首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The relationship between the form and function of the skull has been the subject of a great deal of research, much of which has concentrated on the impact of feeding on skull shape. However, there are a number of other behaviours that can influence craniodental morphology. Previous work has shown that subterranean rodents that use their incisors to dig (chisel‐tooth digging) have a constrained cranial shape, which is probably driven by a necessity to create high bite forces at wide gapes. Chisel‐tooth‐digging rodents also have an upper incisor root that is displaced further back into the cranium compared with other rodents. This study quantified cranial shape and upper incisors of a phylogenetically diverse sample of rodents to determine if chisel‐tooth‐digging rodents differ in craniodental morphology. The study showed that the crania of chisel‐tooth‐digging rodents shared a similar place in morphospace, but a strong phylogenetic signal within the sample meant that this grouping was nonsignificant. It was also found that the curvature of the upper incisor in chisel‐tooth diggers was significantly larger than in other rodents. Interestingly, most subterranean rodents in the sample (both chisel‐tooth and scratch diggers) had upper incisors that were better able to resist bending than those of terrestrial rodents, presumably due to their similar diets of tough plant materials. Finally, the incisor variables and cranial shape were not found to covary consistently in this sample, highlighting the complex relationship between a species’ evolutionary history and functional morphology.  相似文献   

2.
    
Adaptive radiations provide important insights into many aspects of evolution, including the relationship between ecology and morphological diversification as well as between ecology and speciation. Many such radiations include divergence along a dietary axis, although other ecological variables may also drive diversification, including differences in diel activity patterns. This study examines the role of two key ecological variables, diet and activity patterns, in shaping the radiation of a diverse clade of primates, the Malagasy lemurs. When phylogeny was ignored, activity pattern and several dietary variables predicted a significant proportion of cranial shape variation. However, when phylogeny was taken into account, only typical diet accounted for a significant proportion of shape variation. One possible explanation for this discrepancy is that this radiation was characterized by a relatively small number of dietary shifts (and possibly changes in body size) that occurred in conjunction with the divergence of major clades. This pattern may be difficult to detect with the phylogenetic comparative methods used here, but may characterize not just lemurs but other mammals.  相似文献   

3.
    
There are two main (but not mutually exclusive) methods by which subterranean rodents construct burrows: chisel-tooth digging, where large incisors are used to dig through soil; and scratch digging, where forelimbs and claws are used to dig instead of incisors. A previous study by the authors showed that upper incisors of chisel-tooth diggers were better adapted to dig but the overall cranial morphology within the rodent sample was not significantly different. This study analyzed the lower incisors and mandibles of the specimens used in the previous study to show the impact of chisel-tooth digging on the rodent mandible. We compared lower incisors and mandibular shape of chisel-tooth digging rodents with nonchisel-tooth digging rodents to see if there were morphological differences between the two groups. The shape of incisors was quantified using incisor radius of curvature and second moment of area (SMA). Mandibular shape was quantified using landmark based geometric morphometrics. We found that lower incisor shape was strongly influenced by digging group using a Generalized Phylogenetic ancova (analysis of covariance). A phylogenetic Procrustes anova (analysis of variance) showed that mandibular shape of chisel-tooth digging rodents was also significantly different from nonchisel-tooth digging rodents. The phylogenetic signal of incisor radius of curvature was weak, whereas that of incisor SMA and mandibular shape was significant. This is despite the analyses revealing significant differences in the shape of both mandibles and incisors between digging groups. In conclusion, we showed that although the mandible and incisor of rodents are influenced by function, there is also a degree of phylogenetic affinity that shapes the rodent mandibular apparatus.  相似文献   

4.
    
Understanding the causes of body shape variability across the tree of life is one of the central issues surrounding the origins of biodiversity. One potential mechanism driving observed patterns of shape disparity is a strongly conserved relationship between size and shape. Conserved allometry has been shown to account for as much as 80% of shape variation in some vertebrate groups. Here, we quantify the amount of body shape disparity attributable to changes in body size across nearly 800 species of Indo‐Pacific shore fishes using a phylogenetic framework to analyze 17 geometric landmarks positioned to capture general body shape and functionally significant features. In marked contrast to other vertebrate lineages, we find that changes in body size only explain 2.9% of the body shape variation across fishes, ranging from 3% to 50% within our 11 sampled families. We also find a slight but significant trend of decreasing rates of shape evolution with increasing size. Our results suggest that the influence of size on fish shape has largely been overwhelmed by lineage‐specific patterns of diversification that have produced the modern landscape of highly diverse forms that we currently observe in nature.  相似文献   

5.
    
