing and positioning the female appropriately, pushing past possible barriers within the female, orienting within the female to achieve sperm transfer), which are unlikely to be involved in new arms races when females are protected, are shown to be common (> 50 % of documented cases). This information is then used to generate the new arms race prediction: differences in genitalic form among congeneric species in which females are protected should be less common than differences among congeneric species in which females are vulnerable to harassment by males. This prediction was tested using a sample of 361 genera of insects and spiders. The prediction clearly failed, even when the data were adjusted to take into account several possible biases. Comparative analyses within particular taxonomic groups also failed to show the predicted trends, as did less extensive data on other non-genitalic male display traits. Arms races, as defined in some recent models, seem to have been less important in male-female coevolution of genitalic structures than has been suggested. By elimination, alternative interpretations, such as traditional female choice, which do not predict associations between female protection from harassment and rapid divergent evolution, are strengthened.  相似文献   

2.
The evolutionary significance of widespread hypo‐allometric scaling of genital traits in combination with rapid interspecific genital trait divergence has been of key interest to evolutionary biologists for many years and remains poorly understood. Here, we provide a detailed assessment of quantitative genital trait variation in males and females of the sexually highly dimorphic and cannibalistic orb‐weaving spider Argiope aurantia. We then test how this trait variation relates to sperm transfer success. In particular, we test specific predictions of the one‐size‐fits‐all and lock‐and‐key hypotheses for the evolution of genital characters. We use video‐taped staged matings in a controlled environment with subsequent morphological microdissections and sperm count analyses. We find little support for the prediction of the one‐size‐fits‐all hypothesis for the evolution of hypo‐allometric scaling of genital traits, namely that intermediate trait dimensions confer highest sperm transfer success. Likewise, our findings do not support the prediction of the lock‐and‐key hypothesis that a tight fit of male and female genital traits mediates highest sperm transfer success. We do, however, detect directional effects of a number of male and female genital characters on sperm transfer, suggesting that genital trait dimensions are commonly under selection in nature. Importantly, even though females are much larger than males, spermatheca size limits the number of sperm transferred, contradicting a previous hypothesis about the evolutionary consequences of genital size dimorphism in extremely size‐dimorphic taxa. We also find strong positive effects of male body size and copulation duration on the probability of sperm transfer and the number of sperm transferred, with implications for the evolution of extreme sexual size dimorphism and sexual cannibalism in orb weavers.  相似文献   

3.
    
Female genitalia have been largely neglected in studies of genital evolution, perhaps due to the long‐standing belief that they are relatively invariable and therefore taxonomically and evolutionarily uninformative in comparison with male genitalia. Contemporary studies of genital evolution have begun to dispute this view, and to demonstrate that female genitalia can be highly diverse and covary with the genitalia of males. Here, we examine evidence for three mechanisms of genital evolution in females: species isolating ‘lock‐and‐key’ evolution, cryptic female choice and sexual conflict. Lock‐and‐key genital evolution has been thought to be relatively unimportant; however, we present cases that show how species isolation may well play a role in the evolution of female genitalia. Much support for female genital evolution via sexual conflict comes from studies of both invertebrate and vertebrate species; however, the effects of sexual conflict can be difficult to distinguish from models of cryptic female choice that focus on putative benefits of choice for females. We offer potential solutions to alleviate this issue. Finally, we offer directions for future studies in order to expand and refine our knowledge surrounding female genital evolution.  相似文献   

4.
    
Several possible explanations for the elaborate species-specific morphology of male front leg clasping organs were tested by comparing six species of Archisepsis, Palaeosepsis and Microsepsis flies. The only previously published hypothesis regarding these clasping organs was refuted by the finding that species-specific portions of the male femur and tibia consistently meshed tightly with prominent veins and folds in the female's wing, rather than meshing with each other. Female wing morphology in the region grasped by the male was relatively uniform and in general did not vary in ways that would prevent non-conspecific males from grasping them, arguing in all but one species against both simple lock-and-key and male-female conflict of interests hypotheses based on morphology. Interspecific differences in male front leg morphology generally represent alternative ways to accomplish the same basic mechanical function of holding tightly onto the relatively invariant female. Despite the fact that female resistance behaviour indicates that male-female conflict over male mounting is common, only one female wing structure in one species resembled an anti-clasper device, giving a second reason to doubt the morphological male-female conflict of interest hypothesis, at least for five of the six species. The positions of probable sensory structures on the wings of females were relatively similar in different species and did not correspond in any obvious way to species-specific features of male clasping structures. This, plus the intraspecific variation in both the positions of these sensilla and the exact site where the male grasped the female's wing, argued against simple 'sensory lock-and-key' ideas about male front leg function. By a process of elimination, it appears that generalized female receptors are able to sense species-specific differences in male front legs. This idea was supported by increased female rejection behaviour in cross-specific pairs.  相似文献   

5.
    
