首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tetrapod forelimb and hindlimb are serially homologous structures that share a broad range of developmental pathways responsible for their patterning and outgrowth. Covariation between limbs, which can introduce constraints on the production of variation, is related to the duplication of these developmental factors. Despite this constraint, there is remarkable diversity in limb morphology, with a variety of functional relationships between and within forelimb and hindlimb elements. Here we assess a hierarchical model of limb covariation structure based on shared developmental factors. We also test whether selection for morphologically divergent forelimbs or hindlimbs is associated with reduced covariation between limbs. Our sample includes primates, murines, a carnivoran, and a chiropteran that exhibit varying degrees of forelimb and hindlimb specialization, limb size divergence, and/or phylogenetic relatedness. We analyze the pattern and significance of between-limb morphological covariation with linear distance data collected using standard morphometric techniques and analyzed by matrix correlations, eigenanalysis, and partial correlations. Results support a common limb covariation structure across these taxa and reduced covariation between limbs in nonquadruped species. This result indicates that diversity in limb morphology has evolved without signficant modifications to a common covariation structure but that the higher degree of functional limb divergence in bats and, to some extent, gibbons is associated with weaker integration between limbs. This result supports the hypothesis that limb divergence, particularly selection for increased functional specialization, involves the reduction of developmental factors common to both limbs, thereby reducing covariation.  相似文献   

2.
Forelimb morphology is an indicator for terrestrial locomotor ecology. The limb morphology of the enigmatic tapir (Perissodactyla: Tapirus) has often been compared to that of basal perissodactyls, despite the lack of quantitative studies comparing forelimb variation in modern tapirs. Here, we present a quantitative assessment of tapir upper forelimb osteology using three‐dimensional geometric morphometrics to test whether the four modern tapir species are monomorphic in their forelimb skeleton. The shape of the upper forelimb bones across four species (T. indicus; T. bairdii; T. terrestris; T. pinchaque) was investigated. Bones were laser scanned to capture surface morphology and 3D landmark analysis was used to quantify shape. Discriminant function analyses were performed to reveal features which could be used for interspecific discrimination. Overall our results show that the appendicular skeleton contains notable interspecific differences. We demonstrate that upper forelimb bones can be used to discriminate between species (>91% accuracy), with the scapula proving the most diagnostic bone (100% accuracy). Features that most successfully discriminate between the four species include the placement of the cranial angle of the scapula, depth of the humeral condyle, and the caudal deflection of the olecranon. Previous studies comparing the limbs of T. indicus and T. terrestris are corroborated by our quantitative findings. Moreover, the mountain tapir T. pinchaque consistently exhibited the greatest divergence in morphology from the other three species. Despite previous studies describing tapirs as functionally mediportal in their locomotor style, we find osteological evidence suggesting a spectrum of locomotor adaptations in the tapirs. We conclude that modern tapir forelimbs are neither monomorphic nor are tapirs as conserved in their locomotor habits as previously described. J. Morphol. 277:1469–1485, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Male genitalia evolve rapidly, probably as a result of sexual selection. Whether this pattern extends to the internal infrastructure that influences genital movements remains unknown. Cetaceans (whales and dolphins) offer a unique opportunity to test this hypothesis: since evolving from land‐dwelling ancestors, they lost external hind limbs and evolved a highly reduced pelvis that seems to serve no other function except to anchor muscles that maneuver the penis. Here, we create a novel morphometric pipeline to analyze the size and shape evolution of pelvic bones from 130 individuals (29 species) in the context of inferred mating system. We present two main findings: (1) males from species with relatively intense sexual selection (inferred by relative testes size) tend to evolve larger penises and pelvic bones compared to their body length, and (2) pelvic bone shape has diverged more in species pairs that have diverged in inferred mating system. Neither pattern was observed in the anterior‐most pair of vertebral ribs, which served as a negative control. This study provides evidence that sexual selection can affect internal anatomy that controls male genitalia. These important functions may explain why cetacean pelvic bones have not been lost through evolutionary time.  相似文献   