Studies of evolutionary correlations commonly use phylogenetic regression (i.e., independent contrasts and phylogenetic generalized least squares) to assess trait covariation in a phylogenetic context. However, while this approach is appropriate for evaluating trends in one or a few traits, it is incapable of assessing patterns in highly multivariate data, as the large number of variables relative to sample size prohibits parametric test statistics from being computed. This poses serious limitations for comparative biologists, who must either simplify how they quantify phenotypic traits, or alter the biological hypotheses they wish to examine. In this article, I propose a new statistical procedure for performing ANOVA and regression models in a phylogenetic context that can accommodate high‐dimensional datasets. The approach is derived from the statistical equivalency between parametric methods using covariance matrices and methods based on distance matrices. Using simulations under Brownian motion, I show that the method displays appropriate Type I error rates and statistical power, whereas standard parametric procedures have decreasing power as data dimensionality increases. As such, the new procedure provides a useful means of assessing trait covariation across a set of taxa related by a phylogeny, enabling macroevolutionary biologists to test hypotheses of adaptation, and phenotypic change in high‐dimensional datasets.  相似文献   

6.
    
We analyzed mandible shape variation of 17 genera belonging to three superfamilies (Cavioidea, Chinchilloidea, and Octodontoidea) of South American caviomorph rodents using geometric morphometrics. The relative influence of phylogeny and ecology on this variation was assessed using phylogenetic comparative methods. Most morphological variation was concentrated in condylar, coronoid, and angular processes, as well as the diastema. Features potentially advantageous for digging (i.e. high coronoid and condylar processes, relatively short angular process, and diastema) were present only in octodontoids; cavioids showed opposing trends, which could represent a structural constraint for fossorial habits. Chinchilloids showed intermediate features. Genera were distributed in the morphospace according to their classification into superfamilial clades. The phylogenetic signal for shape components was significant along phylogeny, whereas the relationship between mandibular shape and ecology was nonsignificant when phylogenetic structure was taken into account. An early evolutionary divergence in the mandible shape among major caviomorph clades would explain the observed strong phylogenetic influence on the variation of this structure. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 828–837.  相似文献   

7.
Macroevolution, encompassing the deep-time patterns of the origins of modern biodiversity, has been discussed in many contexts. Non-Darwinian models such as macromutations have been proposed as a means of bridging seemingly large gaps in knowledge, or as a means to explain the origin of exquisitely adapted body plans. However, such gaps can be spanned by new fossil finds, and complex, integrated organisms can be shown to have evolved piecemeal. For example, the fossil record between dinosaurs and Archaeopteryx has now filled up with astonishing fossil intermediates that show how the unique plexus of avian adaptations emerged step by step over 60 Myr. New numerical approaches to morphometrics and phylogenetic comparative methods allow palaeontologists and biologists to work together on deep-time questions of evolution, to explore how diversity, morphology and function have changed through time. Patterns are more complex than sometimes expected, with frequent decoupling of species diversity and morphological diversity, pointing to the need for some new generalizations about the processes that lie behind such patterns.  相似文献   

8.
    
Among geckos, the acquisition of the adhesive system is associated with several morphological changes of the feet that are involved in the operation of the adhesive apparatus. However, analyses using a comparative framework are lacking. We applied traditional morphometrics and geometric morphometric analysis with phylogenetic comparative methods to morphological data, collected from X-ray scans, to examine patterns of morphological evolution of the pes in association with the gain and loss of adhesive capabilities, and with habitat occupancy among 102 species of gecko. Padbearing gecko lineages tend to have shorter digits and greater inter-digital angles than padless ones. Arboreal and saxicolous species have shorter digits than terrestrial species. Our results suggest repeated shifts that converge upon a similar padbearing morphology, with some modifications being associated with the habitat occupied. We demonstrate that functional innovation and habitat can operate on, and influence, different components of foot morphology.  相似文献   

9.
    
