首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In gynodioecious plants the selective processes that determine the relative number of female and hermaphroditic individuals are often frequency dependent. Frequency-dependent fitness can occur in the two sexes through a variety of mechanisms, especially given pollen limitation and inbreeding depression when hermaphrodites are rare. Frequency dependence in several components of the fitness of female and hermaphroditic Silene vulgaris was tested in experiments in which the relative numbers of the two sexes was varied among 12 artificial populations. In females, the proportion of flowers that set fruit covaried positively among populations with the frequency of hermaphrodites in two separate experiments, whereas the number of flowers/plant covaried negatively in one case. In hermaphrodites, the number of seeds/fruit covaried positively with the frequency of hermaphrodites, whereas the fitness of hermaphrodites estimated through pollen transfer covaried negatively. The results are discussed as they relate to the selective maintenance of gynodioecy in S. vulgaris and in light of a recent model of the effect of population structure on selection in gynodioecious systems.  相似文献   

2.
The spatial distribution of females and hermaphrodites within gynodioecious populations is expected to exert considerable selective pressure on gender fitness through pollen limitation of seed set. If pollen flow is predominantly local, seed set in individual plants may be sensitive to the proximity of pollen donors; pollen limitation of seed set may occur if hermaphrodites are locally rare. Under such circumstances, female fitness will be negatively frequency dependent and hermaphrodite fitness will be positively frequency dependent. Given local seed dispersal, a nonrandom clumped distribution of the genders is expected in gynodioecious populations due to the heritability of gender in gynodioecious species. If gender fitness is frequency dependent, such structure should favor hermaphrodites and select against females. To test this hypothesis, I quantified the distribution of the genders in terms of nearest neighbors and neighborhood sex ratio in two populations of gynodioecious Sidalcea malviflora malviflora. I then measured the effect of neighborhood sex ratio on open-pollinated seed set and pollen limitation in both manipulated and unmanipulated neighborhoods. Results indicate that the genders have a patchy distribution and that both genders are pollen limited and show an increase in seed set with an increase in neighborhood hermaphrodite frequency. The observed population sex structure favors hermaphrodites and disadvantages females. These results highlight the importance that population-level traits can have in determining individual fitness and the evolution of sex ratios in gynodioecious species.  相似文献   

3.
Differences between plant sex morphs in pollen or resource availability may affect their relative fitness and thereby the sex ratio of dimorphic species. In gynodioecious species, in which hermaphroditic and female plants coexist, a variety of factors (e.g., hermaphrodite self-fertility or rarity or pollinator discrimination against females) might be expected to lead to stronger pollen limitation in females than in hermaphrodites. On the other hand, females have been found to be superior compared to hermaphrodites in low-nutrient conditions. The effects of supplemental hand-pollination and resource addition on the reproductive output of the self-fertile gynodioecious perennial Geranium sylvaticum (Geraniaceae) were tested for several populations that differ in their female frequency (4.4-23.0%). Both pollen and resource availability limited fruit set and the number of seeds produced per plant; however, seed set (i.e., the number of seeds produced per fruit) was limited only by resources. Because pollen limitation in females did not correlate with female frequency, our results suggest that pollen limitation in females does not depend on the frequency of the pollen-producing hermaphrodites. Furthermore, because pollen and resource availability limited reproductive output of both sex morphs, these factors may not contribute significantly to maintenance and evolution of gynodioecy in G. sylvaticum.  相似文献   

4.
In sexually polymorphic plants, the spatial distribution of sexes is usually not random. Local variation in phenotype frequencies is expected to affect individual fitness of the different phenotypes. For gynodioecious species, with co-occurrence of hermaphrodites and females, if sexual phenotypes are structured in space and pollen flow is spatially restricted, local pollen availability should vary among patches. Female fitness may thus be low when hermaphrodites are locally rare. To test this hypothesis, we analysed how the reproductive output of females varied among patches within two natural study sites of the gynodioecious wind-pollinated Beta vulgaris ssp. maritima. Plants growing in female-biased areas and experiencing pollen limitation were found to have low fruit and seed sets but did not reallocate resources towards better offspring. Our results show that fine-scale processes influence individual fitness and the evolution of sex ratio in sexually polymorphic plants.  相似文献   

