首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Conventional sex roles imply caring females and competitive males. The evolution of sex role divergence is widely attributed to anisogamy initiating a self‐reinforcing process. The initial asymmetry in pre‐mating parental investment (eggs vs. sperm) is assumed to promote even greater divergence in post‐mating parental investment (parental care). But do we really understand the process? Trivers [Sexual Selection and the Descent of Man 1871–1971 (1972), Aldine Press, Chicago] introduced two arguments with a female and male perspective on whether to care for offspring that try to link pre‐mating and post‐mating investment. Here we review their merits and subsequent theoretical developments. The first argument is that females are more committed than males to providing care because they stand to lose a greater initial investment. This, however, commits the ‘Concorde Fallacy’ as optimal decisions should depend on future pay‐offs not past costs. Although the argument can be rephrased in terms of residual reproductive value when past investment affects future pay‐offs, it remains weak. The factors likely to change future pay‐offs seem to work against females providing more care than males. The second argument takes the reasonable premise that anisogamy produces a male‐biased operational sex ratio (OSR) leading to males competing for mates. Male care is then predicted to be less likely to evolve as it consumes resources that could otherwise be used to increase competitiveness. However, given each offspring has precisely two genetic parents (the Fisher condition), a biased OSR generates frequency‐dependent selection, analogous to Fisherian sex ratio selection, that favours increased parental investment by whichever sex faces more intense competition. Sex role divergence is therefore still an evolutionary conundrum. Here we review some possible solutions. Factors that promote conventional sex roles are sexual selection on males (but non‐random variance in male mating success must be high to override the Fisher condition), loss of paternity because of female multiple mating or group spawning and patterns of mortality that generate female‐biased adult sex ratios (ASR). We present an integrative model that shows how these factors interact to generate sex roles. We emphasize the need to distinguish between the ASR and the operational sex ratio (OSR). If mortality is higher when caring than competing this diminishes the likelihood of sex role divergence because this strongly limits the mating success of the earlier deserting sex. We illustrate this in a model where a change in relative mortality rates while caring and competing generates a shift from a mammalian type breeding system (female‐only care, male‐biased OSR and female‐biased ASR) to an avian type system (biparental care and a male‐biased OSR and ASR).  相似文献   

2.
Fishes as models in studies of sexual selection and parental care   总被引:2,自引:0,他引:2  
Fishes are by far the most diverse group of vertebrates. This fact is in no way, however, reflected in their use as model organisms for understanding sexual selection or parental care. Why is this so? Is it because fishes are actually poor models? The usefulness of fishes as models for sexual selection and parental care is discussed by emphasizing some problems inherent in fish studies, along with a number of reasons why fishes are indeed excellently suited. The pros and cons of fishes as models are discussed mainly by comparison with birds, the most popular model organisms in animal behaviour. Difficulties include a lack of background knowledge for many species, and the problems of marking and observing fishes in their natural environment. Positive attributes include the diversity of lifestyles among fishes, and the ease with which they can be studied experimentally in the laboratory. How useful fish models can be is briefly illustrated by the impressive and broadly relevant advances derived from studies of guppies Poecilia reticulata and three‐spined sticklebacks Gasterosteus aculeatus . A selection of topics is highlighted where fish studies have either advanced or could greatly enhance, the understanding of processes fundamental to animal reproductive dynamics. Such topics include sex role dynamics, the evolution of female ornamentation and mate choice copying. Finally, a number of potential pitfalls in the future use of fish as models for sexual selection and parental care are discussed. Researchers interested in these issues are recommended to make much more extensive use of fish models, but also to adopt a wider range of models among fishes.  相似文献   

