首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Switch‐induced developmental plasticity, such as the diapause decision in insects, is a major form of adaptation to variable environments. As individuals that follow alternative developmental pathways will experience different selective environments the diapause decision may evolve to a cascade switch that induces additional adaptive developmental differences downstream of the diapause decision. Here, we show that individuals following alternative developmental pathways in a Swedish population of the butterfly, Pararge aegeria, display differential optimization of adult body mass as a likely response to predictable differences in thermal conditions during reproduction. In a more northern population where this type of selection is absent no similar difference in adult mass among pathways was found. We conclude that the diapause decision in the southern population appears to act as a cascade switch, coordinating development downstream of the diapause decision, to produce adult phenotypes adapted to the typical thermal conditions of their expected reproductive period.  相似文献   

2.
Deterministic seasonality can explain the evolution of alternative life history phenotypes (i.e., life history polyphenism) expressed in different generations emerging within the same year. However, the influence of stochastic variation on the expression of such life history polyphenisms in seasonal environments is insufficiently understood. Here, we use insects as a model and explore (1) the effects of stochastic variation in seasonality and (2) the life cycle on the degree of life history differentiation among the alternative developmental pathways of direct development and diapause (overwintering), and (3) the evolution of phenology. With numerical simulation, we determine the values of development (growth) time, growth rate, body size, reproductive effort, adult life span, and fecundity in both the overwintering and directly developing generations that maximize geometric mean fitness. The results suggest that natural selection favors the expression of alternative life histories in the alternative developmental pathways even when there is stochastic variation in seasonality, but that trait differentiation is affected by the developmental stage that overwinters. Increasing environmental unpredictability induced a switch to a bet‐hedging type of life history strategy, which is consistent with general life history theory. Bet‐hedging appeared in our study system as reduced expression of the direct development phenotype, with associated changes in life history phenotypes, because the fitness value of direct development is highly variable in uncertain environments. Our main result is that seasonality itself is a key factor promoting the evolution of seasonally polyphenic life histories but that environmental stochasticity may modulate the expression of life history phenotypes.  相似文献   

3.
The relative roles of genetic differentiation and developmental plasticity in generating latitudinal gradients in life histories remain insufficiently understood. In particular, this applies to determination of voltinism (annual number of generations) in short‐lived ectotherms, and the associated trait values. We studied different components of variation in development of Chiasmia clathrata (Lepidoptera: Geometridae) larvae that originated from populations expressing univoltine, partially bivoltine or bivoltine phenology along a latitudinal gradient of season length. Indicative of population‐level genetic differentiation, larval period became longer while growth rate decreased with increasing season length within a particular phenology, but saw‐tooth clines emerged across the phenologies. Indicative of phenotypic plasticity, individuals that developed directly into reproductive adults had shorter development times and higher growth rates than those entering diapause. The most marked differences between the alternative developmental pathways were found in the bivoltine region suggesting that the adaptive correlates of the direct development evolve if exposed to selection. Pupal mass followed a complex cline without clear reference to the shift in voltinism or developmental pathway probably due to varying interplay between the responses in development time and growth rate. The results highlight the multidimensionality of evolutionary trajectories of life‐history traits, which either facilitate or constrain the evolution of integrated traits in alternative phenotypes.  相似文献   

4.
Many organisms express discrete alternative phenotypes (polyphenisms) in relation to predictable environmental variation. However, the evolution of alternative life‐history phenotypes remains poorly understood. Here, we analyze the evolution of alternative life histories in seasonal environments by using temperate insects as a model system. Temperate insects express alternative developmental pathways of diapause and direct development, the induction of a certain pathway affecting fitness through its life‐history correlates. We develop a methodologically novel and holistic simulation model and optimize development time, growth rate, body size, reproductive effort, and adult life span simultaneously in both developmental pathways. The model predicts that direct development should be associated with shorter development time (duration of growth) and adult life span, higher growth rate and reproductive effort, smaller body size as well as lower fecundity compared to the diapause pathway, because the two generations divide the available time unequally. These predictions are consistent with many empirical data. Our analysis shows that seasonality alone can explain the evolution of alternative life histories.  相似文献   