One of the most sweeping of all patterns in morphological evolution is that animal genitalia tend to diverge more rapidly than do other structures. Abundant indirect evidence supports the cryptic female choice (CFC) explanation of this pattern, which supposes that male genitalia often function to court females during copulation; but direct experimental demonstrations of a stimulatory function have been lacking. In this study, we altered the form of two male genital structures that squeeze the female’s abdomen rhythmically in Glossina pallidipes flies. As predicted by theory, this induced CFC against the male: ovulation and sperm storage decreased, while female remating increased. Further experiments showed that these effects were due to changes in tactile stimuli received by the female from the male’s altered genitalia, and were not due to other possible changes in the males due to alteration of their genital form. Stimulation from male genital structures also induces females to permit copulation to occur. Together with previous studies of tsetse reproductive physiology, these data constitute the most complete experimental confirmation that sexual selection (probably by CFC) acts on the stimulatory properties of male genitalia.  相似文献   

6.
    
Postmating sexual selection theory predicts that in allopatry reproductive traits diverge rapidly and that the resulting differentiation in these traits may lead to restrictions to gene flow between populations and, eventually, reproductive isolation. In this paper we explore the potential for this premise in a group of damselflies of the family Calopterygidae, in which postmating sexual mechanisms are especially well understood. Particularly, we tested if in allopatric populations the sperm competition mechanisms and genitalic traits involved in these mechanisms have indeed diverged as sexual selection theory predicts. We did so in two different steps. First, we compared the sperm competition mechanisms of two allopatric populations of Calopteryx haemorrhoidalis (one Italian population studied here and one Spanish population previously studied). Our results indicate that in both populations males are able to displace spermathecal sperm, but the mechanism used for sperm removal between both populations is strikingly different. In the Spanish population males seem to empty the spermathecae by stimulating females, whereas in the Italian population males physically remove sperm from the spermathecae. Both populations also exhibit differences in genital morphometry that explain the use of different mechanisms: the male lateral processes are narrower than the spermathecal ducts in the Italian population, which is the reverse in the Spanish population. The estimated degree of phenotypic differentiation between these populations based on the genitalic traits involved in sperm removal was much greater than the differentiation based on a set of other seven morphological variables, suggesting that strong directional postmating sexual selection is indeed the main evolutionary force behind the reproductive differentiation between the studied populations. In a second step, we examined if a similar pattern in genital morphometry emerge in allopatric populations of this and other three species of the same family (Calopteryx splendens, C. virgo and Hetaerina cruentata). Our results suggest that there is geographic variation in the sperm competition mechanisms in all four studied species. Furthermore, genitalic morphology was significantly divergent between populations within species even when different populations were using the same copulatory mechanism. These results can be explained by probable local coadaptation processes that have given rise to an ability or inability to reach and displace spermathecal sperm in different populations. This set of results provides the first direct evidence of intraspecific evolution of genitalic traits shaped by postmating sexual selection.  相似文献   

7.
    
It is now widely recognized that sexual selection has been important in the rapid and divergent evolution of male genital morphology. However, distinguishing among putative mechanisms of sexual selection acting on male genital morphology represents a considerable challenge. Although there is growing evidence that variation in the size and/or shape of male genital structures can determine a male's success in gaining fertilizations, our knowledge of the functional morphology of male genitalia remains limited. Here we examine the functional morphology of genital sclerites that are known to influence paternity in the dung beetle Onthophagus taurus . We show that three of the sclerites form a functionally integrated unit that generates the tubular-shaped spermatophore and delivers its opening to the female's spermathecal duct. A fourth sclerite acts as a holdfast device during copulation. Our observations shed light on the mechanism by which these sclerites influence a male's paternity, and their patterns of phenotypic and genetic (co)variation.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 257–266.  相似文献   