3.
Abstract Sexual selection in the form of sperm competition is a major explanation for small size of male gametes. Can sexual selection in polyandrous species with reversed sex roles also lead to reduced female gamete size? Comparative studies show that egg size in birds tends to decrease as a lineage evolves social polyandry. Here, a quantitative genetic model predicts that female scrambles over mates lead to evolution of reduced female gamete size. Increased female mating success drives the evolution of smaller eggs, which take less time to produce, until balanced by lowered offspring survival. Mean egg size is usually reduced and polyandry increased by increasing sex ratio (male bias) and maximum possible number of mates. Polyandry also increases with the asynchrony (variance) in female breeding start. Opportunity for sexual selection increases with the maximum number of mates but decreases with increasing sex ratio. It is well known that parental investment can affect sexual selection. The model suggests that the influence is mutual: owing to a coevolutionary feedback loop, sexual selection in females also shapes initial parental investment by reducing egg size. Feedback between sexual selection and parental investment may be common.  相似文献   

4.
Nest building, sexual selection and parental investment   总被引:12,自引:0,他引:12  
Avian nest building has traditionally been viewed as resulting in natural selection advantages, but it is also been associated with courtship and pair formation. We hypothesize that nest-building activity could be used as a sexually selected display, allowing each sex to obtain reliable information on the condition of the other. In this paper, we test the ‘good parent’ process in a scenario where nest size is a sexually selected trait. Thus, individuals with more extreme displays (larger nests) might obtain benefits in terms of either parental investment or differential parental investment by the partner. We predicted that: (1) species in which both sexes contribute to nest building have larger nests than those in which the nest is built only by one sex, because both sexes are using the nest-building process as a signal of their quality; (2) species in which both sexes work together in the nest-building process invest more in reproduction, because each can assess the other more reliably than in species where only one sex participates in nest building; and (3) in light of the two preceding predictions, nest size should be positively related to investment in parental care. A comparative analysis of 76 passerine species confirmed that nest size, relative to the species' body size, is larger when both sexes build the nest and that species with a larger nest relative to their body size invest more in reproduction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Sexual selection determines parental care patterns in cichlid fishes   总被引:1,自引:0,他引:1  
Despite a massive research effort, our understanding of why, in most vertebrates, males compete for mates and females care for offspring remains incomplete. Two alternative hypotheses have been proposed to explain the direction of causality between parental care and sexual selection. Traditionally, sexual selection has been explained as a consequence of relative parental investment, where the sex investing less will compete for the sex investing more. However, a more recent model suggests that parental care patterns result from sexual selection acting on one sex favoring mating competition and lower parental investment. Using species-level comparative analyses on Tanganyikan cichlid fishes we tested these alternative hypotheses employing a proxy of sexual selection based on mating system, sexual dichromatism, and dimorphism data. First, while controlling for female reproductive investment, we found that species with intense sexual selection were associated with female-only care whereas species with moderate sexual selection were associated with biparental care. Second, using contingency analyses, we found that, contrary to the traditional view, evolutionary changes in parental care type are dependent on the intensity of sexual selection. Hence, our results support the hypothesis that sexual selection determines parental care patterns in Tanganyikan cichlid fishes.  相似文献   

6.
Predicting the direction of sexual selection   总被引:8,自引:0,他引:8  
Kokko  & Monaghan 《Ecology letters》2001,4(2):159-165
Our current understanding of the operation of sexual selection is predicated on a sex difference in parental investment, which favours one sex becoming limiting and choosy over mates, the other competitive and nonchoosy. This difference is reflected in the operational sex ratio (OSR), the ratio of sexually receptive males to females, considered to be of fundamental importance in predicting the direction of sexual selection. Difficulties in measuring OSR directly have led to the use of the potential reproductive rates (PRR) as a measure of the level of investment in offspring of males and females. Several recent studies have emphasized that other factors, such as variation in mate quality and sex differences in mortality patterns, also influence the direction of sexual selection. However, as yet there has been no attempt to form a comprehensive theory of sex roles. Here we show that neither OSR nor PRR is the most fundamentally important determinant of sex roles, and that they are not interchangeable. Instead, the cost of a single breeding attempt has a strong direct effect on competition and choosiness as well as consistent relationships to both OSR and PRR. Our life history based approach to mate choice also yields simple, testable predictions on lack of choice in either sex and on mutual mate choice.  相似文献   