5.
In temperate insects, winters are typically endured by entering diapause, which comprises a deep resting stage. Correct timing of diapause termination is vital for synchronization of emergence with conspecifics and for mobilizing resources when conditions for growth and reproduction become favourable. Although critical to survival, the intrinsic and extrinsic drivers of diapause termination timing are poorly understood. In the present study, we investigate diapause development under a range of durations (10–24 weeks) spent at different temperatures (?2 to 10 °C) in the pupal diapausing butterfly Pieris napi Linnaeus (Lepidoptera:Pieridae). We determine: (i) the maximum cold temperature for diapause development; (ii) if pupae in diapause count cold days or cold sums; and (iii) whether diapause termination is distinct or gradual. The results indicate large and idiosyncratic effects of high and low nonlethal temperatures on diapause development in P. napi. Although all temperatures tested lead to diapause termination, a thermal optimum between 2 and 4 °C is observed. Lower temperatures lead to decreased eclosion propensity, whereas higher temperatures slow down development and increase emergence desynchronization. These data suggest that, rather than a simple cold‐summing process with a distinct diapause termination point, there are trade‐offs between time and temperature at the low and high end of the thermal range, resulting in a nonlinear thermal landscape showing a ridge of increasing eclosion propensity at moderate temperatures. The present study suggests that the effects of temperature on diapause development should be included in projections on post‐winter phenology models of insects, including pest species.  相似文献   

6.
In temperate environments, insects appearing in several generations in the growth season typically have to decide during the larval period whether to develop into adulthood, or to postpone adult emergence until next season by entering a species-specific diapause stage. This decision is typically guided by environmental cues experienced during development. An early decision makes it possible to adjust growth rate, which would allow the growing larva to respond to time stress involved in direct development, whereas a last-minute decision would instead allow the larva to use up-to-date information about which developmental pathway is the most favourable under the current circumstances. We study the timing of the larval pathway decision-making between entering pupal winter diapause and direct development in three distantly related butterflies (Pieris napi, Araschnia levana and Pararge aegeria). We pinpoint the timing of the larval diapause decision by transferring larvae from first to last instars from long daylength (inducing direct development) to short daylength conditions (inducing diapause), and vice versa. Results show that the pathway decision is typically made in the late instars in all three species, and that the ability to switch developmental pathway late in juvenile life is conditional; larvae more freely switched from diapause to direct development than in the opposite direction. We contend that this asymmetry is influenced by the additional physiological preparations needed to survive the long and cold winter period, and that the reluctance to make a late decision to enter diapause has the potential to be a general trait among temperate insects.  相似文献   

7.
Latitudinal clines in thermal reaction norms of development are a common phenomenon in temperate insects. Populations from higher latitudes often develop faster throughout the range of relevant temperatures (i.e countergradient variation) because they must be able to complete their life cycle within a shorter seasonal time window compared to populations at lower latitudes. In the present study, we experimentally demonstrate that two species of butterflies Anthocharis cardamines (L.) and Pieris napi (L.) instead show a cogradient variation in thermal reaction norms of post‐winter pupal development so that lower latitude populations develop faster than higher latitude populations. The two species share host plants but differ in the degree of phenological specialization, as well as in the patterns of voltinism. We suggest that the pattern in A. cardamines, a univoltine phenological specialist feeding exclusively on flowers and seedpods, is the result of selection for matching to the phenological pattern of its local host plants. The other species, P. napi, is a phenological generalist feeding on the leaves of the hosts and it shows a latitudinal cline in voltinism. Because the latitudinal pattern in P. napi was an effect of slow development in a fraction of the pupae from the most northern population, we hypothesize that this population may include both bivoltine and univoltine genotypes. Consequently, although the two species both showed cogradient patterns in thermal reaction norms, it appears likely that this was for different reasons. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 981–991.  相似文献   