4.
Genetic variation in functionally integrated skeletal traitscan be maintained over 10 million years despite bottlenecksand stringent selection. Here, we describe an analysis of thegenetic architecture of the canid axial skeleton using populationsof the Portuguese Water Dog Canis familiaris) and silver fox(Vulpes vulpes). Twenty-one skeletal metrics taken from radiographsof the forelimbs and hind limbs of the fox and dog were usedto construct separate anatomical principal component (PC) matricesof the two species. In both species, 15 of the 21 PCs exhibitedsignificant heritability, ranging from 25% to 70%. The secondPC, in both species, represents a trade-off in which limb-bonewidth is inversely correlated with limb-bone length. PC2 accountsfor approximately 15% of the observed skeletal variation, 30%of the variation in shape. Many of the other significant PCsaffect very small amounts of variation (e.g., 0.2–2%)along trade-off axes that partition function between the forelimbsand hind limbs. These PCs represent shape axes in which an increasein size of an element of the forelimb is associated with a decreasein size of an element of the hind limb and vice versa. In mostcases, these trade-offs are heritable in both species and geneticloci have been identified in the Portuguese Water Dog for manyof these. These PCs, present in both the dog and the fox, includeones that affect lengths of the forelimb versus the hind limb,length of the forefoot versus that of the hind foot, musclemoment (i.e., lever) arms of the forelimb versus hind limb,and cortical thickness of the bones of the forelimb versus hindlimb. These inverse relationships suggest that genetic regulationof the axial skeleton results, in part, from the action of genesthat influence suites of functionally integrated traits. Theirpresence in both dogs and foxes suggests that the genes controllingthe regulation of these PCs of the forelimb versus hind limbmay be found in other tetrapod taxa.  相似文献   

5.
The shape of the craniofacial skeleton is constantly changing through ontogeny and reflects a balance between developmental patterning and mechanical‐load‐induced remodeling. Muscles are a major contributor to producing the mechanical environment that is crucial for “normal” skull development. Here, we use an F5 hybrid population of Lake Malawi cichlids to characterize the strength and types of associations between craniofacial bones and muscles. We focus on four bones/bone complexes, with different developmental origins, alongside four muscles with distinct functions. We used micro‐computed tomography to extract 3D information on bones and muscles. 3D geometric morphometrics and volumetric measurements were used to characterize bone and muscle shape, respectively. Linear regressions were performed to test for associations between bone shape and muscle volume. We identified three types of associations between muscles and bones: weak, strong direct (i.e., muscles insert directly onto bone), and strong indirect (i.e., bone is influenced by muscles without a direct connection). In addition, we show that although the shape of some bones is relatively robust to muscle‐induced mechanical stimulus, others appear to be highly sensitive to muscular input. Our results imply that the roles for muscular input on skeletal shape extend beyond specific points of origin or insertion and hold significant potential to influence broader patterns of craniofacial geometry. Thus, changes in the loading environment, either as a normal course of ontogeny or if an organism is exposed to a novel environment, may have pronounced effects on skeletal shape via near and far‐ranging effects of muscular loading.  相似文献   

6.
The vertebrate skeleton consists of over 200 individual bones, each with its own unique shape, size and function. We study the role of intrauterine muscle-induced mechanical loads in determining the three-dimensional morphology of developing bones. Analysis of the force-generating capacity of intrauterine muscles in mice revealed that developing bones are subjected to significant and progressively increasing mechanical challenges. To evaluate the effect of intrauterine loads on bone morphogenesis and the contribution of the emerging shape to the ability of bones to withstand these loads, we monitored structural and mineral changes during development. Using daily micro-CT scans of appendicular long bones we identify a developmental program, which we term preferential bone growth, that determines the specific circumferential shape of each bone by employing asymmetric mineral deposition and transient cortical thickening. Finite element analysis demonstrates that the resulting bone structure has optimal load-bearing capacity. To test the hypothesis that muscle forces regulate preferential bone growth in utero, we examine this process in a mouse strain (mdg) that lacks muscle contractions. In the absence of mechanical loads, the stereotypical circumferential outline of each bone is lost, leading to the development of mechanically inferior bones. This study identifies muscle force regulation of preferential bone growth as the module that shapes the circumferential outline of bones and, consequently, optimizes their load-bearing capacity during development. Our findings invoke a common mechanism that permits the formation of different circumferential outlines in different bones.  相似文献   