7.
Evolutionary biologists have developed several indices, such as selection gradients (β) and the opportunity for sexual selection (Is), to quantify the actual and/or potential strength of sexual selection acting in natural or experimental populations. In a recent paper, Klug et al. (J. Evol. Biol. 23 , 2010, 447) contend that selection gradients are the only legitimate metric for quantifying sexual selection. They argue that Is and similar mating‐system‐based metrics provide unpredictable results, which may be uncorrelated with selection acting on a trait, and should therefore be abandoned. We find this view short‐sighted and argue that the choice of metric should be governed by the research question at hand. We describe insights that measures such as the opportunity for selection can provide and also argue that Klug et al. have overstated the problems with this approach while glossing over similar issues with the interpretation of selection gradients. While no metric perfectly characterizes sexual selection in all circumstances, thoughtful application of existing measures has been and continues to be informative in evolutionary studies.  相似文献   

8.
Anouk Spelt  Lorien Pichegru 《Ibis》2017,159(2):272-284
Biased offspring sex ratio is relatively rare in birds and sex allocation can vary with environmental conditions, with the larger and more costly sex, which can be either the male or female depending on species, favoured during high food availability. Sex‐specific parental investment may lead to biased mortality and, coupled with unequal production of one sex, may result in biased adult sex ratio, with potential grave consequences on population stability. The African Penguin Spheniscus demersus, endemic to southern Africa, is an endangered monogamous seabird with bi‐parental care. Female adult African Penguins are smaller, have a higher foraging effort when breeding and higher mortality compared with adult males. In 2015, a year in which environmental conditions were favourable for breeding, African Penguin chick production on Bird Island, Algoa Bay, South Africa, was skewed towards males (1.5 males to 1 female). Males also had higher growth rates and fledging mass than females, with potentially higher post‐fledging survival. Female, but not male, parents had higher foraging effort and lower body condition with increasing number of male chicks in their brood, thereby revealing flexibility in their parental strategy, but also the costs of their investment in their current brood. The combination of male‐biased chick production and higher female mortality, possibly at the juvenile stage as a result of lower parental investment in female chicks, and/or at the adult stage as a result of higher parental investment, may contribute to a biased adult sex ratio (ASR) in this species. While further research during years of contrasting food availability is needed to confirm this trend, populations with male‐skewed ASRs have higher extinction risks and conservation strategies aiming to benefit female African Penguin might need to be developed.  相似文献   

9.
In a number of insects, fishes and birds, the conventional sex roles are reversed: males are the main care provider, whereas females focus on matings. The reversal of typical sex roles is an evolutionary puzzle, because it challenges the foundations of sex roles, sexual selection and parental investment theory. Recent theoretical models predict that biased parental care may be a response to biased adult sex ratios (ASRs). However, estimating ASR is challenging in natural populations, because males and females often have different detectabilities. Here, we use demographic modelling with field data from 2101 individuals, including 579 molecularly sexed offspring, to provide evidence that ASR is strongly male biased in a polyandrous bird with male-biased care. The model predicts 6.1 times more adult males than females (ASR=0.860, proportion of males) in the Kentish plover Charadrius alexandrinus. The extreme male bias is consistent between years and concordant with experimental results showing strongly biased mating opportunity towards females. Based on these results, we conjecture that parental sex-role reversal may occur in populations that exhibit extreme male-biased ASR.  相似文献   

10.
Sexual selection, mating opportunities, and parental behavior are interrelated, although the specific nature of these relationships is controversial. Two major hypotheses have been suggested. The parental investment hypothesis states that the relative parental investment of the sexes drives the operation of sexual selection. Thus, the sex that invests less in offspring care competes more intensely and monopolizes access to mates. The sexual conflict hypothesis proposes that sexual selection (the competition among both males and females for mates), mating opportunities, and parental behavior are interrelated and predicts a feedback loop between mating systems and parental care. Here we test both hypotheses using a comprehensive dataset of shorebirds, a maximum-likelihood statistical technique, and a recent supertree of extant shorebirds and allies. Shorebirds are an excellent group for these analyses because they display unique variation in parental care and social mating system. First, we show that chick development constrains the evolution of both parental care and mate competition, because transitions toward more precocial offspring preceded transitions toward reduced parental care and social polygamy. Second, changes in care and mating systems respond to one another, most likely because both influenced and are influenced by mating opportunities. Taken together, our results are more consistent with the sexual conflict hypothesis than the parental investment hypothesis.  相似文献   

