共查询到20条相似文献,搜索用时 9 毫秒
1.
Richard M. Merrill Richard W. R. Wallbank Vanessa Bull Patricio C. A. Salazar James Mallet Martin Stevens Chris D. Jiggins 《Proceedings. Biological sciences / The Royal Society》2012,279(1749):4907-4913
Adaptation to divergent ecological niches can result in speciation. Traits subject to disruptive selection that also contribute to non-random mating will facilitate speciation with gene flow. Such ‘magic’ or ‘multiple-effect’ traits may be widespread and important for generating biodiversity, but strong empirical evidence is still lacking. Although there is evidence that putative ecological traits are indeed involved in assortative mating, evidence that these same traits are under divergent selection is considerably weaker. Heliconius butterfly wing patterns are subject to positive frequency-dependent selection by predators, owing to aposematism and Müllerian mimicry, and divergent colour patterns are used by closely related species to recognize potential mates. The amenability of colour patterns to experimental manipulation, independent of other traits, presents an excellent opportunity to test their role during speciation. We conducted field experiments with artificial butterflies, designed to match natural butterflies with respect to avian vision. These were complemented with enclosure trials with live birds and real butterflies. Our experiments showed that hybrid colour-pattern phenotypes are attacked more frequently than parental forms. For the first time, we demonstrate disruptive ecological selection on a trait that also acts as a mating cue. 相似文献
2.
Hybrid speciation in sparrows I: phenotypic intermediacy,genetic admixture and barriers to gene flow
JO S. HERMANSEN STEIN A. SÆTHER TORE O. ELGVIN THOMAS BORGE ELIN HJELLE GLENN‐PETER SÆTRE 《Molecular ecology》2011,20(18):3812-3822
Homoploid hybrid speciation is thought to require unusual circumstances to yield reproductive isolation from the parental species, and few examples are known from nature. Here, we present genetic evidence for this mode of speciation in birds. Using Bayesian assignment analyses of 751 individuals genotyped for 14 unlinked, nuclear microsatellite loci, we show that the phenotypically intermediate Italian sparrow (Passer italiae) does not form a cluster of its own, but instead exhibits clear admixture (over its entire breeding range) between its putative parental species, the house sparrow (P. domesticus) and the Spanish sparrow (P. hispaniolensis). Further, the Italian sparrow possesses mitochondrial (mt) DNA haplotypes identical to both putative parental species (although mostly of house sparrow type), indicating a recent hybrid origin. Today, the Italian sparrow has a largely allopatric distribution on the Italian peninsula and some Mediterranean islands separated from its suggested parental species by the Alps and the Mediterranean Sea, but co‐occurs with the Spanish sparrow on the Gargano peninsula in southeast Italy. No evidence of interbreeding was found in this sympatric population. However, the Italian sparrow hybridizes with the house sparrow in a sparsely populated contact zone in the Alps. Yet, the contact zone is characterized by steep clines in species‐specific male plumage traits, suggesting that partial reproductive isolation may also have developed between these two taxa. Thus, geographic and reproductive barriers restrict gene flow into the nascent hybrid species. We propose that an origin of hybrid species where the hybrid lineage gets geographically isolated from its parental species, as seems to have happened in this system, might be more common in nature than previously assumed. 相似文献
3.
BRONWYN M. MCALLAN CHRISTOPHER R. DICKMAN MATHEW S. CROWTHER 《Biological journal of the Linnean Society. Linnean Society of London》2006,87(3):365-379
Species in the Australian marsupial genus Antechinus exhibit a short annual mating period which is concluded by the abrupt death of all males. The timing of the annual rut within each of the ten described species varies little from year to year at any given locality, but for some species can differ by up to four months between locations. To determine the influence of photoperiod in regulating the precise interannual synchrony of mating and ovulation, we first investigated populations of each species at over 300 localities throughout their geographical ranges to identify the time of reproduction. We then compared the absolute photoperiod and the rate of change of photoperiod prevailing at the time of reproduction in all population localities. A different, and characteristic, rate of change of photoperiod was correlated strongly with the reproductive timing of four species; there was probably a correlation with reproduction in four more species, but sample sizes were small. For two species, there was no obvious photoperiodic correlation with time of reproduction. There was no evidence that absolute photoperiod or ambient temperature explained the synchrony or narrow timespan of reproduction among any species of Antechinus . Different species-specific ovulatory responses to photoperiod appear to separate the timing of reproduction in sympatric species, with the larger member of species pairs usually breeding first. We suggest that photoperiodic cues (1) allow females to produce young during seasons when food is most reliable and abundant and their energetic demands are maximal; (2) facilitate allochronic isolation between sympatric congeners, and (3) maximize body size differences and hence ecological separation between species. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 365–379. 相似文献
4.
