首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid zones, where distinct populations meet and interbreed, give insight into how differences between populations are maintained despite gene flow. Studying clines in genetic loci and adaptive traits across hybrid zones is a powerful method for understanding how selection drives differentiation within a single species, but can also be used to compare parallel divergence in different species responding to a common selective pressure. Here, we study parallel divergence of wing colouration in the butterflies Heliconius erato and H. melpomene, which are distantly related Müllerian mimics which show parallel geographic variation in both discrete variation in pigmentation, and quantitative variation in structural colour. Using geographic cline analysis, we show that clines in these traits are positioned in roughly the same geographic region for both species, which is consistent with direct selection for mimicry. However, the width of the clines varies markedly between species. This difference is explained in part by variation in the strength of selection acting on colour traits within each species, but may also be influenced by differences in the dispersal rate and total strength of selection against hybrids between the species. Genotyping‐by‐sequencing also revealed weaker population structure in H. melpomene, suggesting the hybrid zones may have evolved differently in each species, which may also contribute to the patterns of phenotypic divergence in this system. Overall, we conclude that multiple factors are needed to explain patterns of clinal variation within and between these species, although mimicry has probably played a central role.  相似文献   

2.
Species richness varies among clades, yet the drivers of diversification creating this variation remain poorly understood. While abiotic factors likely drive some of the variation in species richness, ecological interactions may also contribute. Here, we examine one class of potential contributors to species richness variation that is particularly poorly understood: mutualistic interactions. We aim to elucidate large‐scale patterns of diversification mediated by mutualistic interactions using a spatially explicit population‐based model. We focus on mutualistic Müllerian mimicry between conspicuous toxic prey species, where convergence in color patterns emerges from predators' learning process. To investigate the effects of Müllerian mimicry on species diversification, we assume that some speciation events stem from shifts in ecological niches, and can also be associated with shift in mimetic color pattern. Through the emergence of spatial mosaics of mimetic color patterns, Müllerian mimicry constrains the geographical distribution of species and allows different species occupying similar ecological niches to exist simultaneously in different regions. Müllerian mimicry and the resulting spatial segregation of mimetic color patterns thus generate more balanced phylogenetic trees and increase overall species diversity. Our study sheds light on complex effects of Müllerian mimicry on ecological, spatial, and phylogenetic diversification.  相似文献   

3.
The neotropical butterflies Heliconius melpomene and H. erato are Müllerian mimics that display the same warningly colored wing patterns in local populations, yet pattern diversity between geographic regions. Linkage mapping has previously shown convergent red wing phenotypes in these species are controlled by loci on homologous chromosomes. Here, AFLP bulk segregant analysis using H. melpomene crosses identified genetic markers tightly linked to two red wing-patterning loci. These markers were used to screen a H. melpomene BAC library and a tile path was assembled spanning one locus completely and part of the second. Concurrently, a similar strategy was used to identify a BAC clone tightly linked to the locus controlling the mimetic red wing phenotypes in H. erato. A methionine rich storage protein (MRSP) gene was identified within this BAC clone, and comparative genetic mapping shows red wing color loci are in homologous regions of the genome of H. erato and H. melpomene. Subtle differences in these convergent phenotypes imply they evolved independently using somewhat different developmental routes, but are nonetheless regulated by the same switch locus. Genetic mapping of MRSP in a third related species, the “tiger” patterned H. numata, has no association with wing patterning and shows no evidence for genomic translocation of wing-patterning loci.  相似文献   

4.
The Neotropical butterfly Heliconius numata (Lepidoptera: Nymphalidae: Heliconiinae) is known for its striking diversity of wing color patterns driven by the Müllerian mimicry of multiple local models and controlled by a single supergene locus. Such fine‐scale variation of traits under strong selection offers a unique opportunity for the study of the ecology and genetics of adaptation. However, little is still known of the population processes driving geographical variation in wing‐pattern phenotypes. We report the characterization of 26 microsatellite markers for the butterfly H. numata, including six located inside the wing color‐pattern supergene region. All markers are polymorphic, with allele numbers ranging from 2 to 21 per locus, an observed heterozygosity of 0.111 to 0.848 and an expected heterozygosity of 0.126 to 0.942. A subset of 18 of these markers was tested on five closely related sympatric Heliconius species with an amplification success ranging from 88% to 94%. The obtained set of microsatellite markers provides a new and useful set of tools to investigate patterns of differentiation and selection in populations of mimetic Heliconius butterflies. Moreover, markers developed within the color‐pattern supergene will facilitate characterization of the association between the genetic architecture and the functional diversity of wing patterns. Finally, the cross‐species amplification success of the described markers extends their utility to also encompass comparative population genetic studies of closely related species within a clade of rapidly diversifying species.  相似文献   