8.
In temperate climates, the recurring seasonal exigencies of winter represent a fundamental physiological challenge for a wide range of organisms. In response, many temperate insects enter diapause, an alternative developmental program, including developmental arrest, that allows organisms to synchronize their life cycle with seasonal environmental variation. Geographic variation in diapause phenology contributing to local climatic adaptation is well documented. However, few studies have examined how the rapid evolution of a suite of traits expressed across the diapause program may contribute to climatic adaptation on a contemporary timescale. Here, we investigate the evolution of the diapause program over the past 35 years by leveraging a “natural experiment” presented by the recent invasion of the Asian tiger mosquito, Aedes albopictus, across the eastern United States. We sampled populations from two distinct climatic regions separated by 6° of latitude (∼700 km). Using common-garden experiments, we identified regional genetic divergence in diapause-associated cold tolerance, diapause duration, and postdiapause starvation tolerance. We also found regional divergence in nondiapause thermal performance. In contrast, we observed minimal regional divergence in nondiapause larval growth traits and at neutral molecular marker loci. Our results demonstrate rapid evolution of the diapause program and imply strong selection caused by differences in winter conditions.  相似文献   

9.
Many temperate insects survive harsh environmental conditions, such as winter, by entering a state of developmental arrest. This diapause state is predominantly induced by photoperiod. The photoperiod varies with latitude and has led to local adaptation in the photoperiodic induction of diapause in many insects. To understand the rapid evolution of the photoperiodic threshold, it is important to investigate and understand the underlying genetic mechanisms. In the present study, the genetic basis of photoperiodic diapause induction is investigated in the green‐veined white butterfly Pieris napi (Lepidoptera, Pieridae) by assaying diapause induction in a range of conditions for a Swedish and Spanish population. Furthermore, the inheritance of diapause induction is assessed in reciprocal F1 hybrids and backcrosses between the two populations. The southern population shows a clear photoperiodic threshold determining diapause or direct development, whereas the northern populations show a high incidence of diapause, regardless of photoperiod. The hybrid crosses reveal that the inheritance of diapause induction is strongly sex‐linked, and that diapause incidence in the genetic crosses is highly dependent on photoperiod. This emphasizes the importance of assaying a range of conditions in diapause inheritance studies. The results indicate a strongly heritable diapause induction with a major component on the Z‐chromosome, as well as a minor effect of the autosomal background.  相似文献   

10.
One of the leitmotifs of the ecophysiological research on ectotherms is the variation and evolution of thermal reaction norms for biological rates. This long‐standing issue is crucial both for our understanding of life‐history diversification and for predicting the phenology of economically important species. A number of properties of the organism's thermal phenotype have been identified as potential constraints on the evolution of the rate–temperature relationship. This comparative study addresses several such constraints by testing whether the actual interspecific variation of thermal reaction norms across nearly hundred leaf beetle species agrees with the expected patterns. The results show that developmental rate and its temperature‐dependent parameters are similar in closely related species and that the variation pattern depends on the taxonomic scale, the thermal reaction norms being mostly parallel for the representatives of distant subclades but intersecting more often farther down the phylogenetic tree. The parallel shift disagrees with the putative ubiquity of a positive slope–threshold relationship, whereby thermal reaction norms should normally intersect, and even more contradicts with the common‐intersection hypothesis. The ability to develop in cooler conditions is not traded off at higher temperatures, which is an exception to the “warmer is better” principle. A comparison of high‐ and low‐quality data indicates that some of these discrepancies with earlier findings may stem from a likely presence of noise in previous analyses, which may have affected the variation patterns observed. Overall, the failure to support the universality of the predicted patterns suggests that the evolution of thermal reaction norms in leaf beetles has largely overcome the hypothesized constraints.  相似文献   