Hybrid speciation represents a relatively rapid form of diversification. Early models of homoploid hybrid speciation suggested that reproductive isolation between the hybrid species and progenitors primarily resulted from karyotypic differences between the species. However, genic incompatibilities and ecological divergence may also be responsible for isolation. Iris nelsonii is an example of a homoploid hybrid species that is likely isolated from its progenitors primarily by strong prezygotic isolation, including habitat divergence, floral isolation and post-pollination prezygotic barriers. Here, we used linkage mapping and quantitative trait locus (QTL) mapping approaches to investigate genomic collinearity and the genetic architecture of floral differences between I. nelsonii and one of its progenitor species I. hexagona. The linkage map produced from this cross is highly collinear with another linkage map produced between I. fulva and I. brevicaulis (the two other species shown to have contributed to the genomic makeup of I. nelsonii), suggesting that karyotypic differences do not contribute substantially to isolation in this homoploid hybrid species. Similar to other studies of the genetic architecture of floral characteristics, at least one QTL was found that explained >20% variance in each color trait, while minor QTLs were detected for each morphological trait. These QTLs will serve as hypotheses for regions under selection by pollinators. 相似文献
5.
Merrill RM Gompert Z Dembeck LM Kronforst MR McMillan WO Jiggins CD 《Evolution; international journal of organic evolution》2011,65(5):1489-1500
Premating behavioral isolation is increasingly recognized as an important part of ecological speciation, where divergent natural selection causes the evolution of reproductive barriers. A number of studies have now demonstrated that traits under divergent natural selection also affect mate preferences. However, studies of single species pairs only capture a snapshot of the speciation process, making it difficult to assess the role of mate preferences throughout the entire process. Heliconius butterflies are well known for their brightly colored mimetic warning patterns, and previous studies have shown that these patterns are also used as mate recognition cues. Here, we present mate preference data for four pairs of sister taxa, representing different stages of divergence, which together allow us to compare diverging mate preferences across the continuum of Heliconius speciation. Using a novel Bayesian approach, our results support a model of ecological speciation in which strong premating isolation arises early, but continues to increase throughout the continuum from polymorphic populations through to "good," sympatric ecologically divergent species. 相似文献
6.
Travis R. Robbins Jonathan N. Pruitt Lorelei E. Straub Earl D. Mccoy Henry R. Mushinsky 《The Journal of animal ecology》2010,79(1):137-147
1. We investigated agonistic behaviour and associated characteristics of Sceloporus woodi (Florida scrub lizard), Sceloporus undulatus (Eastern fence lizard) and their hybrids using staged territorial encounters.
2. These Sceloporus hybrids exhibit transgressive aggression and transgressive head-girth relative to the parental species and the transgressive aggression was specifically associated with an advantage in agonistic encounters. Our results suggest a hybrid advantage in natural habitats when defending and invading territories against either parental species.
3. We further analysed general advantages in agonistic encounters across the entire three-group system to elucidate characteristics that may be advantageous under specific circumstances. Individuals with larger body size (SVL) and greater aggression had an overall advantage in agonistic encounters; however, smaller individuals could win when slightly more aggressive and fatter, and less aggressive individuals could win when slightly larger, especially with greater head-girth.
4. The extreme hybrid phenotypes likely occurred through transgressive segregation, which has been implicated as a process through which homoploid, hybrid speciation can occur. Some form of ecological divergence is necessary, however, to impede parental gene flow. Our data suggest that ecological divergence could manifest in territorial species through transgressive aggression. 相似文献
2. These Sceloporus hybrids exhibit transgressive aggression and transgressive head-girth relative to the parental species and the transgressive aggression was specifically associated with an advantage in agonistic encounters. Our results suggest a hybrid advantage in natural habitats when defending and invading territories against either parental species.
3. We further analysed general advantages in agonistic encounters across the entire three-group system to elucidate characteristics that may be advantageous under specific circumstances. Individuals with larger body size (SVL) and greater aggression had an overall advantage in agonistic encounters; however, smaller individuals could win when slightly more aggressive and fatter, and less aggressive individuals could win when slightly larger, especially with greater head-girth.