5.
Despite rampant colour pattern diversity in South America, Heliconius erato exhibits a ‘postman’ wing pattern throughout most of Central America. We examined genetic variation across the range of H. erato, including dense sampling in Central America, and discovered a deep genetic break, centred on the mountain range that runs through Costa Rica. This break is characterized by a novel mitochondrial lineage, which is nearly fixed in northern Central America, that branches basal to all previously described mitochondrial diversity in the species. Strong genetic differentiation also appears in Z‐linked and autosomal markers, and it is further associated with a distinct, but subtle, shift in wing pattern phenotype. Comparison of clines in wing phenotype, mtDNA and nuclear markers indicate they are all centred on the mountains dividing Costa Rica, but that cline width differs among data sets. Phylogeographical analyses, accounting for this new diversity, rewrite our understanding of mimicry evolution in this system. For instance, these results suggest that H. erato originated west of the Andes, perhaps in Central America, and as many as 1 million years before its co‐mimic, H. melpomene. Overall our data indicate that neutral genetic markers and colour pattern loci are congruent and converge on the same hypothesis—H. erato originated in northwest South America or Central America with a ‘postman’ phenotype and then radiated into the wealth of colour patterns present today.  相似文献   

6.
Heliconius are unpalatable butterflies that exhibit remarkable intra‐ and interspecific variation in wing color pattern, specifically warning coloration. Species that have converged on the same pattern are often clustered in Müllerian mimicry rings. Overall, wing color patterns are nearly identical among co‐mimics. However, fine‐scale differences exist, indicating that factors in addition to natural selection may underlie wing phenotype. Here, we investigate differences in shape and size of the forewing and the red band in the Heliconius postman mimicry ring (H. erato phyllis and the co‐mimics H. besckei, H. melpomene burchelli, and H. melpomene nanna) using a landmark‐based approach. If phenotypic evolution is driven entirely by predation pressure, we expect nonsignificant differences among co‐mimics in terms of wing shape. Also, a reinforcement of wing pattern (i.e., greater similarity) could occur when co‐mimics are in sympatry. We also examined variation in the red forewing band because this trait is critical for both mimicry and sexual communication. Morphometric results revealed significant but small differences among species, particularly in the shape of the forewing of co‐mimics. Although we did not observe greater similarity when co‐mimics were in sympatry, nearly identical patterns provided evidence of convergence for mimicry. In contrast, mimetic pairs could be distinguished based on the shape (but not the size) of the red band, suggesting an “advergence” process. In addition, sexual dimorphism in the red band shape (but not size) was found for all lineages. Thus, we infer that natural selection due to predation by birds might not be the only mechanism responsible for variation in color patterns, and sexual selection could be an important driver of wing phenotypic evolution in this mimicry ring.  相似文献   

7.
Abstract. The aim of the present study was to investigate the phylogeny, systematics and evolution of the mimetic wing patterns of Eterusia, a day-flying moth genus that exhibits great morphological diversity, as well as the highest insular differentiation in eastern Asia and which has the most chaotic taxonomic history in the family Zygaenidae. We examined the wing patterns of the insects involved using visible and ultraviolet light (both reflectance and fluorescence). The phylogeny of thirty-four taxa, including all the recognized species of Eterusia plus two species of Soritia as outgroups, was reconstructed based on eighty adult morphological characters, including forty-one derived from colour patterns. Phylogenetic relationships based on the whole dataset revealed that (1) the most current concept of Eterusia is monophyletic, and (2) different types of mimetic pattern show different levels of phylogenetic conservation. To investigate the evolution of their colour patterns we inactivated all the relevant characters and reconstructed another phylogeny, which was found to differ significantly from the one based on the whole character set in the position of the E. risa species group. We used these phylogenetic hypotheses to test evolutionary predictions based on conventional Müllerian mimicry and quasi-Batesian mimicry dynamics. The results of permutation–tail–probability tests showed that the coloration characters are phylogenetically conserved, thus justifying a Müllerian interpretation. However, when comparing the observed topologies with hypothetical trees constrained to fit perfect Müllerian or quasi-Batesian scenarios using the Kishino–Hasegawa test, the observed phylogenies were more consistent with the phylogenetic prediction of quasi-Batesian mimicry. Therefore, we consider that applying these two phylogenetic methods to justify mimicry models may not always be practical. Finally, the taxonomy of Eterusia is revised. In total, two new species (E. austrochinensis, E. guanxiana), one new subspecies (E. risa palawanica) and four new synonyms (E. lativitta and E. fasciata of E. sublutea, E. coelestina of E. subcyanea, E. angustipennis gaedei of E. angustipennis angustipennis) are established.  相似文献   