11.
  • 1 Coastal Californian Pieris napi are facultatively bivoltine, with two seasonal phenotypes, whereas inland populations from the Inner Coast Ranges and Sierra Nevada are univoltine and monophenic.
  • 2 When reared under continuous light at 25d̀C both coastal and inland stocks produce about 50% diapause pupae, which give rise to vernal-phenotype adults. Non-diapause pupae of all stocks give rise to summer-phenotype adults, even though this phenotype does not exist in the wild in univoltine populations.
  • 3 Univoltinism, which implies developmental suppression of the summer phenotype, is interpreted as a derivative from multivoltinism and an adaptation to host plant phenology.
  相似文献   

12.
In monandrous mating systems with discrete nonoverlapping generations males should maximize the expected number of matings by starting to emerge before females. This is known as protandry. Moreover, Evolutionarily Stable Strategies (ESS) models show that the male emergence curve should be abruptly truncated before female emergence has ceased. In temperate areas where many insects have partial second generations, we accordingly predict that males should enter diapause development at an earlier date than should females, as a result of late-emerging males being penalized in terms of fewer mating opportunities. The decision to diapause or to develop directly is usually mediated by response to environmental stimuli of which day length is the most important. Hence we predict that the mechanism by which males enter diapause at an earlier date than females will be that of the male reaction norm for diapause development being shifted towards longer day lengths when compared to that of females. As a result of the greater tendency of males to enter diapause development, partial second generations that develop directly should be female biased. As a corollary, first generations should be male biased because some males of the first generation are from the previous year. The prediction that males should enter diapause development earlier in the season, i.e., at longer day lengths, as compared to females was corroborated by rearing Pieris napi under a variety of critical day length regimes producing mixed broods of directly developing and diapausing individuals, and by outdoor rearings of cohorts of larvae of P. napi and P. rapae initiated throughout the season. The prediction that partial second generations should be female biased was corroborated by laboratory rearings at constant temperature of P. napi (Pieridae), Polygonia c-album (Nymphalidae), and Pararge aegeria (Satyridae) under critical day length conditions, producing female-biased sex ratio under direct, and male-biased sex ratio under diapause development.  相似文献   

13.
The seasonal life cycle of the cabbage butterfly, Pieris melete is complicated because there are three options for pupal development: summer diapause, winter diapause, and nondiapause. In the present study, we tested the influence of temperature, day length, and seasonality on the expression of alternative developmental pathways and compared the differences in life history traits between diapausing and directly developing individuals under laboratory and field conditions. The expression of developmental pathway strongly depended on temperature, day length, and seasonality. Low temperatures induced almost all individuals to enter diapause regardless of day length; relatively high temperatures combined with intermediate and longer day lengths resulted in most individuals developing without diapause in the laboratory. The field data revealed that the degree of phenotypic plasticity in relation to developmental pathway was much higher in autumn than in spring. Directly developing individuals showed shorter development times and higher growth rates than did diapausing individuals. The pupal and adult weights for both diapausing and directly developing individuals gradually decreased as rearing temperature increased, with the diapausing individuals being slightly heavier than the directly developing individuals at each temperature. Female body weight was slightly lower than male body weight. The proportional weight losses from pupa to adult were almost the same in diapausing individuals and in directly developing individuals, suggesting that diapause did not affect weight loss at metamorphosis. Our results highlight the importance of the expression of alternative developmental pathways, which not only synchronizes this butterfly's development and reproduction with the growth seasons of the host plants but also exhibits the bet‐hedging tactic against unpredictable risks due to a dynamic environment.  相似文献   