4. The extreme hybrid phenotypes likely occurred through transgressive segregation, which has been implicated as a process through which homoploid, hybrid speciation can occur. Some form of ecological divergence is necessary, however, to impede parental gene flow. Our data suggest that ecological divergence could manifest in territorial species through transgressive aggression. 相似文献
7.
The Tribolium castaneum hybrid inviability gene, H, was selectively introgressed into a genetic background lacking H through
serial paternal backcrosses. This revealed a poor viability phenotype (partial paralysis and poor control of the limbs, referred
to as tremor) not present in the parent strains. Tremor cosegregated with H, but was expressed only when transmitted paternally
and only when H was not also present maternally. The inferred maternal, self‐suppressive effect of H may explain nonreciprocal
incompatibilty previously observed between H and H‐incompatible strains.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
8.
Llopart A Lachaise D Coyne JA 《Evolution; international journal of organic evolution》2005,59(12):2602-2607
Abstract Despite the genetic tractability of many of Drosophila species, the genus has few examples of the “classic” type of hybrid zone, in which the ranges of two species overlap with a gradual transition from one species to another through an area where hybrids are produced. Here we describe a classic hybrid zone in Drosophila that involves two sister species, Drosophila yakuba and D. santomea, on the island of SaTo Tomé. Our transect of this zone has yielded several surprising and anomalous findings. First, we detected the presence of an additional hybrid zone largely outside the range of both parental species. This phenomenon is, to our knowledge, unique among animals. Second, the genetic analysis using diagnostic molecular markers of the flies collected in this anomalous hybrid zone indicates that nearly all hybrid males are F1s that carry the D. santomea X chromosome. This F1 genotype is much more difficult to produce in the laboratory compared to the genotype from the reciprocal cross, showing that sexual isolation as seen in the laboratory is insufficient to explain the genotypes of hybrids found in the wild. Third, there is a puzzling absence of hybrid females. We suggest several tentative explanations for the anomalies associated with this hybrid zone, but for the present they remain a mystery. 相似文献
9.
Peterson MA Honchak BM Locke SE Beeman TE Mendoza J Green J Buckingham KJ White MA Monsen KJ 《Evolution; international journal of organic evolution》2005,59(12):2639-2655
Most studies of reinforcement have focused on the evolution of either female choice or male mating cues, following the long-held view in sexual selection theory that mating mistakes are typically more costly for females than for males. However, factors such as conspecific sperm precedence can buffer females against the cost of mating mistakes, suggesting that in some hybrid zones mating mistakes may be more costly for males than for females. Thus, the historical bias in reinforcement research may underestimate its frequency. In this study, we present evidence that reinforcement has driven the evolution of male choice in a hybrid zone between the highly promiscuous leaf beetles Chrysochus cobaltinus and C. auratus, the hybrids of which have extremely low fitness. In addition, there is evidence for male choice in these beetles and that male mating mistakes may be costly, due to reduced opportunities to mate with conspecific females. The present study combines laboratory and field methods to quantify the strength of sexual isolation, test the hypothesis of reproductive character displacement, and assess the link between relative abundance and the strength of selection against hybridization. We document that, while sexual isolation is weak, it is sufficient to produce positive assortative mating. In addition, reproductive character displacement was only detected in the relatively rare species. The strong postzygotic barriers in this system are sufficient to generate the bimodality that characterizes this hybrid zone, but the weak sexual isolation is not, calling into question whether strong prezygotic isolation is necessary for the maintenance of bimodality. Growing evidence that the cost of mating mistakes is sufficient to shape the evolution of male mate choice suggests that the reinforcement of male mate choice may prove to be a widespread occurrence. 相似文献
10.
