首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Senescence, the process of physiological deterioration associated with growing old, is a shared characteristic of a wide range of animals. Yet, lifespan varies dramatically among species. To explain this variation, the evolutionary theory of ageing has been proposed more than 50 yr ago. Although the theory has been tested experimentally and through comparative analyses, there remains debate whether its fundamental prediction is empirically supported. Here, we use a comprehensive database on avian life history traits to test the evolutionary theory of ageing at a global scale. We show that pronounced geographical gradients of maximum longevity exist, that they are predicted by measures of predator diversity and only partly depend on correlated life‐history traits. The results are consistent with species‐level analyses and can be replicated across bio‐geographical regions. Our analyses suggest that stochastic predation is an important driver of the evolution of lifespan, at least in birds.  相似文献   

2.
Both basal metabolic rate (BMR) and maximum lifespan potential (MLSP) vary with body size in mammals and birds and it has been suggested that these are mediated through size-related variation in membrane fatty acid composition. Whereas the physical properties of membrane fatty acids affect the activity of membrane proteins and, indirectly, an animal’s BMR, it is the susceptibility of those fatty acids to peroxidation which influence MLSP. Although there is a correlation between body size and MLSP, there is considerable MLSP variation independent of body size. For example, among bird families, Galliformes (fowl) are relatively short-living and Psittaciformes (parrots) are unusually long-living, with some parrot species reaching maximum lifespans of more than 100 years. We determined BMR and tissue phospholipid fatty acid composition in seven tissues from three species of parrots with an average MLSP of 27 years and from two species of quails with an average MLSP of 5.5 years. We also characterised mitochondrial phospholipids in two of these tissues. Neither BMR nor membrane susceptibility to peroxidation corresponded with differences in MLSP among the birds we measured. We did find that (1) all birds had lower n-3 polyunsaturated fatty acid content in mitochondrial membranes compared to those of the corresponding tissue, and that (2) irrespective of reliance on flight for locomotion, both pectoral and leg muscle had an almost identical membrane fatty acid composition in all birds.  相似文献   

3.
There is tremendous diversity in ageing rates and lifespan not only among taxa but within species, and particularly between the sexes. Women often live longer than men, and considerable research on this topic has revealed some of the potential biological, psychological and cultural causes of sex differences in human ageing and lifespan. However, sex differences in lifespan are widespread in nonhuman animals suggesting biology plays a prominent role in variation in ageing and lifespan. Recently, evolutionary biologists have borrowed techniques from biomedicine to identify whether similar mechanisms causing or contributing to variation in ageing and lifespan in humans and laboratory animals also operate in wild animals. Telomeres are repetitive noncoding DNA sequences capping the ends of chromosomes that are important for chromosomal stability but that can shorten during normal cell division and exposure to stress. Telomere shortening is hypothesized to directly contribute to the ageing process as once telomeres shorten to some length, the cells stop dividing and die. Men tend to have shorter telomeres and faster rates of telomere attrition with age than women, suggesting one possible biological cause of sex differences in lifespan. In this issue of Molecular Ecology, Watson et al. ( 2017 ) show that telomere lengths in wild Soay sheep are similar between females and males near the beginning of life but quickly diverge with age because males but not females showed reduced telomere lengths at older ages. The authors further show that some of the observed sex difference in telomere lengths in old age may be due to male investment in horn growth earlier in life, suggesting that sexually dimorphic allocation to traits involved in sexual selection might underlie sex differences in telomere attrition. This study provides a rare example of how biological mechanisms potentially contributing to sex differences in lifespan in humans may also operate in free‐living animals. However, future studies using a longitudinal approach are necessary to confirm these observations and identify the ultimate and proximate causes of any sex differences in telomere lengths. Collaborations between evolutionary biologists and gerontologists are especially needed to identify whether telomere lengths have a causal role in ageing, particularly in natural conditions, and whether this directly contributes to sex differences in lifespan.  相似文献   

4.
Studies have been made on the specific content of plasmalogen and diacylated forms of phosphatidylethanolamine and phosphatidylcholine in subcellular fractions (myelin, nuclei, microsomes, mitochondria, synaptosomes) from the brain of pigeons, as well as in the myelin fraction from the brain of the crow Corvus cornix and the hawk Accipiter gentelis. Fatty acid composition and fatty aldehyde composition of these two main phospholipids of the brain were studied in the subcellular fractions obtained. It was shown that plasmalogen forms of phospholipids are localized in birds mainly in the myelin fraction which exhibits the highest plasmalogen concentration as compared to the same fraction of all the vertebrates investigated. With respect to fatty acid and fatty aldehyde composition, as well as to the degree of their unsaturation, myelin plasmalogens from birds are similar to those from other cold-blooded and warm-blooded animals. This fact indicates that high relative content of plasmalogens together with their high unsaturation account for normal functional activity of myelin membranes in all vertebrates.  相似文献   