Phylogenetic regression is frequently used in macroevolutionary studies, and its statistical properties have been thoroughly investigated. By contrast, phylogenetic ANOVA has received relatively less attention, and the conditions leading to incorrect statistical and biological inferences when comparing multivariate phenotypes among groups remain underexplored. Here, we propose a refined method of randomizing residuals in a permutation procedure (RRPP) for evaluating phenotypic differences among groups while conditioning the data on the phylogeny. We show that RRPP displays appropriate statistical properties for both phylogenetic ANOVA and regression models, and for univariate and multivariate datasets. For ANOVA, we find that RRPP exhibits higher statistical power than methods utilizing phylogenetic simulation. Additionally, we investigate how group dispersion across the phylogeny affects inferences, and reveal that highly aggregated groups generate strong and significant correlations with the phylogeny, which reduce statistical power and subsequently affect biological interpretations. We discuss the broader implications of this phylogenetic group aggregation, and its relation to challenges encountered with other comparative methods where one or a few transitions in discrete traits are observed on the phylogeny. Finally, we recommend that phylogenetic comparative studies of continuous trait data use RRPP for assessing the significance of indicator variables as sources of trait variation.  相似文献   

10.
Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution.  相似文献   

11.
    
Extensive skeletal pneumaticity (air-filled bone) is a distinguishing feature of birds. The proportion of the skeleton that is pneumatized varies considerably among the >10,000 living species, with notable patterns including increases in larger bodied forms, and reductions in birds employing underwater pursuit diving as a foraging strategy. I assess the relationship between skeletal pneumaticity and body mass and foraging ecology, using a dataset of the diverse \"waterbird\" clade that encompasses a broad range of trait variation. Inferred changes in pneumaticity and body mass are congruent across different estimates of phylogeny, whereas pursuit diving has evolved independently between two and five times. Phylogenetic regressions detected positive relationships between body mass and pneumaticity, and negative relationships between pursuit diving and pneumaticity, whether independent variables are considered in isolation or jointly. Results are generally consistent across different estimates of topology and branch lengths. \"Predictive\" analyses reveal that several pursuit divers (loons, penguins, cormorants, darters) are significantly apneumatic compared to their relatives, and provide an example of how phylogenetic information can increase the statistical power to detect taxa that depart from established trait correlations. These findings provide the strongest quantitative comparative support yet for classical hypotheses regarding the evolution of avian skeletal pneumaticity.  相似文献   

12.
Theropod dinosaurs, an iconic clade of fossil species including Tyrannosaurus and Velociraptor, developed a great diversity of body size, skull form and feeding habits over their 160+ million year evolutionary history. Here, we utilize geometric morphometrics to study broad patterns in theropod skull shape variation and compare the distribution of taxa in cranial morphospace (form) to both phylogeny and quantitative metrics of biting behaviour (function). We find that theropod skulls primarily differ in relative anteroposterior length and snout depth and to a lesser extent in orbit size and depth of the cheek region, and oviraptorosaurs deviate most strongly from the "typical" and ancestral theropod morphologies. Noncarnivorous taxa generally fall out in distinct regions of morphospace and exhibit greater overall disparity than carnivorous taxa, whereas large-bodied carnivores independently converge on the same region of morphospace. The distribution of taxa in morphospace is strongly correlated with phylogeny but only weakly correlated with functional biting behaviour. These results imply that phylogeny, not biting function, was the major determinant of theropod skull shape.  相似文献   

13.
14.
    
A central issue in evolutionary biology is to understand the mechanisms promoting morphological evolution during speciation. In a previous study, we showed that the Neotropical cactophilic sibling species Drosophila gouveai and Drosophila antonietae can be reared in media prepared with their presumptive natural host plants (Pilosocereus machrisis and Cereus hildmaniannus) and that egg to adult viability is not independent of the cactus host. In the present study, we investigate the effects of ecological and genetic factors on interspecific divergence in wing morphology, in relation to the pattern of wing venation and phenotypic plasticity in D. gouveai and D. antonietae, by means of the comparative analysis of isofemale lines reared in the two cactus hosts. The species differed significantly in wing size and shape, although specific differences were mainly localized in a particular portion of the wing. We detected significant variation in form among lines, which was not independent of the breeding cactus, suggesting the presence of genetic variation for phenotypic plasticity and wing shape variation in both species. We discuss the results considering the plausible role of host plant use in the evolutionary history of cactophilic Drosophila inhabiting the arid zones of South America. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 655–665.  相似文献   

15.
    