8.
  总被引:1,自引:0,他引:1  
Males of Microsepsis eberhardi and M. armillata use their genitalic surstyli to rhythmically squeeze the female's abdomen with stereotyped movements during copulation. Squeezing movements did not begin until intromission had occurred and, contrary to predictions of the conflict-of-interest hypothesis for genitalic evolution, did not overcome morphological or behavioral female resistance. Contrary to predictions of the lock-and-key hypothesis, female morphology was uniform in the two species and could not mechanically exclude the genitalia of either species of male. The complex pattern of squeezing movements differed between the two species as predicted by the sexual selection hypothesis for genitalic evolution. Also, evolutionarily derived muscles and pseudoarticulations in the male's genitalic surstyli facilitated one type of movement, whose patterns were especially distinct. The data support the hypothesis that the male surstyli evolved to function as courtship devices.  相似文献   

9.
    
Rapid divergence of male genitalia is one of the most general evolutionary trends in animals with internal fertilization, but the mechanisms of genital evolution are poorly understood. The current study represents the first comprehensive attempt to test the main hypotheses that have been suggested to account for genital evolution (the lock-and-key, sexual selection and pleiotropy hypotheses) with intraspecific data. We measure multivariate phenotypic selection in a water strider species, by relating five different components of fitness (mating frequency, fecundity, egg hatching rate, offspring survival rate and offspring growth rate) to a suite of genital and non-genital morphological traits (in total 48). Body size had a series of direct effects in both sexes. Large size in females was positively related to both fecundity and egg hatching rate. There was positive sexual selection for large size in males (mating frequency), which to some extent was offset by a reduced number of eggs laid by females mated to large males. Male genitalic morphology influenced male mating frequency, but the detected directional selection on genitalia was due to indirect selection on phenotypically correlated non-intromittent traits. Further, we found no assortative mating between male intromittent genitalia and female morphology. Neither did we find any indications of male genitalia conveying information of male genetic quality. Several new insights can be gained from our study. Most importantly, our results are in stark disagreement with the long standing lock-and-key hypothesis of genital evolution, as well as with certain models of sexual selection. Our results are, however, in agreement with other models of sexual selection as well as with the pleiotropy hypothesis of genital evolution. Fluctuating asymmetry of bilaterally symmetrical traits, genital as well as non-genital, had few effects on fitness. Females with low fluctuating asymmetry in leg length produced offspring with a higher survival rate, a pattern most proba bly caused by direct phenotypic maternal effects. We also discuss the relevance of our results to sexual conflict over mating, and the evolution of sexual traits by coevolutionary arms races between the sexes.  相似文献   

10.
    
There is growing evidence that the female reproductive fluid (FRF) plays an important role in cryptic female choice through its differential effect on the performance of sperm from different males. In a natural spawning event, the male(s) may release ejaculate closer or further away from the spawning female. If the relative spatial proximity of competing males reflects the female pre-mating preference towards those males, then favoured males will encounter higher concentrations of FRF than unpreferred males. Despite this being a common situation in many external fertilizers, whether different concentrations of FRF can differentially influence the sperm performance of distinct male phenotypes (favoured and unfavoured by the female) remains to be elucidated. Here, we tested this hypothesis using the grass goby (Zosterisessor ophiocephalus), a fish with distinct territorial-sneaker reproductive tactics and female pre-mating preference towards territorial males, that consequently mate in an advantaged position and whose sperm experience higher concentrations of FRF. Our findings revealed a differential concentration-dependent effect of FRF over sneaker and territorial sperm motility only at low concentrations (i.e. at the distance where sneakers typically ejaculate), with increasing FRF concentrations (i.e. close to the eggs) similarly boosting the sperm performance of both sneaker and territorial males. The ability to release sperm close to the eggs is a prerogative of territorials, but FRF can likewise advantage the sperm of those sneakers that are able to get closer, allowing flexibility in the direction of female post-mating choice.  相似文献   

11.
    