5.
Understanding the relative magnitudes of inbreeding and outbreeding depression in rare plant populations is increasingly important for effective management strategies. There may be positive and negative effects of crossing individuals in fragmented populations. Conservation strategies may include introducing new genetic material into rare plant populations, which may be beneficial or detrimental based on whether hybrid offspring are of increased or decreased quality. Thus, it is important to determine the effects of pollen source on offspring fitness in rare plants. We established pollen crosses (i.e. geitonogamous‐self, autonomous‐self, intrasite‐outcross, intersite‐outcross and open‐pollinated controls) to determine the effects of pollen source on fitness (seeds/fruit and seed mass) and early offspring traits (probability of germination, number of leaves, leaf area and seedling height) in the rare plant Polemonium vanbruntiae. Open‐pollinated, intrasite‐outcross and geitonogamous‐self treatments did not differ in fitness. However, plants receiving autonomous‐self pollen had the lowest fitness and the lowest probability of seed germination. Intersite‐outcross plants contained fewer seeds/fruit, but seeds germinated at higher frequencies and seedlings were more vigorous. We also detected heterosis at the seed germination stage. These data may imply that natural populations of P. vanbruntiae exhibit low genetic variation and little gene flow. Evidence suggests that deleterious alleles were not responsible for reduced germination; rather environmental factors, dichogamy, herkogamy and/or lack of competition among pollen grains may have caused low germinability in selfed offspring. Although self‐pollination may provide some reproductive assurance in P. vanbruntiae, the result is a reduction in germination and size‐related early traits for selfed offspring.  相似文献   

6.
Fine scale spatial structure (FSSS) of cytoplasmic genes in plants is thought to be generated via founder events and can be amplified when seeds germinate close to their mother. In gynodioecious species these processes are expected to generate FSSS in sex ratio because maternally inherited cytoplasmic male sterility genes partially influence sex expression. Here we document a striking example of FSSS in both mitochondrial genetic markers and sex in roadside populations of Silene vulgaris. We show that in one population FSSS of sexes influences relative fruit production of females compared to hermaphrodites. Furthermore, FSSS in sex ratio is expected to persist into future generations because offspring sex ratios from females are female-biased whereas offspring sex ratios from hermaphrodites are hermaphrodite-biased. Earlier studies indicated that pollen limitation is the most likely mechanism underlying negative frequency dependent fitness of females. Our results support the theoretical predictions that FSSS in sex ratio can reduce female fitness by decreasing the frequency at which females experience hermaphrodites. We argue that the influence of FSSS on female fitness is complementary to the influence of larger scale population structure on female fitness, and that population structure at both scales will act to decrease female frequencies in gynodioecious species. Better comprehension of the spatial structure of genders and genes controlling sex expression at a local scale is required for future progress toward understanding sex ratio evolution in gynodioecious plants.  相似文献   

7.
Subdioecy is thought to occupy a transitional position in the gynodioecy–dioecy pathway, explaining one of the evolutionary routes from hermaphroditism to dioecy. Quantifying any female reproductive advantage of females versus hermaphrodites is fundamental to examining the spectrum between subdioecy and dioecy; however, this is challenging, as multiple interacting factors, such as pollen limitation and resource availability, affect plant reproduction. We compared the female reproductive success of females and hermaphrodites via a field experiment in which we hand‐pollinated individuals of the subdioecious shrub Eurya japonica of similar size growing under similar light conditions. Effects of pollen limitation and seed quality were also evaluated through comparing the results of hand‐ and natural‐pollination treatments and performing additional laboratory and greenhouse experiments. Overall, females had higher fruit set and produced heavier fruit and more seeds than hermaphrodites, and these results were more pronounced for hand‐pollinated than for natural‐pollinated plants of both sexes. We also found that seeds naturally produced by females had a higher mean germination rate. These results indicate that females had a pronounced advantage in female reproductive success under conditions of no pollen limitation. The sexual difference in the degree of pollen limitation suggests a pollinator‐mediated interaction, whereas the higher female reproductive success of females even under natural conditions implies that Ejaponica is a good model species for elucidating the later stages of the gynodioecy–dioecy pathway.  相似文献   