8.
Mimicry rings are present among Delias butterflies, and those butterflies are also considered to be mimetic models of other lepidopteran insects; however, experimental evidence for their unpalatability to predators is limited. In Bali and Timor, a total of three mimicry rings of Delias species are present; particularly, male and female D. lemoulti join different rings in Timor. The present study examined the unpalatability of Delias in Bali and Timor to the caged avian predator Pycnonotus aurigaster. The birds ate eight Delias species in similar numbers, and ate the palatable butterfly Mycalesis horsfieldii much more frequently than Delias butterflies. The result suggests that the three mimicry rings of Delias species in Bali and Timor are Müllerian rather than Batesian. Based on previous findings on their phylogenetic relationships, the Müllerian mimicry rings of Delias in Bali and Timor are suggested to have emerged through the convergent evolution and phylogenetic constraints of wing color patterns. In the D. hyparete species group, mimetic radiation may have occurred between Bali and Timor.  相似文献   

9.
Müllerian mimicry, in which both partners are unpalatable to predators, is often used as an example of a coevolved mutualism. However, it is theoretically possible that some Müllerian mimics are parasitic if a weakly defended mimic benefits at the expense of a more highly defended model, a phenomenon known as ‘quasi-Batesian mimicry’. The theory expounded by Müller and extended here for unequal unpalatability, on the other hand, suggests that quasi-Batesian mimicry should be rare in comparison with classical, or mutualistic Müllerian mimicry. Evolutionarily, quasi-Batesian mimicry has consequences similar to classical Batesian mimicry, including unilateral ‘advergence’ of the mimic to the model, and diversifying frequency-dependent selection on the mimic which may lead to mimetic polymorphism. In this paper, theory and empirical evidence for mutual benefit and coevolution in Müllerian mimicry are reviewed. I use examples from well-known insect Müllerian mimicry complexes: the Limenitis–Danaus (Nymphalidae) system in North America, the Bombus–Psithyrus (Apidae) system in the north temperate zone, and the Heliconius–Laparus (Nymphalidae) system in tropical America. These give abundant evidence for unilateral advergence, and no convincing evidence, to my knowledge, for coevolved mutual convergence. Furthermore, mimetic polymorphisms are not uncommon. Yet classical mutualistic Müllerian mimicry, coupled with spatial (and possibly temporal) variation in model abundances convincingly explain these apparent anomalies without recourse to a quasi-Batesian explanation. Nevertheless, the case against classical Müllerian mimicry is not totally disproved, and should be investigated further. I hope that this tentative analysis of actual mimicry rings may encourage others to look for evidence of coevolution and quasi-Batesian effects in a variety of other Müllerian mimicry systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Recent studies indicate that relatively few genomic regions are repeatedly involved in the evolution of Heliconius butterfly wing patterns. Although this work demonstrates a number of cases where homologous loci underlie both convergent and divergent wing pattern change among different Heliconius species, it is still unclear exactly how many loci underlie pattern variation across the genus. To address this question for Heliconius erato, we created fifteen independent crosses utilizing the four most distinct color pattern races and analyzed color pattern segregation across a total of 1271 F2 and backcross offspring. Additionally, we used the most variable brood, an F2 cross between H. himera and the east Ecuadorian H. erato notabilis, to perform a quantitative genetic analysis of color pattern variation and produce a detailed map of the loci likely involved in the H. erato color pattern radiation. Using AFLP and gene based markers, we show that fewer major genes than previously envisioned control the color pattern variation in H. erato. We describe for the first time the genetic architecture of H. erato wing color pattern by assessing quantitative variation in addition to traditional linkage mapping. In particular, our data suggest three genomic intervals modulate the bulk of the observed variation in color. Furthermore, we also identify several modifier loci of moderate effect size that contribute to the quantitative wing pattern variation. Our results are consistent with the two-step model for the evolution of mimetic wing patterns in Heliconius and support a growing body of empirical data demonstrating the importance of major effect loci in adaptive change.  相似文献   