14.
The beet webworm, Loxostege sticticalis L. (Lepidoptera: Crambidae), unlike many temperate insects and despite its wide distribution range, has a geographically stable value of the critical photoperiod for diapause induction. It has thus been hypothesized that the species could adjust its life cycle to different climates in an alternative way, which should be reflected in geographical variation and/or environmental plasticity of some other ecophysiological trait. Three remote populations of the beet webworm were studied. The insects were reared from egg to adult at several combinations of temperature and photoperiod in order to measure development times of all the immature stages and pre‐pupal body weight, and to characterize the sensitivity of these life‐history traits to the two ecological factors. The thermal reaction norms for immature development appeared to be significantly different in the three populations. There was also a significant effect of photoperiod on development time as well as on the thermal sensitivity and lower temperature threshold for larval development. Pre‐pupae from the northernmost population were heavier and their body mass was more strongly affected by photoperiod than in the other two, but attainment of a greater weight under short‐day conditions, especially combined with higher temperatures, was common for all the three populations. Nevertheless, all the discovered geographical and environmentally induced differences in life‐history traits were very small and their adaptive significance remains problematic.  相似文献   

15.
Life histories show genetic population-level variation due to spatial variation in selection pressures. Phenotypic plasticity in life histories is also common, facilitating fine-tuning of the phenotype in relation to the prevailing selection regime. In multivoltine (≥ 2 generations per year) insects, individuals following alternative developmental pathways (diapause/direct development) experience different selection regimes. We studied the genetic and phenotypic components of juvenile development in Cabera exanthemata (Lepidoptera: Geometridae) in a factorial split-brood experiment. F(2) offspring of individuals originating from populations in northern and central Finland were divided among manipulations defined by temperature (14°C/20°C) and day length (24 h/15 h). Short day length invariably induced diapause, whereas continuous light almost invariably induced direct development in both regions, although northern populations are strictly univoltine in the wild. Individuals from northern Finland had higher growth rates, shorter development times and higher pupal masses than individuals from central Finland across the conditions, indicating genetic differences between regions. Individuals that developed directly into adults tended to have higher growth rates, shorter development times and higher pupal masses than those entering diapause, indicating phenotypic plasticity. Temperature-induced plasticity was substantial; growth rate was much higher, development time much shorter and pupal mass higher at 20°C than at 14°C. The degree of plasticity in relation to developmental pathway was pronounced at 20°C in growth rate and development time and at 14°C in pupal mass, emphasizing multidimensionality of reaction norms. The observed genetic variation and developmental plasticity seem adaptive in relation to time-stress due to seasonality.  相似文献   

16.
The 1st feature revealed typical for diapause phenomena inTrichogramma species is the interaction of environmental conditions in both parental and filial generations in induction of diapause in the latter. Lowered temperature during larval development is the ultimate factor evoking diapause in pronymphs but the norm of this thermal reaction is not fixed but varies depending on photoperiod and temperature in the previous generation due to maternal influence. Short day and in some cases high temperature in parental generation enhance tendency to diapause in the progeny. Unlike maternal influence the development to filial generation itself is not (or almost is not) governed by its own photoperiodic reaction. The 2nd typical feature revealed is the occurrence of endogenous process running in the sequence of generations and causing changes in the diapause tendency and underlying reaction norms even under constant rearing conditions.   相似文献   

17.
The effects of temperature on post‐diapause development, female lifespan, and reproduction of Cydia pomonella L. (Lepidoptera: Tortricidae) were studied under controlled conditions to determine the respective parameters for a temperature‐driven phenology model. Lower thermal thresholds of 10.0 and 9.7 °C and thermal constants of 417.2 and 427.7 degree days were established for post‐diapause development of females and males, respectively. Female lifespan was found to be 202.6 degree days on average, with a lower thermal threshold of 11.2 °C. Total fecundity was highest at 27.7 °C with an average of 241.9 eggs per female. Literature data were used to quantify the lower thermal thresholds and the thermal constants for eggs, larvae, and pupae. For validation, the model was run with weather data from 13 consecutive years and the output was compared with pheromone trap catches from 39 to 63 different orchards, depending on the year. The model proved to be a reliable and useful tool to forecast codling moth phenology under Swiss conditions not only for a whole growing season but also during several years with very variable weather conditions. Hence, it can be used to support apple growers in pest management decisions on the one hand and to predict changes in codling moth phenology with respect to climate change on the other.  相似文献   