5.
Theories of extreme lifespan evolution in vertebrates commonly implicate large size and predator-free environments together with physiological characteristics like low metabolism and high protection against oxidative damages. Here, we show that the ‘human fish’ (olm, Proteus anguinus), a small cave salamander (weighing 15–20 g), has evolved an extreme life-history strategy with a predicted maximum lifespan of over 100 years, an adult average lifespan of 68.5 years, an age at sexual maturity of 15.6 years and lays, on average, 35 eggs every 12.5 years. Surprisingly, neither its basal metabolism nor antioxidant activities explain why this animal sits as an outlier in the amphibian size/longevity relationship. This species thus raises questions regarding ageing processes and constitutes a promising model for discovering mechanisms preventing senescence in vertebrates.  相似文献   

6.
Ageing evolves because the force of selection on traits declines with age but the proximate causes of ageing are incompletely understood. The ‘disposable soma’ theory of ageing (DST) upholds that competitive resource allocation between reproduction and somatic maintenance underpins the evolution of ageing and lifespan. In contrast, the developmental theory of ageing (DTA) suggests that organismal senescence is caused by suboptimal gene expression in adulthood. While the DST predicts the trade-off between reproduction and lifespan, the DTA predicts that age-specific optimization of gene expression can increase lifespan without reproduction costs. Here we investigated the consequences for lifespan, reproduction, egg size and individual fitness of early-life, adulthood and post-reproductive onset of RNAi knockdown of five ‘longevity’ genes involved in key biological processes in Caenorhabditis elegans. Downregulation of these genes in adulthood and/or during post-reproductive period increases lifespan, while we found limited evidence for a link between impaired reproduction and extended lifespan. Our findings demonstrate that suboptimal gene expression in adulthood often contributes to reduced lifespan directly rather than through competitive resource allocation between reproduction and somatic maintenance. Therefore, age-specific optimization of gene expression in evolutionarily conserved signalling pathways that regulate organismal life histories can increase lifespan without fitness costs.  相似文献   

7.
The membrane fatty acid unsaturation hypothesis of aging and longevity is experimentally tested for the first time in mammals. Lifelong treatment of mice with the β1‐blocker atenolol increased the amount of the extracellular‐signal‐regulated kinase signaling protein and successfully decreased one of the two traits appropriately correlating with animal longevity, the membrane fatty acid unsaturation degree of cardiac and skeletal muscle mitochondria, changing their lipid profile toward that present in much more longer‐lived mammals. This was mainly due to decreases in 22:6n‐3 and increases in 18:1n‐9 fatty acids. The atenolol treatment also lowered visceral adiposity (by 24%), decreased mitochondrial protein oxidative, glycoxidative, and lipoxidative damage in both organs, and lowered oxidative damage in heart mitochondrial DNA. Atenolol also improved various immune (chemotaxis and natural killer activities) and behavioral functions (equilibrium, motor coordination, and muscular vigor). It also totally or partially prevented the aging‐related detrimental changes observed in mitochondrial membrane unsaturation, protein oxidative modifications, and immune and behavioral functions, without changing longevity. The controls reached 3.93 years of age, a substantially higher maximum longevity than the best previously described for this strain (3.0 years). Side effects of the drug could have masked a likely lowering of the endogenous aging rate induced by the decrease in membrane fatty acid unsaturation. We conclude that it is atenolol that failed to increase longevity, and likely not the decrease in membrane unsaturation induced by the drug.  相似文献   

8.
While oxidative damage owing to reactive oxygen species (ROS) often increases with advancing age and is associated with many age-related diseases, its causative role in ageing is controversial. In particular, studies that have attempted to modulate ROS-induced damage, either upwards or downwards, using antioxidant or genetic approaches, generally do not show a predictable effect on lifespan. Here, we investigated whether dietary supplementation with either vitamin E (α-tocopherol) or vitamin C (ascorbic acid) affected oxidative damage and lifespan in short-tailed field voles, Microtus agrestis. We predicted that antioxidant supplementation would reduce ROS-induced oxidative damage and increase lifespan relative to unsupplemented controls. Antioxidant supplementation for nine months reduced hepatic lipid peroxidation, but DNA oxidative damage to hepatocytes and lymphocytes was unaffected. Surprisingly, antioxidant supplementation significantly shortened lifespan in voles maintained under both cold (7 ± 2°C) and warm (22 ± 2°C) conditions. These data further question the predictions of free-radical theory of ageing and critically, given our previous research in mice, indicate that similar levels of antioxidants can induce widely different interspecific effects on lifespan.  相似文献   