11.
Strong asymmetries in parental care, with one sex providing more care than the other, are widespread across the animal kingdom. At present, two factors are thought to ultimately cause sex differences in care: certainty of parentage and sexual selection. By contrast, we here show that the coevolution of care and the ability to care can result in strong asymmetries in both the ability to care and the level of care, even in the absence of these factors. While the coevolution of care and the ability to care does not predict which sex evolves to care more than the other, once other factors give rise to even the slightest differences in the cost and benefits of care between the sexes (e.g. differences in certainty in parentage), a clear directionality emerges; the sex with the lower cost or higher benefit of care evolves both to be more able to care and to provide much higher levels of care than the other sex. Our findings suggest that the coevolution of levels of care and the ability to care may be a key factor underlying the evolution of sex differences in care.  相似文献   

12.
Sex ratios and sexual selection in socially monogamous zebra finches   总被引:3,自引:1,他引:2  
An experiment was performed in which adult sex ratios of zebrafinches, Taeniopygyia guttata castanotis, were varied to testpossible effects of adult population sex ratios on sexual selectionintensity and mating system dynamics in species with biparentalcare. The possibility that sex ratio influences the successof social mating patterns (leading to polygyny when males arerare and polyandry when females are rare) was not supported.Results did support the prediction of the differential allocationhypothesis that individuals of the abundant sex would increasetheir relative parental expenditure (PE). Although total (male+ female) PE did not vary between treatments, relative malePE was significantly higher in the male-biased treatment (MBT;sex ratio 64% male) than in the female-biased treatment (FBT; sexratio 36% male). In both treatments, male PE contributions contributedto female reproductive rate. Results also supported the predictionof the differential access hypothesis that individuals of theabundant sex would experience greater intensity of selectionon sexually selected attributes. Male beak color, a sexuallyselected trait, influenced male social parentage in the MBTbut not in the FBT. Finally, broods in the FBT displayed higher hatchingasynchrony and lower hatching success; we believe this was causedby early onset of incubation, a tactic used as a defense againstintraspecific brood parasitism, which was much higher in theFBT. Population sex ratios may be an important factor affectingfemale ability to influence male parental investment patterns.  相似文献   

13.
What explains variation in the strength of sexual selection across species, populations or differences between the sexes? Here, we show that unifying two well‐known lines of thinking provides the necessary conceptual framework to account for variation in sexual selection. The Bateman gradient and the operational sex ratio (OSR) are incomplete in complementary ways: the former describes the fitness gain per mating and the latter the potential difficulty of achieving it. We combine this insight with an analysis of the scope for sexually selected traits to spread despite naturally selected costs. We explain why the OSR sometimes does not affect the strength of sexual selection. An explanation of sexual selection becomes more logical when a long ‘dry time’ (‘time out’, recovery after mating due to e.g. parental care) is understood to reduce the expected time to the next mating when in the mating pool (i.e. available to mate again). This implies weaker selection to shorten the wait. An integrative view of sexual selection combines an understanding of the origin of OSR biases with how they are reflected in the Bateman gradient, and how this can produce selection for mate acquisition traits despite naturally selected costs.  相似文献   

14.
The maintenance of plumage color polymorphism in the parasiticjaeger (Stercorarius parasiticus) is still not well understood.Earlier studies indicated that selection may favor pale femalesand melanic males. If so, females would maximize their fitness,producing pale female and melanic male offspring. We thereforepredicted that females might bias their offspring sex ratiotoward daughters in pale pairs and toward sons in melanic pairs.Females might also choose to mate assortatively in relationto plumage color, thereby maximizing the probability of producingeither pale or melanic offspring. Because females are largerthan males, differential rearing costs may affect the offspringsex ratio independent of parental plumage color. We examinedoffspring sex ratio allocation, breeding variables indicativeof parental quality, and mating pattern in relation to plumagecolor in a colony of parasitic jaegers in northern Norway. Jaegerstended to mate assortatively in relation to plumage color. Thereproductive performance declined with season, and matched pairsappeared to be of lower quality than mixed pairs. The proportionof male offspring increased with hatching date in matched paleand mixed pairs, whereas the situation was reversed in matchedmelanic pairs. Matched pale pairs produced an overall surplusof favorable pale but costly daughters despite their lower quality,while melanic pairs produced a surplus of favorable melanicsons. However, differential offspring rearing costs and parentalrearing capacity may have additionally affected the realizedoffspring sex ratio. Mixed pairs producing an overall surplusof pale and melanic daughters allocated their resources accordingto differential rearing costs and parental quality only. Wesuggest that both strategies of sex ratio allocation togetherwith differences in reproductive success in matched versus mixedpairs may have a balancing effect on the mating pattern betweenplumage morphs and may contribute to the maintenance of thecolor polymorphism in this species.  相似文献   