11.
Müllerian mimetic systems have uncovered some of the dynamic processes by which natural selection can drive the radiation of convergent and divergent phenotypes. We examined evolution involving Müllerian mimicry in bumble bees by documenting the distribution and evolution of colour patterns amongst three colour‐polymorphic lineages –Bombus trifasciatus Smith, Bombus haemorrhoidalis Smith, and Bombus breviceps Smith – that mimic each other across ~14 colour groups in South‐East Asia. Using mitochondrial DNA sequence data, we estimated relationships within each lineage to infer the processes that gave rise to the colour diversity and develop hypotheses on species recognition. We expanded on our assessment of species delineation in the B. trifasciatus lineage using three nuclear gene fragments and morphometrics. Comparison of colour patterns amongst georeferenced specimens showed considerable variation in the degree and geographical range of mimicry amongst mimicry groups. Phylogenetic estimates show high rates of colour pattern evolution, with colour variation often exceeding variation within the fast‐evolving mitochondrial genes. The molecular data, and to some degree the morphometric data, support unique histories for several taxa recognized previously within the B. trifasciatus lineage, which may include several species. Early vicariant events within the B. trifasciatus lineage are likely to have occurred ~2.2 Mya in the mountains of south‐west China. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 805–826.  相似文献   

12.
Mimicry has been a fundamental focus of research since the birth of evolutionary biology yet rarely has been studied from a phylogenetic perspective beyond the simple recognition that mimics are not similar due to common descent. The difficulty of finding characters to discern relationships among closely related and convergent taxa has challenged systematists for more than a century. The phenotypic diversity of wing pattens among mimetic Heliconius adds an additional twist to the problem, because single species contain more than a dozen radically different-looking geographical races even though the mimetic advantage is theoretically highest when all individuals within and between species appear the same. Mitochondrial DNA (mtDNA) offers an independent way to address these issues. In this study, Cytochrome Oxidase I and II sequences from multiple, parallel races of Heliconius erato and Heliconius melpomene are examined, to estimate intraspecific phylogeny and gauge sequence divergence and ages of clades among races within each species. Although phenotypes of sympatric races exhibit remarkable concordance between the two species, the mitochondrial cladograms show that the species have not shared a common evolutionary history. H. erato exhibits a basal split between trans- and cis-Andean groups of races, whereas H. melpomene originates in the Guiana Shield. Diverse races in either species appear to have evolved within the last 200,000 yr, and convergent phenotypes have evolved independently within as well as between species. These results contradict prior theories of the evolution of mimicry based on analysis of wing-pattern genetics.  相似文献   

13.
14.
The unpalatable and warning-patterned butterflies Heliconius erato and Heliconius melpomene provide the best studied example of mutualistic Müllerian mimicry, thought-but rarely demonstrated-to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of H. erato and H. melpomene, and this was initially hailed as one of the most striking known cases of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of H. erato and H. melpomene, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of H. erato and H. melpomene. Cophylogenetic historical reconstructions support repeated codivergence of mimetic populations, from the base of the sampled radiations. Pairwise distance correlation tests, based on our coalescent analyses plus recently published AFLP and wing colour pattern gene data, also suggest that the phylogenies of H. erato and H. melpomene show significant topological congruence. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of H. erato and H. melpomene occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. Our results suggest that differences in within-species genetic divergence are the result of a greater overall effective population size for H. erato relative to H. melpomene and do not imply incongruence in the timing of their phylogenetic radiations. Repeated codivergence between Müllerian co-mimics, predicted to exert mutual selection pressures, strongly suggests coevolution. Our results therefore support a history of reciprocal coevolution between Müllerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change.  相似文献   