9.
Metabolism is a defining feature of all living organisms, with the metabolic process resulting in the production of free radicals that can cause permanent damage to DNA and other molecules. Surprisingly, birds, bats and other organisms with high metabolic rates have some of the slowest rates of senescence begging the question whether species with high metabolic rates also have evolved mechanisms to cope with damage induced by metabolism. To test whether species with the highest metabolic rates also lived the longest I determined the relationship between relative longevity (maximum lifespan), after adjusting for annual adult survival rate, body mass and sampling effort, and mass-specific field metabolic rate (FMR) in 35 species of birds. There was a strongly positive relationship between relative longevity and FMR, consistent with the hypothesis. This conclusion was robust to statistical control for effects of potentially confounding variables such as age at first reproduction, latitude and migration distance, and similarity in phenotype among species because of common phylogenetic descent. Therefore, species of birds with high metabolic rates senesce more slowly than species with low metabolic rates.  相似文献   

10.
The membrane pacemaker theory of aging is an extension of the oxidative stress theory of aging. It emphasises variation in the fatty acid composition of membranes as an important influence on lipid peroxidation and consequently on the rate of aging and determination of lifespan. The products of lipid peroxidation are reactive molecules and thus potent damagers of other cellular molecules. It is suggested that the feedback effects of these peroxidation products on the oxidative stress experienced by cells is an important part of the aging process. The large variation in the chemical susceptibility of individual fatty acids to peroxidation coupled with the known differences in membrane composition between species can explain the different lifespans of species, especially the difference between mammals and birds as well as the body-size-related variation in lifespan within mammals and birds. Lifespan extension by calorie-restriction can also be explained by changes in membrane fatty acid composition which result in membranes more resistant to peroxidation. It is suggested that lifespan extension by reduced insulin/IGF signalling may also be mediated by changes in membrane fatty acid composition.  相似文献   

11.
Recent work suggests that sexual selection can influence the evolution of ageing and lifespan by shaping the optimal timing and relative costliness of reproductive effort in the sexes. We used inbred lines of the decorated cricket, Gryllodes sigillatus, to estimate the genetic (co)variance between age‐dependent reproductive effort, lifespan, and ageing within and between the sexes. Sexual selection theory predicts that males should die sooner and age more rapidly than females. However, a reversal of this pattern may be favored if reproductive effort increases with age in males but not in females. We found that male calling effort increased with age, whereas female fecundity decreased, and that males lived longer and aged more slowly than females. These divergent life‐history strategies were underpinned by a positive genetic correlation between early‐life reproductive effort and ageing rate in both sexes, although this relationship was stronger in females. Despite these sex differences in life‐history schedules, age‐dependent reproductive effort, lifespan, and ageing exhibited strong positive intersexual genetic correlations. This should, in theory, constrain the independent evolution of these traits in the sexes and may promote intralocus sexual conflict. Our study highlights the importance of sexual selection to the evolution of sex differences in ageing and lifespan in G. sigillatus.  相似文献   

12.
Maximum lifespan in birds and mammals varies strongly with body mass such that large species tend to live longer than smaller species. However, many species live far longer than expected given their body mass. This may reflect interspecific variation in extrinsic mortality, as life-history theory predicts investment in long-term survival is under positive selection when extrinsic mortality is reduced. Here, we investigate how multiple ecological and mode-of-life traits that should reduce extrinsic mortality (including volancy (flight capability), activity period, foraging environment and fossoriality), simultaneously influence lifespan across endotherms. Using novel phylogenetic comparative analyses and to our knowledge, the most species analysed to date (n = 1368), we show that, over and above the effect of body mass, the most important factor enabling longer lifespan is the ability to fly. Within volant species, lifespan depended upon when (day, night, dusk or dawn), but not where (in the air, in trees or on the ground), species are active. However, the opposite was true for non-volant species, where lifespan correlated positively with both arboreality and fossoriality. Our results highlight that when studying the molecular basis behind cellular processes such as those underlying lifespan, it is important to consider the ecological selection pressures that shaped them over evolutionary time.  相似文献   