15.
  1. In most animals, females are larger than males. Paradoxically, sexual size dimorphism is biased towards males in most mammalian species. An accepted explanation is that sexual dimorphism in mammals evolved by intramale sexual selection. I tested this hypothesis in primates, by relating sexual size dimorphism to seven proxies of sexual selection intensity: operational sex ratio, mating system, intermale competition, group sex ratio, group size, maximum mating percentage (percentage of observed copulations involving the most successful male), and total paternity (a genetic estimate of the percentage of young sired by the most successful male).
  2. I fitted phylogenetic generalised least squares models using sexual size dimorphism as the dependent variable and each of the seven measures of intensity of sexual selection as independent variables. I conducted this comparative analysis with data from 50 extant species of primates, including Homo sapiens, Pan troglodytes, and Gorilla spp.
  3. Sexual dimorphism was positively related to the four measures of female monopolisation (operational sex ratio, mating system, intermale competition, and group sex ratio) and in some cases to group size, but was not associated with maximum mating percentage or total paternity. Additional regression analyses indicated that maximum mating percentage and total paternity were negatively associated with group size.
  4. These results are predicted by reproductive skew theory: in large groups, males can lose control of the sexual behaviour of the other members of the group or can concede reproductive opportunities to others. The results are also consistent with the evolution of sexual size dimorphism before polygyny, due to the effects of natural, rather than sexual, selection. In birds, the study of molecular paternity showed that variance in male reproductive success is much higher than expected by behaviour. In mammals, recent studies have begun to show the opposite trend, i.e. that intensity of sexual selection is lower than expected by polygyny.
  5. Results of this comparative analysis of sexual size dimorphism and sexual selection intensity in primates suggest that the use of intramale sexual selection theory to explain the evolution of polygyny and sexual dimorphism in mammals should be reviewed, and that natural selection should be considered alongside sexual selection as an evolutionary driver of sexual size dimorphism and polygyny in mammals.
  相似文献   

16.
Modern sexual selection theory indicates that reproductive costs rather than the operational sex ratio predict the intensity of sexual selection. We investigated sexual selection in the polygynandrous common lizard Lacerta vivipara . This species shows male aggression, causing high mating costs for females when adult sex ratios (ASR) are male-biased. We manipulated ASR in 12 experimental populations and quantified the intensity of sexual selection based on the relationship between reproductive success and body size. In sharp contrast to classical sexual selection theory predictions, positive directional sexual selection on male size was stronger and positive directional selection on female size weaker in female-biased populations than in male-biased populations. Thus, consistent with modern theory, directional sexual selection on male size was weaker in populations with higher female mating costs. This suggests that the costs of breeding, but not the operational sex ratio, correctly predicted the strength of sexual selection.  相似文献   