Florentine Riquet Cathy Liautard‐Haag Lucy Woodall Carmen Bouza Patrick Louisy Bojan Hamer Francisco Otero‐Ferrer Philippe Aublanc Vickie Bduneau Olivier Briard Tahani El Ayari Sandra Hochscheid Khalid Belkhir Sophie Arnaud‐Haond Pierre‐Alexandre Gagnaire Nicolas Bierne 《Evolution; international journal of organic evolution》2019,73(4):817-835
Diverging semi‐isolated lineages either meet in narrow clinal hybrid zones, or have a mosaic distribution associated with environmental variation. Intrinsic reproductive isolation is often emphasized in the former and local adaptation in the latter, although both reduce gene flow between groups. Rarely are these two patterns of spatial distribution reported in the same study system. Here, we report that the long‐snouted seahorse Hippocampus guttulatus is subdivided into discrete panmictic entities by both types of hybrid zones. Along the European Atlantic coasts, a northern and a southern lineage meet in the southwest of France where they coexist in sympatry—i.e., in the same geographical zone—with little hybridization. In the Mediterranean Sea, two lineages have a mosaic distribution, associated with lagoon‐like and marine habitats. A fifth lineage was identified in the Black Sea. Genetic homogeneity over large spatial scales contrasts with isolation maintained in sympatry or close parapatry at a fine scale. A high variation in locus‐specific introgression rates provides additional evidence that partial reproductive isolation must be maintaining the divergence. We find that fixed differences between lagoon and marine populations in the Mediterranean Sea belong to the most differentiated SNPs between the two Atlantic lineages, against the genome‐wide pattern of structure that mostly follow geography. These parallel outlier SNPs cluster on a single chromosome‐wide island of differentiation. Since Atlantic lineages do not map to lagoon‐sea habitat variation, genetic parallelism at the genomic island suggests a shared genetic barrier contributes to reproductive isolation in contrasting contexts–i.e., spatial versus ecological. We discuss how a genomic hotspot of parallel differentiation could have evolved and become associated both with space and with a patchy environment in a single study system. 相似文献
11.
Divergent warning patterns contribute to assortative mating between incipient Heliconius species 下载免费PDF全文
Theoretical models suggest that traits under divergent ecological selection, which also contribute to assortative mating, will facilitate speciation with gene flow. Evidence for these so‐called “magic traits” now exists across a range of taxa. However, their importance during speciation will depend on the extent to which they contribute to reproductive isolation. Addressing this requires experiments to determine the exact cues involved as well as estimates of assortative mating in the wild. Heliconius butterflies are well known for their diversity of bright warning color patterns, and their amenability to experimental manipulation has provided an excellent opportunity to test their role in reproductive isolation. Here, we reveal that divergent color patterns contribute to mate recognition between the incipient species Heliconius himera and H. erato, a taxon pair for which assortative mating by color pattern has been demonstrated among wild individuals: First, we demonstrate that males are more likely to attempt to mate conspecific females; second, we show that males are more likely to approach pinned females that share their own warning pattern. These data are valuable as these taxa likely represent the early stages of speciation, but unusually also allow comparisons with rates of interbreeding between divergent ecologically relevant phenotypes measured in the wild. 相似文献
12.
13.
Patterns of reproductive isolation in a haplodiploid – strong post‐mating,prezygotic barriers among three forms of a social spider mite 下载免费PDF全文
Yukie Sato Hironori Sakamoto Tetsuo Gotoh Yutaka Saito Jung‐Tai Chao Martijn Egas Atsushi Mochizuki 《Journal of evolutionary biology》2018,31(6):866-881
In speciation research, much attention is paid to the evolution of reproductive barriers, preventing diverging groups from hybridizing back into one gene pool. The prevalent view is that reproductive barriers evolve gradually as a by‐product of genetic changes accumulated by natural selection and genetic drift in groups that are segregated spatially and/or temporally. Reproductive barriers, however, can also be reinforced by natural selection against maladaptive hybridization. These mutually compatible theories are both empirically supported by studies, analysing relationships between intensity of reproductive isolation and genetic distance in sympatric taxa and allopatric taxa. Here, we present the – to our knowledge – first comparative study in a haplodiploid organism, the social spider mite Stigmaeopsis miscanthi, by measuring premating and post‐mating, pre‐ and post‐zygotic components of reproductive isolation, using three recently diverged forms of the mite that partly overlap in home range. We carried out cross‐experiments and measured genetic distances (mitochondrial DNA and nuclear DNA) among parapatric and allopatric populations of the three forms. Our results show that the three forms are reproductively isolated, despite the absence of premating barriers, and that the post‐mating, prezygotic component contributes most to reproductive isolation. As expected, the strength of post‐mating reproductive barriers positively correlated with genetic distance. We did not find a clear pattern of prezygotic barriers evolving faster in parapatry than in allopatry, although one form did show a trend in line with the ecological and behavioural relationships between the forms. Our study advocates the versatility of haplodiploid animals for investigating the evolution of reproductive barriers. 相似文献
14.