13.
The evolutionary explanation for lifespan variation is still based on the antagonistic pleiotropy hypothesis, which has been challenged by several studies. Alternative models assume the existence of genes that favor aging and group benefits at the expense of reductions in individual lifespans. Here we propose a new model without making such assumptions. It considers that limited dispersal can generate, through reduced gene flow, spatial segregation of individual organisms according to lifespan. Individuals from subpopulations with shorter lifespan could thus resist collapse in a growing population better than individuals from subpopulations with longer lifespan, hence reducing lifespan variability within species. As species that disperse less may form more homogeneous subpopulations regarding lifespan, this may lead to a greater capacity to maximize lifespan that generates viable subpopulations, therefore creating negative associations between dispersal capacity and lifespan across species. We tested our model with individual‐based simulations and a comparative study using empirical data of maximum lifespan and natal dispersal distance in 26 species of birds, controlling for the effects of genetic variability, body size, and phylogeny. Simulations resulted in maximum lifespans arising from lowest dispersal probabilities, and comparative analyses resulted in a negative association between lifespan and natal dispersal distance, thus consistent with our model. Our findings therefore suggest that the evolution of lifespan variability is the result of the ecological process of dispersal.  相似文献   

14.
Many reports have demonstrated that birds show a low degree of fatty acid unsaturation and lipid peroxidation compared with mammals of similar body size. The aim of the present study was to examine fatty acid profiles, non-enzymatic lipid peroxidation and vitamin E levels of mitochondria and microsomes obtained from liver, heart and brain of goose (Anser anser). The unsaturated fatty acid content found in mitochondria and microsomes of all tissues examined was approximately 60% with a prevalence of C18:1 n9 + C18:2 n6 = 50%. The 20:4 n6 + C22:6 n3 content was significantly higher in brain organelles (approx. 16%) compared with mitochondria and microsomes of liver and heart (approx. 4%). Whereas these organelles were not affected when subjected to lipid peroxidation, brain mitochondria were highly affected, as indicated by the increase in chemiluminescence and a considerable decrease of arachidonic and docosahexaenoic acids. These changes were not observed during lipid peroxidation of brain microsomes. Vitamin E content was higher in liver and heart than in brain mitochondria (1.77 +/- 0.06 and 1.93 +/- 0.13 vs. 0.91 +/- 0.09 nmol/mg protein). The main conclusion of this paper is that a lower degree of unsaturation of fatty acids in liver and heart mitochondria and a higher vitamin E level than in brain mitochondria protect those tissues against lipid peroxidation.  相似文献   

15.
A low rate of mitochondrial ROS production (mitROSp) and a low degree of fatty acid unsaturation are characteristic traits of long-lived animals and can be obtained in a single species by methionine restriction (MetR) or atenolol (AT) treatments. However, simultaneous application of both treatments has never been performed. In the present investigation it is shown that MetR lowers mitROSp and complex I content. Both the MetR and the AT treatments lower protein oxidative modification and oxidative damage to mtDNA and the fatty acid unsaturation degree in rat heart mitochondria. The decrease in fatty acid unsaturation seems to be due, at least in part, to decreases in desaturase and elongase activities or peroxisomal β-oxidation. Furthermore, the phosphorylation of extracellular signal-regulated kinase (ERK) was stimulated by MetR and AT. The decrease in membrane fatty acid unsaturation and protein oxidation, and the changes in fatty acids and p-ERK showed additive effects of both treatments. In addition, the increase in mitROSp induced by AT observed in the present investigation was totally avoided with the combined MetR + AT treatment. It is concluded that the simultaneous treatment with MetR plus atenolol is more beneficial than either single treatment alone to lower oxidative stress in rat heart mitochondria, analogously to what has been reported in long-lived animal species.  相似文献   

16.
Studies in invertebrate model organisms have led to a wealth of knowledge concerning the ageing process. But which of these discoveries will apply to ageing in humans? Recently, an assessment of the degree of conservation of ageing pathways between two of the leading invertebrate model organisms, Saccharomyces cerevisiae and Caenorhabditis elegans, was completed. The results (i) quantitatively indicated that pathways were conserved between evolutionarily disparate invertebrate species and (ii) emphasized the importance of the TOR kinase pathway in ageing. With recent findings that deletion of the mTOR substrate S6K1 or exposure of mice to the mTOR inhibitor rapamycin result in lifespan extension, mTOR signalling has become a major focus of ageing research. Here, we address downstream targets of mTOR signalling and their possible links to ageing. We also briefly cover other ageing genes identified by comparing worms and yeast, addressing the likelihood that their mammalian counterparts will affect longevity.  相似文献   