15.
The evolution of mimicry is one of the most powerful examples of evolution driven by natural selection; however it is rare in non-insect taxa and thus is understudied. Ranitomeya imitator underwent a ‘mimetic radiation’ and now mimics three congeneric model species (R. fantastica, R. summersi, and two morphs of R. variabilis), creating geographically distinct populations of the species, including four allopatric mimetic morphs. These complexes are thought to represent a case of Müllerian mimicry, but no prior empirical studies on learned avoidance by predators support this claim. In this study we used young chickens (Gallus domesticus) as naïve predators to determine if a co-mimetic morph of R. imitator and R. variabilis contribute to reciprocal learned avoidance by predators—a key component of Müllerian mimicry. Chickens exposed to either stimulus species demonstrated reciprocal learned avoidance; thus our results indicate that this complex functions as a Müllerian mimicry system. This study provides novel empirical evidence supporting predictions of the Müllerian mimicry hypothesis in anurans. Our study shows no difference between learned avoidance in stimuli frogs and a ‘novel’ morph of R. imitator that differed in both color and pattern, indicating that learned avoidance by predators may be generalized in this system. Generalized learning provides a plausible mechanism for the maintenance of both polytypic mimicry and the maintenance of intrapopulation phenotypic heterogeneity.  相似文献   

16.
The selective advantage of Müllerian mimicry in nature was investigated by releasing live mimetic and nonmimetic butterflies close to wild, aerial‐hunting tropical kingbirds (Tyrannus melancholicus) and cliff‐flycatchers (Hirundinea ferruginea) in three Amazon habitats (rain forest, a city, and “canga” vegetation). Only mimetic butterflies elicited sight‐rejections by birds, but protection conferred by mimicry was restricted to sites in which both predators and mimics co‐occurred, as in the case of six mimicry rings at a forest site and two at a city site. Most other Müllerian mimics released at city and canga vegetation were heavily attacked and consumed by birds. These results appear to reflect the birds’previous experiences with resident butterfly faunas and illustrate how birds’discriminatory behavior varied among habitats that differed in butterfly species and mimicry ring composition.  相似文献   

17.
The Heliconius butterflies offer exceptional opportunities for the study of the ecology and evolution of mimicry. Despite previous reports of difficulties in the development of microsatellite loci in Lepidoptera, we characterize 15 polymorphic loci in H. erato that show promise for genetic mapping and population studies in this and other species. Levels of variation were high, in both numbers and size ranges of alleles. The loci showed broad amplification success across the genus and in two other genera. All loci that amplified in a population of H. melpomene were polymorphic.  相似文献   

18.
Species coexistence involves the evolution of reproductive barriers opposing gene flow. Heliconius butterflies display colorful patterns affecting mate choice and survival through warning signaling and mimicry. These patterns are called “magic traits” for speciation because divergent natural selection may promote mimicry shifts in pattern whose role as mating cue facilitates reproductive isolation. By contrast, between comimetic species, natural selection promotes pattern convergence. We addressed whether visual convergence interferes with reproductive isolation by testing for sexual isolation between two closely related species with similar patterns, H. timareta thelxinoe and H. melpomene amaryllis. Experiments with models confirmed visual attraction based on wing phenotype, leading to indiscriminate approach. Nevertheless, mate choice experiments showed assortative mating. Monitoring male behavior toward live females revealed asymmetry in male preference, H. melpomene males courting both species equally while H. timareta males strongly preferred conspecifics. Experiments with hybrid males suggested an important genetic component for such asymmetry. Behavioral observations support a key role for short‐distance cues in determining male choice in H. timareta. Scents extracts from wings and genitalia revealed interspecific divergence in chemical signatures, and hybrid female scent composition was significantly associated with courtship intensity by H. timareta males, providing candidate chemical mating cues involved in sexual isolation.  相似文献   

19.
20.
Müllerian mimicry is a classic example of adaptation, yet Müller's original theory does not account for the diversity often observed in mimicry rings. Here, we aimed to assess how well classical Müllerian mimicry can account for the colour polymorphism found in chemically defended Oreina leaf beetles by using field data and laboratory assays of predator behaviour. We also evaluated the hypothesis that thermoregulation can explain diversity between Oreina mimicry rings. We found that frequencies of each colour morph were positively correlated among species, a critical prediction of Müllerian mimicry. Predators learned to associate colour with chemical defences. Learned avoidance of the green morph of one species protected green morphs of another species. Avoidance of blue morphs was completely generalized to green morphs, but surprisingly, avoidance of green morphs was less generalized to blue morphs. This asymmetrical generalization should favour green morphs: indeed, green morphs persist in blue communities, whereas blue morphs are entirely excluded from green communities. We did not find a correlation between elevation and coloration, rejecting thermoregulation as an explanation for diversity between mimicry rings. Biased predation could explain within‐community diversity in warning coloration, providing a solution to a long‐standing puzzle. We propose testable hypotheses for why asymmetric generalization occurs, and how predators maintain the predominance of blue morphs in a community, despite asymmetric generalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号