Schug MD Baines JF Killon-Atwood A Mohanty S Das A Grath S Smith SG Zargham S McEvey SF Stephan W 《Molecular ecology》2008,17(11):2706-2721
Prezygotic mating isolation has been a major interest of evolutionary biologists during the past several decades because it is likely to represent one of the first stages in the transition from populations to species. Mate discrimination is one of the most commonly measured forms of prezygotic isolation and appears to be relatively common among closely related species. In some cases, it has been used as a measure to distinguish populations from subspecies, races, and sister species, yet the influences of various evolutionary mechanisms that may generate mate discrimination are largely unknown. In this study, we measured the level and pattern of mate discrimination among 18 populations of a cosmopolitan drosophilid species, Drosophila ananassae , from throughout its geographical range and its sister species, Drosophila pallidosa, which has a restricted geographical distribution in the South Pacific Islands. In addition, we measured genetic differentiation between all 18 populations using mitochondrial DNA polymorphism data. Mate discrimination varies considerably throughout the species range, being higher among populations outside the ancestral Indonesian range, and highest in the South Pacific. Our results suggest that colonization and genetic differentiation may have an influence on the evolutionary origin of mate discrimination. Our phylogeographical approach clarifies the ancestral relationships of several populations from the South Pacific that show particularly strong mate discrimination and suggests that they may be in the early stages of speciation. Furthermore, both the genetic and behavioral results cast doubt on the status of D. pallidosa as a good species. 相似文献
15.
The Hengduan Mountains Region (HMR) is a major global biodiversity hotspot. Complex tectonic and historical climatic conditions created opportunities for natural interspecific hybridization. Likewise, anthropogenic disturbance potentially raises the frequency of hybridization. Among species studies to date, the frequency of homoploid hybridization appears in the HMR. Of nine taxa in which natural hybridization has been detected, three groups are involved in homoploid hybrid speciation, and species pairs from the remaining six genera suggest that continuous gene flow occurs in hybrid zones. Reproductive isolation may greatly affect the dynamic and architecture of hybrid zones in the HMR. Asymmetrical hybridization and introgression can primarily be attributed to both prezygotic and postzygotic barriers. The frequent observation of such asymmetry may imply that reproductive barrier contributes to maintaining species boundaries in the alpine region. Ecological isolations with environmental disturbance may promote breeding barriers between parental species and hybrids. Hybrid zones may be an important phase for homoploid hybrid speciation. Hybrid zones potentially provided abundant genetic resources for the diversification of the HMR flora. The ecological and molecular mechanisms of control and mediation for natural hybridization will help biologists to understand the formation of biodiversity in the HMR. More researches from ecological and molecular aspects were required in future studies. 相似文献
16.
生物学家通常认为物种是生命多样性的基本单位。然而, 尽管近一个世纪以来生物学家们不断地讨论物种概念问题, 但到目前为止仍然难以形成共识。大多数生物学家关注如何定义物种主要是因为它有非常重要的实践意义, 所以, 不同学者提出的物种概念在很大程度上是基于实践应用上的可操作性, 并且其视角难免受其专业见地以及对形成新物种的进化过程的认识所影响。物种代表了进化过程的一个阶段, 而且不同的“物种”可能处于物种形成这个进化过程的不同阶段。鉴于“定义”实际上是一种类似协议的约定或界定, 任何定义都是一种带有局限性的概括, 因此我们可能很难建立一个与分类实践中千变万化的情况都能完全匹配协调的物种定义。已经提出来的那些物种概念或定义都有其合理性, 但是也没有一个是完美无缺的。认识到这一点很重要, 否则就可能会因为固执地坚持某一特定的物种概念而在物种界定和进化研究中自觉或不自觉地引入错误甚至制造混乱。 相似文献
17.
什么是物种?新物种是如何形成的?这些问题是生命科学研究的重大问题.物种的形成是在生殖隔离的基础上某些新的生物学性状的形成和保留,是生物进化的最基本过程,其实质是基因结构突变的积累与功能的分化. 地理隔离使群体中的基因不能交流,基因突变也会影响个体间交配趣向,从而造成交配隔离或者交配后杂合体的基因组不亲和、杂交不育甚至杂交不活,使不同的群体逐渐分化为新物种. 随着分子生物学与基因组学的飞速发展,进化生物学家已经发现一些与物种形成有关的基因-物种形成基因(speciation genes),鉴定并了解这些基因的功能,不仅能使我们在分子水平上理解新物种形成的实质和规律、而且对于我们突破种间屏障进行远缘杂交育种也有重要的理论指导意义.本文综述了目前对几个物种形成基因及其功能的研究进展,为该领域的进一步研究提供资料. 相似文献
18.