17.
Studies in heart and nonsynaptic brain mitochondria from two mammals and three birds showthat complex I generates oxygen radicals in heart and nonsynaptic brain mitochondria in States4 and 3, whereas complex III does it only in heart mitochondria and only in State 4. Theincrease in oxygen consumption during the State 4 to 3 transition is not accompanied by aproportional increase in oxygen radical generation. This will protect mitochondria and tissuesduring bursts of activity. Comparisons between young and old rodents do not show a consistentpattern of variation in mitochondrial oxygen radical production during aging. However, allthe interspecies comparisons performed to date between different mammals, and betweenmammals and birds, agree that animals with high maximum longevities have low rates ofmitochondrial oxygen radical production, irrespective of the value of their basal specificmetabolic rate. The sites and mechanisms allowing this, the recently described low degree ofmembrane fatty acid unsaturation of longevous animals, and their relation to longevity andaging are discussed.  相似文献   

18.
To demonstrate that an uncoupling of respiration and phosphorylation, measured in vitro, reflects an in vivo situation, we badly need in vivo measurements of some uncoupling-linked parameters. The importance of this assertion is illustrated by studies of Barja and co-workers. A lower rate of H(2)O(2) production by mitochondria isolated from long-lived birds compared with short-lived mammals of the same body weight (see publications by Barja's and Sohal's groups) could be explained by (i) an in vivo difference or (ii) an in vitro artefact. In both cases, the reason for lower H(2)O(2) production may well be the same, i.e. a mild uncoupling of respiration in avian mitochondria showing lowered respiratory control. Again, this should be due to an in vivo operation of some bird-specific natural uncouplers (the first case) or stronger in vitro damage to the avian mitochondria during their isolation and incubation (the second). The latter possibility seemed more probable when Barja and co-workers revealed that the level of antioxidants in birds is lower than in mammals. However, further studies by the same group showed that the degree of unsaturation of fatty acids in birds is lower than in mammals, indicating a greater resistance of avian mitochondria to oxidative damage in vitro. Indeed, it was found that lipid peroxidation in isolated avian mitochondria occurs at a much lower rate than in mammals. More importantly, the in vivo level of peroxidation of lipids and proteins appears to be lower in birds than in mammals. Thus, it seems probable that longer lifespan of birds really does correlate with a slower rate of production of H2O2 by mitochondria in vivo.  相似文献   

19.
Bovine brain sphingomyelin was separated into different molecular species using a reverse phase column. PLC δ1 was inhibited by all molecular species of sphingomyelin. The extent of this inhibition was dependent on the hydrophobicity. Based on fatty acid analysis, we conclude that the inhibition of PLC δ1 depends on the chain length and degree of unsaturation of the fatty acid moiety of SM. N-palmitoyl-D-sphingomyelin and N-stearoyl-D-sphingomyelin inhibited PLC δ1 less then N-oleoyl-D-sphingomyelin. In the absence of Ca2+ (1 mM EGTA) all tested molecular species of SM inhibited weakly the enzyme. The sensitivity of PLC δ1 to inhibition by SM increased with increasing Ca2+ concentration. The shape of calcium curve differed for molecular species with saturated and unsaturated fatty acids. Inhibition of PLC δ1 by N-palmitoyl-D-sphingomyclin and N-stearoyl-D-sphingomyclin reached a maximum at 0.2 μM Ca2+, while inhibition by N-oleoyl-D-sphingomyclin reached maximum at 2 μM Ca2+. PLC δ1 is more sensitive to inhibition by SM when it is maximally activated by spermine and calcium and the extent of this inhibition depends on the length and degree of fatty acid unsaturation of the molecular species.  相似文献   

20.
Studies on the relationship between oxidative stress and ageing in different vertebrate species and in calorie-restricted animals are reviewed. Endogenous antioxidants inversely correlate with maximum longevity in animal species and experiments modifying levels of these antioxidants can increase survival and mean life span but not maximum life span (MLSP). The available evidence shows that long-living vertebrates consistently have low rates of mitochondrial free radical generation, as well as a low grade of fatty acid unsaturation on cellular membranes, which are two crucial factors determining their ageing rate. Oxidative damage to mitochondrial DNA is also lower in long-living vertebrates than in short-living vertebrates. Calorie restriction, the best described experimental strategy that consistently increases mean and maximum life span, also decreases mitochondrial reactive oxygen species (ROS) generation and oxidative damage to mitochondrial DNA. Recent data indicate that the decrease in mitochondrial ROS generation is due to protein restriction rather than to calorie restriction, and more specifically to dietary methionine restriction. Greater longevity would be partly achieved by a low rate of endogenous oxidative damage generation, but also by a macromolecular composition highly resistant to oxidative modification, as is the case for lipids and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号