8.
The selective maintenance of gynodioecy depends on the relative fitness of the male-sterile (female) and hermaphroditic morphs. Females may compensate for their loss of male fitness by reallocating resources from male function (pollen production and pollinator attraction) to female function (seeds and fruits), thus increasing seed production. Females may also benefit from their inability to self-fertilize if selfing and inbreeding depression reduce seed quality in hermaphrodites. We investigated how differences in floral resource allocation (flower size) between female and hermaphroditic plants affect two measures of female reproductive success, pollinator visitation and pollen receipt, in gynodioecious populations of Geranium richardsonii in Colorado. Using emasculation treatments in natural populations, we further examined whether selfing by autogamy and geitonogamy comprises a significant proportion of pollen receipt by hermaphrodites. Flowers of female plants are significantly smaller than those of hermaphrodites. The reduction in allocation to pollinator-attracting structures (petals) is correlated with a significant reduction in pollinator visitation to female flowers in artificial arrays. The reduction in attractiveness is further manifested in significantly less pollen being deposited on the stigmas of female flowers in natural populations. Autogamy is rare in these protandrous flowers, and geitonogamy accounts for most of the difference in pollen receipt between hermaphrodites and females. Female success at receiving pollen was negatively frequency dependent on the relative frequency of females in populations. Thus, two of the prerequisites for the maintenance of females in gynodioecious populations, differences in resource allocation between floral morphs and high selfing rates in hermaphrodites, occur in G. richardsonii.  相似文献   

9.
In habitats where resource availability declines during the growing season, selection may favor early‐flowering individuals. Under such ephemerally favorable conditions, late‐blooming species (and individuals) may be particularly vulnerable to resource limitation of seed production. In California, a region prone to seasonal drought, members of the annual genus Clarkia are among the last to flower in the spring. We compared pollen limitation (PL) of seed set and outcrossing rates between early‐ and late‐flowering individuals in two mixed‐mating Clarkia taxa to detect whether flowering time is associated with changes in seed set due to resource depletion, PL, or increased selfing. In 2008–2010, we hand‐pollinated one flower on a total of 1855 individual plants either Early (near the onset of flowering) or Late (near the end of flowering) in the flowering season and compared seed set to adjacent, open‐pollinated flowers on the same stem. To assess the contribution of pollen quality to reproduction, we first (2008) used allozymes to estimate outcrossing rates of seeds produced by Early and Late open‐pollinated flowers. Second (2009), we conducted an anther‐removal experiment to estimate self‐pollen deposition. Seed set in Clarkia unguiculata was not pollen‐limited. Clarkia xantiana ssp. xantiana was pollen‐limited in 2008 and 2010, but not 2009. PL did not differ between Early and Late treatments. In both taxa, seed set of Early flowers was greater than Late flowers, but not due to PL in the latter. Reproduction was generally pollinator‐dependent. Most pollen deposition was xenogamous, and outcrossing rates were >0.7 – and similar between Early and Late periods. These results suggest that pollen receipt and pollen quality remain seasonally consistent. By contrast, the resources necessary to provision seeds decline, reducing the fitness benefits associated with resource allocation to ovules.  相似文献   

10.
In many gynodioecious species, sex determination involves both cytoplasmic male‐sterility (CMS) genes and nuclear genes that restore male function. Differences in fitness among genotypes affect the dynamics of those genes, and thus that of gynodioecy. We used a molecular marker to discriminate between hermaphrodites with and without a CMS gene in gynodioecious Raphanus sativus. We compared fitness through female function among the three genotypes: females, hermaphrodites with the CMS gene and those without it. Although there was no significant difference among the genotypes in seed size, hermaphrodites without the CMS gene produced significantly more seeds, and seeds with a higher germination rate than the other genotypes, suggesting no fitness advantage for females and no benefit to bearing the CMS gene. Despite the lack of fitness advantage for females in the parameter values we estimated, a theoretical model of gynodioecy shows it can be maintained if restorer genes impose a cost paid in pollen production. In addition, we found that females invest more resources into female reproduction than hermaphrodites when they become larger. If environmental conditions enable females to grow larger this would facilitate the dynamics of CMS genes.  相似文献   