Reproductive character displacement is the adaptive evolution of traits that minimize deleterious reproductive interactions between species. When arising from selection to avoid hybridization, this process is referred to as reinforcement. Reproductive character displacement generates divergence not only between interacting species, but also between conspecific populations that are sympatric with heterospecifics versus those that are allopatric. Consequently, such conspecific populations can become reproductively isolated. We compared female mate preferences in, and evaluated gene flow between, neighbouring populations of spadefoot toads that did and did not occur with heterospecifics (mixed- and pure-species populations, respectively). We found that in mixed-species populations females significantly preferred conspecifics. Such females also tended to prefer a conspecific call character that was dissimilar from heterospecifics. By contrast, females from pure-species populations did not discriminate conspecific from heterospecific calls. They also preferred a more exaggerated conspecific call character that resembles heterospecific males. Moreover, gene flow was significantly reduced between mixed- and pure-species population types. Thus, character displacement (and, more specifically, reinforcement) may initiate reproductive isolation between conspecific populations that differ in interactions with heterospecifics.  相似文献   

12.
Sperm morphometry is extremely variable across species, but a general adaptive explanation for this diversity is lacking. As sperm must function within the female, variation in sperm form may be associated with variation in female reproductive tract morphology. We investigated this and other potential evolutionary associations between male and female reproductive characters across the Scathophagidae. Sperm length was positively associated with the length of the spermathecal (sperm store) ducts, indicating correlated evolution between the two. No association was found between sperm length and spermathecal size. However, the size of the spermathecae was positively associated with testis size indicating co-evolution between male investment in sperm production and female sperm storage capacity. Furthermore, species with a higher degree of polyandry (larger testes) had longer spermathecal ducts. However, no associations between sperm length or length variation and testis size were found which suggests greater sperm competition sensu stricto does not select for longer sperm.  相似文献   

13.
Links between sex allocation (SA) and sexual conflict in simultaneous hermaphrodites have been evident since Charnov''s landmark paper published 30 years ago. We discuss two links, namely the potential for sexual conflict over SA between sperm donor and recipient, and the importance of post-copulatory sexual selection and the resulting sexual conflict for the evolution of SA. We cover the little empirical and theoretical work exploring these links, and present an experimental test of one theoretical prediction. The link between SA and sexual conflict is an interesting field for future empirical and theoretical research.  相似文献   

14.
Few studies have examined how female premating choice correlates with the outcome of copulatory and post-copulatory processes. It has been shown that polyandrous Tribolium castaneum females discriminate among males before mating based on olfactory cues, and also exert cryptic choice during mating through several mechanisms. This study tested whether a male's relative attractiveness predicted his insemination success during copulation. Bioassays with male olfactory cues were used to rank two males as more and less attractive to females; each female was then mated to either her more attractive male followed by less attractive male, or vice versa. Dissections immediately after second copulations revealed a significantly higher percent of successful inseminations for females that remated with more attractive males compared with those that remated with less attractive males. These results indicate that cryptic female choice during copulation reinforces precopulatory female choice in T. castaneum, and suggest that females could use cryptic choice to trade up to more attractive males, possibly gaining better phenotypic or genetic quality of sires.  相似文献   

15.
Inter- and intraspecific studies in gonochoristic animals reveal a covariation between sperm characteristics and the size of the female reproductive tract, indicating a rapid evolutionary divergence, which is consistent with the theory of post-copulatory sexual selection. Simultaneous hermaphrodites differ from species with separate sexes (gonochorists) in that they possess both functional male and female reproductive organs at the same time. We investigated whether in hermaphroditic animals intraspecific variation in reproductive traits results from divergent coevolution, by quantifying the variation in male and female traits among six natural populations of the snail Arianta arbustorum and examining the covariation in interacting traits. There was a significant among-population variation in spermatophore volume, number of sperm transferred and sperm length, as well as in volume of the sperm storage organ (spermatheca) and number of tubules, but not in spermatheca length. We found a positive association between sperm number transferred and spermatheca volume. This result suggests that the same post-copulatory mechanisms as in gonochorists drive the correlated evolution of reproductive characters in hermaphrodites.  相似文献   

16.
Theoretical analyses of selection on mutations affecting female responsiveness to male traits suggested that sexually antagonistic selection and traditional female choice are not exclusive alternatives. They can act simultaneously on the same female traits, and can either reinforce or act against each other. These analyses do not yield theoretical predictions regarding the relative frequency and importance of the two types of selection on female responsiveness, as the balance between them is affected by complex factors, including the frequency distribution of male traits, and the mechanisms of male action. Male–female interactions differ from many other evolutionary interactions involving potential evolutionary conflict, in that male and female genomes are irretrievably mixed in their offspring, thus increasing the possibility of indirect payoffs to one participant from the traits of its partner.  相似文献   

17.
    