The genomic and ecological context of hybridization affects the probability that symmetrical incompatibilities drive hybrid speciation 下载免费PDF全文
Aaron A. Comeault 《Ecology and evolution》2018,8(5):2926-2937
Despite examples of homoploid hybrid species, theoretical work describing when, where, and how we expect homoploid hybrid speciation to occur remains relatively rare. Here, I explore the probability of homoploid hybrid speciation due to “symmetrical incompatibilities” under different selective and genetic scenarios. Through simulation, I test how genetic architecture and selection acting on traits that do not themselves generate incompatibilities interact to affect the probability that hybrids evolve symmetrical incompatibilities with their parent species. Unsurprisingly, selection against admixture at “adaptive” loci that are linked to loci that generate incompatibilities tends to reduce the probability of evolving symmetrical incompatibilities. By contrast, selection that favors admixed genotypes at adaptive loci can promote the evolution of symmetrical incompatibilities. The magnitude of these outcomes is affected by the strength of selection, aspects of genetic architecture such as linkage relationships and the linear arrangement of loci along a chromosome, and the amount of hybridization following the formation of a hybrid zone. These results highlight how understanding the nature of selection, aspects of the genetics of traits affecting fitness, and the strength of reproductive isolation between hybridizing taxa can all be used to inform when we expect to observe homoploid hybrid speciation due to symmetrical incompatibilities. 相似文献
19.
ANDREA SWEIGART 《Molecular ecology》2009,18(12):2547-2548
Firmly rooted as we are in the genomic era, it can seem incredible that as recently as 1974, Lewontin declared, 'we know virtually nothing about the genetic changes that occur in species formation'. To the contrary, we now know the genetic architecture of phenotypic differences and reproductive isolation between species for many diverse groups of plants, animals, and fungi. In recent years, detailed genetic analyses have produced a small but growing list of genes that cause reproductive isolation, several of which appear to have diverged by natural selection. Yet, a full accounting of the speciation process requires that we understand the reproductive and ecological properties of natural populations as they begin to diverge genetically, as well as the dynamics of newly evolved barriers to gene flow. One promising approach to this problem is the study of natural hybrid zones, where gene exchange between divergent populations can produce recombinant genotypes in situ . In such individuals, genomic variation might be shaped by introgression at universally adaptive or neutral loci, even as regions associated with local adaptation or reproductive isolation remain divergent. In Nolte et al . (2009) , the authors take advantage of two independent, recently formed hybrid zones between sculpin species to investigate genome-wide patterns of reproductive isolation. Using a recently developed genomic clines method, the authors identify marker loci that are associated with isolation, and those that show evidence for adaptive introgression. Remarkably, Nolte et al . (2009) find little similarity between the two hybrid zones in patterns of introgression, a fact that might reflect genetic variation within species or heterogeneous natural selection. In either case, their study system has the potential to provide insight into the early stages of speciation. 相似文献
20.
Schwarz D Shoemaker KD Botteri NL McPheron BA 《Evolution; international journal of organic evolution》2007,61(2):245-256
Homoploid hybrid speciation--speciation via hybridization without a change in chromosome number--is rarely documented and poorly understood in animals. In particular, the mechanisms by which animal homoploid hybrid species become ecologically and reproductively isolated from their parents are hypothetical and remain largely untested by experiments. For the many host-specific parasites that mate on their host, choosing the right host is the most important ecological and reproductive barrier between these species. One example of a host-specific parasite is the Lonicera fly, a population of tephritid fruit flies that evolved within the last 250 years likely by hybridization between two native Rhagoletis species following a host shift to invasive honeysuckle. We studied the host preference of the Lonicera fly and its putative parent species in laboratory experiments. The Lonicera fly prefers its new host, introduced honeysuckle, over the hosts of both parental species, demonstrating the rapid acquisition of preference for a new host as a means of behavioral isolation from the parent species. The parent taxa discriminate against each other's native hosts, but both accept honeysuckle fruit, leaving the potential for asymmetric gene flow from the parent species. Importantly, this pattern allows us to formulate hypotheses about the initial formation of the Lonicera fly. As mating partners from the two parent taxa are more likely to meet on invasive honeysuckle than on their respective native hosts, independent acceptance of honeysuckle by both parents likely preceded hybridization. We propose that invasive honeysuckle served as a catalyst for the local breakdown of reproductive isolation between the native parent species, a novel consequence of the introduction of an exotic weed. We describe behavioral mechanisms that explain the initial hybridization and subsequent reproductive isolation of the hybrid Lonicera fly. These results provide experimental support for a combination of host shift and hybridization as a model for hybrid speciation in parasitic animals. 相似文献