Terrestrial tetrapods use their claws to interact with their environments in a plethora of ways. Birds in particular have developed a diversity of claw shapes since they are often not bound to terrestrial locomotion and have heterogeneous body masses ranging several orders of magnitude. Numerous previous studies have hypothesized a connection between pedal claw shape and ecological mode in birds, yet have generated conflicting results, spanning from clear ecological groupings based on claw shape to a complete overlap of ecological modes. The majority of these studies have relied on traditional morphometric arc measurements of keratinous sheaths and have variably accounted for likely confounding factors such as body mass and phylogenetic relatedness. To better address the hypothesized relationship between ecology and claw shape in birds, we collected 580 radiographs allowing visualization of the bony core and keratinous sheath shape in 21 avian orders. Geometric morphometrics was used to quantify bony core and keratinous sheath shape and was compared to results using traditional arc measurements. Neither approach significantly separates bird claws into coarse ecological categories after integrating body size and phylogenetic relatedness; however, some separation between ecological groups is evident and we find a gradual shift from the claw shape of ground‐dwelling birds to those of predatory birds. Further, the bony claw core and keratinous sheath are significantly correlated, and the degree of functional integration does not differ across ecological groups. Therefore, it is likely possible to compare fossil bony cores with extant keratinous sheaths after applying corrections. Finally, traditional metrics and geometric morphometric shape are significantly, yet loosely correlated. Based on these results, future workers are encouraged to use geometric morphometric approaches to study claw geometry and account for confounding factors such as body size, phylogeny, and individual variation prior to predicting ecology in fossil taxa.  相似文献   

16.
    
Body shape variation is integrally related to many aspects of fish ecology, including locomotion and foraging, and can indicate the functional diversity of fish assemblages. Few studies have thoroughly characterized body shape in a diverse marine fish clade, or investigated both temporal and spatial patterns of variation in body shape disparity. Here, I use digital photographs to measure geometric body shape in 66 species of north‐east Pacific rockfish (Sebastes spp.), including a correction for error introduced by arching of specimens. Different components of interspecific shape variation show associations with fish size, depth habitat, trophic niche and phylogenetic relationships. Overall, the accumulation of body shape disparity appears to have been near‐constant over time, and shows little variation across the latitudinal range of rockfish.  相似文献   

17.
18.
Caviomorphs are a clade of South American rodents recorded at least since the early Oligocene (> 31.5 Ma) that exhibit ample eco-morphological variation. It has been proposed that phylogenetic structure is more important than ecological factors for understanding mandibular shape variation in this clade. This was interpreted as a result of the long-standing evolutionary history of caviomorphs and the early divergence of major lineages. In this work, we test this hypothesis through the analysis of morphological variation in the mandible of living and extinct species and compare this information with that obtained through comparative phylogenetic analyses. Our results support the hypothesis of early origin of mandibular variation; moreover, they suggest the conservation of early differentiated morphologies, which could indicate the existence of constrained evolutionary diversification.  相似文献   

19.
We explore the correlational patterns of diet and phylogeny on the shape of the premaxilla and anterior tooth in sparid fishes (Perciformes: Sparidae) from the western Mediterranean Sea. The premaxilla is less variable, and in spite of the presence of species-specific features, a common structural pattern is easily recognizable in all species (i.e. the ascending and the articular processes are fused in a single branch, as in many percoid fishes). In contrast, tooth shape is more variable, and different structural types can be recognized (e.g. canine-like or incisive). Coupling geometric morphometric and comparative methods we found that the relationship between shape, diet and phylogeny also differs between premaxilla and tooth. Thus, the shape of the premaxilla is significantly correlated with food type, whereas the shape of the teeth is not correlated with diet, and probably reflects the species phylogenetic relationships. Two biological roles, resistance against compressive forces generated in the buccal cavity and the size of the oral gape, would explain the ecomorphological patterns of the premaxilla. The premaxilla and anterior tooth appear to evolve at different rates (mosaic evolution) and represent an example of morphological traits belonging to the same functional unit but following uncoupled evolutionary pathways.  相似文献   

20.
The development and evolution of the rodent mandible have been studied in depth in recent years. The mandible is a complex structure because it consists of six morphogenetic components formed by different condensations of mesenchymal cells. Using recent techniques for the geometric analysis of shape, we have combined developmental information with a powerful quantification of shape variation and an independent estimate of phylogeny (molecular data) to assess the evolutionary patterns of shape change in mandibles of the rodent genus Trinomys . In general, the major trends in shape variation did not agree with the expected phylogenetic pattern. However, for small-scale morphological differences, one species ( T. yonenagae ) was responsible for the lack of association between morphology and molecular divergence. This species is genetically similar to but morphologically different from other Trinomys . The coronoid process was considered to be the most conservative morphogenetic component in the mandible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号