17.
To understand the evolution of parental care, one needs to estimatethe payoffs from providing care for the offspring and the payoffsfrom terminating care and deserting them. These payoffs arerarely known. In this study we experimentally estimated therewards from brood desertion in a species that has a variablepattern of parental care. In particular, either the female or themale parent may desert the brood in Kentish plover Charadrius alexandrinus,so some broods are attended by one parent of either sex, whereasin other broods both parents stay with the brood until the chicks fledge.We created single males and single females by experimentallyremoving the other parent and the clutch. The expected rematingtime of males was significantly higher (median: 25.4 days) thanthat of the females (5.3 days, p <.0001). The expected rematingtime tended to increase over the breeding season in both sexes,although the increase was significant only in females. The newnest of remated males was closer to their previous territory (mean± SE, 46 ± 8 m) than that of the remated females(289 ± 57 m, p <.001). Hatching success of new nestswas not different between remated males and females. Our resultsdemonstrate that the remating opportunities are different formale and female Kentish plovers and these opportunities varyover the season. We propose that the remating opportunitieswere influenced by the male-biased adult sex ratio and the seasonaldecrease in the number of breeders. However, we stress thatmeasuring remating times is a more direct measure of matingopportunities than calculating the operational sex ratio.  相似文献   

18.
A changing climate is expected to have profound effects on many aspects of ectotherm biology. We report on a decade-long study of free-ranging sand lizards (Lacerta agilis), exposed to an increasing mean mating season temperature and with known operational sex ratios. We assessed year-to-year variation in sexual selection on body size and postcopulatory sperm competition and cryptic female choice. Higher temperature was not linked to strength of sexual selection on body mass, but operational sex ratio (more males) did increase the strength of sexual selection on body size. Elevated temperature increased mating rate and number of sires per clutch with positive effects on offspring fitness. In years when the "quality" of a female's partners was more variable (in standard errors of a male sexual ornament), clutches showed less multiple paternity. This agrees with prior laboratory trials in which females exercised stronger cryptic female choice when male quality varied more. An increased number of sires contributing to within-clutch paternity decreased the risk of having malformed offspring. Ultimately, such variation may contribute to highly dynamic and shifting selection mosaics in the wild, with potential implications for the evolutionary ecology of mating systems and population responses to rapidly changing environmental conditions.  相似文献   

19.
杂色山雀双亲差异性育雏策略   总被引:1,自引:0,他引:1  
社会性单配制鸟类的配偶双方在抚育子代时常存在性别差异,不同鸟种的雌雄双亲往往采取不同的育雏策略。以杂色山雀(Sittiparus varius)为研究对象,2017年3—7月对繁殖巢箱进行录像监测,记录杂色山雀育雏期亲代投入情况。分析结果显示:1)双亲递食率在育雏前期(4—6日龄)无显著差异,而育雏后期(10—12日龄)雌性的递食率显著高于雄性。2)雌性亲鸟后期递食率较育雏前期显著增加;而雄性亲鸟育雏前期和后期递食率无显著差异。3)雌性递食率与自身喙宽呈极显著正相关,雄性递食率与双亲体征参数均无相关关系。总的来说,在育雏阶段,杂色山雀雌性亲鸟的递食率随着雏鸟的需求和自身身体质量发生调整,雌性在育雏后期递食率显著升高,而雄性亲鸟递食率无变化,这可能与育雏期双亲投入分工不同有关。  相似文献   

20.
The biases towards eusociality, female workers and maternal care in haplodiploid versus diploid insects may result from the relatively low probabilities that rare mutant, partially dominant alleles promoting these behaviours will be lost by genetic drift in haplodiploid populations (Reeve, 1993). A generalization of this 'protected invasion' theory also predicts that parental and alloparental care will tend to be associated with the homogametic sex in diploid populations if the Y chromosome of the heterogametic sex is absent or largely inert. Sex differences in (allo)parental care (i.e. either parental or alloparental care) should increase with increased asymmetry between the sexes in the fraction of behaviour-influencing loci occurring on their characteristic sex chromosomes. The theory explains the strong predisposition towards female (allo)parental care in mammals, a contrasting tendency towards male (allo)parental care in birds, the propensity for joint male and female (allo)parental care in termites, and biases towards female cooperation in social spiders. The theory also explains the apparent rarity or absence of alloparental care in marsupials, an intriguing consequence of preferential paternal X-chromosome inactivation in this taxon. Thus protected invasion theory possibly provides new insights into the relationship between social structure and the genetic system. The theory does not compete with ecological or kin-selective hypotheses for the advantages of (allo)parental care; indeed, such advantages must exist for protected-invasion biases to operate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号