11.
In flowering plants, the evolution of females is widely hypothesized to be the first step in the evolutionary pathway to separate male and female sexes, or dioecy. Natural enemies have the potential to drive this evolution if they preferentially attack hermaphrodites over females. We studied sex‐based differences in exposure to anther‐smut (Microbotryum), a sterilizing pollinator‐transmitted disease, in Dianthus pavonius, a gynodioecious perennial herb. We found that within a heavily diseased population, females consistently had lower levels of Microbotryum spore deposition relative to hermaphrodites and that this difference was driven by rapid floral closing in females following successful pollination. We further show that this protective closing behavior is frequency dependent; females close faster when they are rare. These results indicate that anther‐smut disease is an important source of selection for females, especially since we found in a common garden experiment no evidence that females have any inherent fecundity advantages over hermaphrodites. Finally, we show that among populations, those where anther‐smut is present have a significantly higher frequency of females than those where the disease is absent. Taken together our results indicate that anther‐smut disease is likely an important biotic factor driving the evolution and maintenance of females in this gynodioecious species.  相似文献   

12.
In gynodioecious plant species with nuclear‐cytoplasmic sex determination, females and hermaphrodites plants can coexist whenever female have higher seed fitness than hermaphrodites. Although the effect of self fertilization on seed fitness in hermaphrodites has been considered theoretically, this effect is far from intuitive, because it can either increase the relative seed fitness of the females (if it leads hermaphrodites to produce inbred, low quality offspring) or decrease it (if it provides reproductive assurance to hermaphrodites). Hence, empirical investigation is needed to document whether relative seed fitness varies with whether pollen is or is not limiting to seed production. In the current study, we measured fruit set and seed production in both females and hermaphrodites and the selfing rate in hermaphrodites in two experimental patches that differed in sex ratios in the gynodioecious plant Silene nutans. We found an impact of plant gender, patch, and their interaction, with females suffering from stronger pollen limitation when locally frequent. In the most pollen‐limited situation, the selfing rate of hermaphrodites increased and provided hermaphrodites with a type of reproductive assurance that is not available to females. By integrating both the beneficial (reproductive assurance) and costly effects (through inbreeding depression) of self‐pollination, we showed that whether females did or did not exhibit higher seed fitness depended on the degree of pollen limitation on seed production.  相似文献   

13.
Andrea L. Case  Tia‐Lynn Ashman 《Oikos》2009,118(8):1250-1260
Populations of gynodioecious species vary in the ratio of female versus hermaphroditic individuals they contain, and many exhibit higher frequencies of females under poor resource conditions. One important factor limiting female frequencies within populations is predicted to be pollen limitation of seed production, caused by either low abundance of pollen donors or insufficient pollen transfer. However, empirical studies measuring variation in pollen limitation with population sex ratios or resource gradients in gynodioecious plants are inconsistent. Part of this inconsistency may be that pollen limitation and its causes are context-dependent. Another possibility is that sex-specific daily flower production and/or sex-biased visitation are more relevant to the likelihood of pollen limitation than sex ratio based on counting individual plants. In this study, we examined context-dependent pollen limitation in gynodioecious/subdioecious Fragaria virginiana . We specifically examined the potential for resource availability to influence sex-specific daily flower production, sex-biased pollinator visitation, and their relationships with pollen limitation in experimental populations that contained either high or low frequencies of female plants. High resource availability reduced apparent female frequency by increasing daily flower production by hermaphrodites relative to females. This is important because pollinators increasingly discriminated against female flowers as floral sex ratios became more female-biased. Contrary to expectation, females in high-female populations were not consistently more pollen limited than those in low-female populations. The level of pollen limitation of females was better explained by sex–biased pollinator foraging and visitation frequency than by the plant sex ratio or floral sex ratio. Thus, negative frequency dependence of female pollen limitation was evident only considering sex ratio bias mediated by pollinator visitation.  相似文献   