18.
Larvae of wild type (WT) strain of Chymomyza costata Zetterstedt (Diptera: Drosophilidae) enter diapause (stop developing) in response to short‐day signal at a constant 18 °C, whereas larvae of a non‐photoperiodic‐diapause (NPD) strain do not respond to photoperiodic signalling and continue in larval development irrespective of daylength. The present study shows that WT larvae also respond reliably to thermoperiodic signalling (daily cycles of temperature) under constant darkness, whereas the NPD larvae do not, suggesting that the pathways transducing the environmental token stimuli (photoperiod and thermoperiod) onto the diapause developmental programme might merge functionally in the central biological clock system known to be mutated in NPD strain. Temperature and larval population density modify the output of token stimuli signalling. High temperatures (>24 °C) tend to avert, whereas low temperatures (<18 °C), especially in combination with constant darkness, stimulate diapause induction in WT strain. Overcrowding (>200 larvae per 5 g of larval diet) lengthens the duration of larval development and induces a ‘diapause‐like’ developmental arrest of relatively weak intensity in up to 60% of larvae of both strains. At high temperatures (>30 °C), all WT larvae continue direct development but subsequently die during the pupal stage. Low temperature exposure (<12 °C) causes quiescence in the majority of the larvae of both strains. Starvation blocks development and causes mortality when applied in larvae younger than day 3 of the third instar. Older larvae survive starvation and their photoperiodically‐induced developmental pre‐programming is not affected. Collectively, the results show that diapause induction in C. costata is a result of various interacting effects of multiple environmental factors.  相似文献   

19.
Development times of preimaginal stages and immature adult body mass of the dock leaf beetle Gastrophysa viridula from Bryansk (53°N, 34°E) were determined at six constant temperatures ranging from 16 to 26°C and at two photoperiods, 12L: 12D or 22L: 2D. The lower developmental threshold (LDT) and sum of degreedays (SDD) were calculated for eggs, larvae, and pupae; the values for the total preimaginal development were 7.9°C and 274.8 °C×d, respectively. The thermal reaction norms for preimaginal development were not affected by photoperiod, although the adult body mass was on average greater under short-day conditions. Our results confirm the previously published data on G. viridula concerning diapause induction by shorter daylengths, greater body mass under lower temperatures, and narrowing of the thermal optimum range during preimaginal development. The thermal reaction norms for larval development were shown to be the same in individuals that died during the pupal stage, and in those that successfully emerged as adults. Our results are more precise than the previous data on this species due to a larger sample size, careful control of rearing conditions, and the use of an alternative method for calculating LDT and SDD. In particular, a more accurate estimation of LDTs allowed us to demonstrate that rate isomorphy was violated in this species, contrary to what had been stated by Honěk and co-authors (2003).  相似文献   

20.
During direct development the butterfly Lycaena tityrus was previously found to display sex-related reaction norms in response to temperature. Based on selection for protandry in males and fecundity selection for larger females, males favoured early emergence over large size, leading to a dramatic weight loss at higher temperatures, whereas females maintained similar weights throughout. Because males were able to avoid a weight reduction relative to females in spite of their shorter development at lower temperatures, sexual size dimorphism existed at higher temperatures only. In the present paper we compare sexual differences in life-history traits in L. tityrus between direct and diapause development at 25 °C. We demonstrate that, regardless of developmental pathway, protandry persisted and relative sexual size dimorphism, with females being larger, remained unchanged. Although diapausing individuals were less time-constrained, allowing them to grow to considerably higher final weights in both sexes, males were not able to reduce their weight loss relative to females. This is explained by the pressure to gain a developmental advantage solely during post-diapause development, whereas direct developing males may spread the burden over the whole larval period. Our results highlight the importance of considering sexual differences in selective pressures, which may influence central life-history traits in manifold ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号