Female Macrodactylus costulatus, sericinus, and sylphis mated repeatedly while feeding on flowers and fruits as they matured eggs. Courtship in all species occurred both prior to and following intromission, with most courtship being performed after the male had achieved intromission. Females often prevented males from mounting, and often prevented mounted males from achieving intromission. They also probably often prevented male genitalia from penetrating past the vulva, even after they had allowed them into the genital chamber. Males at least sometimes pushed forcefully at structures both on the surface of the female and within her reproductive tract. Copulation probably involved a combination of force and persuasion. It often failed to result in complete transfer of sperm. Males displayed striking virtuosity in both the morphology and behavior of their genitalia, which assumed at least four different morphological configurations. At least five and perhaps up to eight different functions were performed by male genitalia. Small sacs near the tips of the male parameres were probably used by males as “foot-in-the-door” devices to gain access to the female's genital chamber, while the spiney collar and tongue may have helped open the vulva to allow deeper penetration. The energetic and persistent courtship which occurred after intromission was achieved may lunction at least partly to induce the female to allow the male to reach the deeper stage of penetration necessary for spermatophore formation, and perhaps to permit transfer of sperm to her spermathecal duct. Male courtship behavior included movements of his head, vibration and sweeping movements of his middle legs, rubbing with his abdominal bristles against the female's elytra, strong substrate vibrations of unknown origin in the male's body, and tapping and stroking with his genitalia on the external surface of the female's abdomen while he held her with his specialized front legs. Pairings in the field lasted up to several days, but there was no sign of size biases in either paired males or females. Males were more susceptible to predation by a common predator than were females when beetles were paired.  相似文献   

18.
Inbreeding can cause reductions in fitness, driving the evolution of pre- and postcopulatory inbreeding avoidance mechanisms. There is now considerable evidence for such processes in females, but few studies have focused on males, particularly in the context of postcopulatory inbreeding avoidance. Here, we address this topic by exposing male guppies (Poecilia reticulata) to either full-sibling or unrelated females and determining whether they adjust investment in courtship and ejaculates. Our results revealed that males reduce their courtship but concomitantly exhibit short-term increases in ejaculate quality when paired with siblings. In conjunction with prior work reporting cryptic female preferences for unrelated sperm, our present findings reveal possible sexually antagonistic counter-adaptations that may offset postcopulatory inbreeding avoidance by females.  相似文献   

19.
    
Polyandry, where multiple mating by females results in the temporal and spatial overlap of ejaculates from two or more males, is taxonomically widespread and occurs in varying frequencies within and among species. In decapods (crabs, lobsters, crayfish, and prawns), rates of polyandry are likely to be variable, but the extent to which patterns of multiple paternity reflect multiple mating, and thus are shaped by postmating processes that bias fertilization toward one or a subset of mated males, is unclear. Here, we use microsatellite markers to examine the frequency of multiple mating (the presence of spermatophores from two or more males) and patterns of paternity in wild populations of western rock lobster (Panulirus cygnus). Our data confirm that >45% of females had attached spermatophores arising from at least two males (i.e., confirming polyandry), but we found very limited evidence for multiple paternity; among 24 clutches sampled in this study, only two arose from fertilizations by two or more males. Single inferred paternal genotypes accounted for all remaining progeny genotypes in each clutch, including several instances when the mother had been shown to mate with two or more males. These findings highlight the need for further work to understand whether polyandry is adaptive and to uncover the mechanisms underlying postmating paternity biases in this system.  相似文献   

20.
    
It is now clear in many species that male and female genital evolution has been shaped by sexual selection. However, it has historically been difficult to confirm correlations between morphology and fitness, as genital traits are complex and manipulation tends to impair function significantly. In this study, we investigate the functional morphology of the elongate male intromittent organ (or processus) of the seed bug Lygaeus simulans, in two ways. We first use micro-computed tomography (micro-CT) and flash-freezing to reconstruct in high resolution the interaction between the male intromittent organ and the female internal reproductive anatomy during mating. We successfully trace the path of the male processus inside the female reproductive tract. We then confirm that male processus length influences sperm transfer by experimental ablation and show that males with shortened processi have significantly reduced post-copulatory reproductive success. Importantly, male insemination function is not affected by this manipulation per se. We thus present rare, direct experimental evidence that an internal genital trait functions to increase reproductive success and show that, with appropriate staining, micro-CT is an excellent tool for investigating the functional morphology of insect genitalia during copulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号