14.
Females of gynodioecious species need to have reproductive advantages to compensate for their lack of male function and assure their maintenance in natural populations. Females may be more fecund than hermaphrodites because they reallocate resources from male to female function, avoid selfing and inbreeding depression, or produce higher quality offspring by screening arriving pollen better. A novel type of female advantage is proposed that may be important for several species of gynodioecious Caryophyllaceae. The anther smut fungus Microbotryum violaceum generally sterilizes its infected hosts but even without infection, spore deposition can negatively affect the reproduction of healthy individuals. In Gypsophila repens, flowers of hermaphrodite plants experimentally pollinated with both fungal spores and pollen produced significantly fewer fruits and seeds than those that received pollen alone, whereas female reproduction was unaffected by spore deposition. This unexplored reproductive advantage of females is probably due to the larger stigmatic surface in pistillate flowers, that allows pollen germination despite the presence of spores. Because longer stigmas may also lead to increased spore deposition, these results raise questions regarding the infection probability for each sex, possible sex-specific defense mechanisms, and the general role of pathogens in the maintenance of females in natural gynodioecious populations.  相似文献   

15.
The plant life cycle is often affected by animal–plant interactions. In insect‐pollinated plants, interaction with pollinators is very important. When pollen transfer due to a lower abundance of pollinators limits seed production, selection pressures on plant traits related to plant attraction to pollinators might occur, e.g. on flowering phenology, height or number of flowerheads. Landscape changes (e.g. habitat fragmentation or changed habitat conditions) may cause plant–pollinator systems to lose balance and consequently affect population dynamics of many plant species. We studied the relationship between measured plant traits, environmental variables and pollinator preferences in Scorzonera hispanica (Asteraceae), a rare perennial, allogamous herb of open grasslands. We estimated the pollen limitation by comparing seed set of supplemental‐pollinated plants with that of open‐pollinated ones. Pollinators selected plants based on position within the locality (isolated plants close to trees) rather than on their traits. In spite of a high proportion of undeveloped seeds on the plants, we demonstrated that they are not pollen limited. Instead, seed set and weight of seeds was correlated with plant size traits (height and flowerhead number), with larger plants producing more and larger seeds. This suggests that the studied plants are likely resource limited. Overall, the results suggest that pollinators are not a selection factor in this system, in contrast to studies on various plant species, including self‐compatible species of the Asteraceae. The lack of any effect of pollinators in the system may be caused by a strong negative effect of ungulate herbivores, which could play a decisive role in functioning of the system.  相似文献   

16.
On the gynodioecious polymorphism in Saxifraga granulata L. (Saxifragaceae)   总被引:1,自引:0,他引:1  
Sexual and vegetative fitness components in hermaphrodite and female plants of the self-compatible, perennial herb Saxifraga granulata are compared using material derived from a gynodioecious population in northern England.
Females produced only 57% as many seeds as hermaphrodites, but their ovule offspring were 1.28 times as fit as those of hermaphrodites, and females were more vegetatively vigorous. The advantages to females in ovule offspring quality and in vegetative reproduction counteract their disadvantages in pollen and seed production and therefore probably play a role in the maintenance of the gynodioecious polymorphism. Pollination ecology, resource reallocation and inbreeding depression all appear to contribute to the observed sex differences in fitness.  相似文献   

17.
According to sex allocation theory, to maintain a mutant male-sterile plant in a population of hermaphrodites such a plant must compensate its loss of fitness caused by inhibition of pollen production with a higher reproductive success through its female function. In the present study of a gynodioecious population of Silene vulgaris (Caryophyllaceae) I show that hermaphrodites not only benefit from outcrossing, in that progeny from outcrossed flowers are more vigorous than those from selfed flowers within an individual plant, but they also suffer heavily from self-pollination between different flowers of the same individuals, which could be demonstrated in experimentally made male-sterile (emasculated) individuals. Seeds from the emasculation period were heavier and germinated better than when the same individual was an intact hermaphrodite. Naturally male-sterile (female) individuals produced more fruits due to flowers staying open longer for pollen to arrive via some vector. However, the higher seed number alone could not provide the fitness advantage needed for females to be maintained in the population, but females also produced heavier seeds as compared to the hermaphrodites. Differences in seed survival and seedling establishment in the field are expected to add the advantages necessary for female plants to be selectively plausible.  相似文献   

18.
Pollinator‐mediated selection does not seem to have a direct influence on the evolution of a long corolla tube in a nectarless flower. We hypothesized that the long pistil length of the nectarless flower with a deep corolla tube provided an opportunity for male competition. Pedicularis siphonantha, a nectarless and partially self‐incompatible lousewort with substantial variation in corolla tube length, was used to test the hypothesis. We tested whether and how corolla tube length affected seed production per capsule and seed germination rate with different pollination treatments. Flowers were hand‐pollinated with pollen from one self donor and one outcross donor and mixed pollen grains consisting of equal amounts from the two donor types, respectively. Additionally, seeds from open‐pollinated flowers with different corolla tube lengths were collected separately for measurement of germination rate. Pollination treatment and corolla tube length significantly affected number of seeds per capsule. Moreover, a significant positive relationship between seeds per capsule and corolla tube length was found when mixed hand pollination was conducted. Seeds of self hand‐pollinated flowers had a lower germination rate than those from outcross‐pollinated flowers. Under open pollination, seeds from flowers with longer corolla tubes tended to have higher germination rate. In P. siphonantha, outcross pollen may have a higher probability of contributing to the next generation when transferred to flowers with longer corolla tubes. The pistil length, therefore, should be seen as a female choice mechanism, which provides an arena for male‐to‐male competition. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 526–532.  相似文献   

19.
An enduring puzzle in gynodioecious species is the great variation in female frequency seen among populations. We quantified sex ratio in 44 populations of gynodioecious Kallstroemia grandiflora. Then, we measured pollinator visitation, pollen deposition, autonomous selfing rate and pollen limitation of females. Finally, using experimental populations, we tested whether female fitness responds to the frequency of female plants. We found broad variability in sex ratio among populations (0-44% female). Hermaphrodite flowers received more pollinator visits and pollen grains than females, and bagged hermaphrodite flowers produced fruits. However, we found no evidence of pollen limitation in females. In experimental populations, female plants showed no evidence of frequency-dependent pollinator visitation, fruit set, seed set or total seed mass. These results do not support frequency-dependent variation in fitness as a major mechanism affecting female frequencies in K. grandiflora. Within the context of this study, pollinators are abundant and pollinator movement appears to operate at a large enough scale to overcome the potential reproductive disadvantages of producing solely female flowers.  相似文献   

20.
Sex-differential plasticity (SDP) hypothesis suggests that since hermaphrodites gain fitness through both pollen and seed production they may have evolved a higher degree of plasticity in their reproductive strategy compared to females which achieve fitness only through seed production. SDP may explain the difference in seed production observed between sexes in gynodioecious species in response to resource (nutrients or water) availability. In harsh environments, hermaphrodites decrease seed production whereas females keep it relatively similar regardless of the environmental conditions. Light availability can be also a limiting resource and thus could theoretically affect differently female and hermaphrodite seed output even though this ecological factor has been largely overlooked. We tested whether the two sexes in the gynodioecious species Geranium sylvaticum differ in their tolerance to light limitation during seed maturation in the field. We used a fully factorial block experiment exposing female and hermaphrodite plants to two different light environments (control and shade) after their peak flowering period. Specifically, we measured fruit and seed production in response to decreased light availability and compared it between the sexes. Shading reduced the number of fruits and seeds produced, but the decrease was similar between the sexes. Furthermore, shading delayed seed production by three days in both sexes, but did not affect seed mass, seed P content, or the probability of re-flowering the following year. Our results give no evidence for reproductive SDP in response to light during seed maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号