7.
As serially homologous structures, mammalian fore‐ and hindlimbs ancestrally share a common developmental and genetic architecture. As a result, mammalian fore‐ and hindlimbs are predicted to be highly integrated in the absence of selective pressures to form divergent limb morphologies. Marsupials experience such a divergent selective pressure to form a robust forelimb to power a post‐natal crawl to the teat. In this study, phenotypic covariation in marsupials was assessed to determine if specialization for the crawl did indeed reduce integration between their fore‐ and hindlimbs. To explore the evolution of mammalian limb integration, phenotypic covariation in representative eutherians and monotremes was also examined. Phenotypic covariation in limbs was quantified morphometrically, and analysed with correlational and phylogenetic methods. Results indicate that marsupials generally have relatively high levels of within‐limb phenotypic covariation, and low levels between limbs, in contrast to the pattern reconstructed for the mammalian ancestor. Our findings support the hypothesis that pressure to specialize in one limb (either the fore‐ or the hindlimb) can reduce phenotypic covariation between limbs, and that reduced limb phenotypic covariation is derived in marsupials. Further research is needed to test the effect that these differences in limb phenotypic covariation had on the evolution of the major mammalian groups. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 22–36.  相似文献   

8.
Agenesis of the scapula in Emx2 homozygous mutants   总被引:2,自引:0,他引:2  
The shoulder and pelvic girdles represent the proximal bones of the appendicular skeleton that connect the anterior and posterior limbs to the body trunk. Although the limb is a well-known model in developmental biology, the genetic mechanisms controlling the development of the more proximal elements of the appendicular skeleton are still unknown. The knock-out of Pax1 has shown that this gene is involved in patterning the acromion, while the expression pattern candidates Hoxc6 as a gene involved in scapula development. Surprisingly, we have found that scapula and ilium do not develop in Emx2 knock-out mice. In the homozygous mutants, developmental abnormalities of the brain cortex, the most anterior structure of the primary axis of the body, are associated with important defects of the girdles, the more proximal elements of the secondary axis. These abnormalities suggest that the molecular mechanisms patterning the more proximal elements of the limb axis are different from those patterning the rest of appendicular skeleton. While Hox genes specify the different segments of the more distal part of the appendicular skeleton forming the limb, Emx2 is concerned with the more proximal elements constituting the girdles.  相似文献   

9.
OBJECTIVE--To evaluate the factors that determine bone mineral density at axial and appendicular sites in normal men. DESIGN--Measurement of bone mineral density of the radius by single photon absorptiometry and of the lumbar spine and hip by dual photon absorptiometry to assess their relation with various determinants of bone mineral density. Dietary calcium was assessed from a questionnaire validated against a four day dietary record. SETTING--Local community, Sydney, Australia. PATIENTS--48 Men (aged 21-79, median 44) recruited from the local community including 35 male cotwins of twin pairs of differing sex recruited from the Australian National Health and Medical Research Council twin registry for epidemiological studies on determinants of bone mineral density. MAIN OUTCOME MEASURES--Bone mineral density of the axial and appendicular skeleton and its relation to age, anthropometric features, dietary calcium intake, and serum sex hormone concentrations. RESULTS--Dietary calcium intake (g/day) was a significant predictor of bone mineral density of axial bones, explaining 24% and 42% of the variance at the lumbar spine and femoral neck respectively. This effect was independent of weight. In contrast with the axial skeleton, bone mineral density at each forearm site was predicted by weight and an index of free testosterone but not by dietary calcium intake. CONCLUSIONS--Dietary calcium intake has a role in the determination or maintenance, or both, of the axial but not the appendicular skeleton in adult men.  相似文献   

10.
(鱼句)亚科花(鱼骨)型鱼类骨骼系统的比较   总被引:2,自引:0,他引:2  
对我国花型Hemibarbuspattern鱼类作了骨骼系统比较,结果表明,此类型鱼类脑颅较长,副蝶骨平直或稍弯曲,眶蝶骨腹纵嵴发达(铜鱼Coreius septentrionalis例外),下颞窝和咽突中等大,基枕骨后突发达;脑颅中的上筛骨的后突、侧筛骨的外筛突,蝶耳骨的外突、上耳骨的后突、围眶骨和后颞窝等均有明显的差异;咽颅中的舌颌骨、尾舌骨、鳃盖骨和下咽齿的列数等又有显著的区别;附肢骨骼中的腰带骨、脊椎骨中的复合神经骨和第4椎骨腹侧的悬器等也有不同之处。据此,这些差异和区别可作为属间或种间的分类依据。  相似文献   

11.
The formation of limb girdles is a key‐novelty in vertebrate evolution. Although the knowledge of pattern formation, genetic, and molecular analysis of limb development has prodigiously grown over the past four decades, the morphogenesis of the pelvic element, joining the appendicular with the axial skeleton has poorly been investigated. Because of their heterochrony in development and evolution, axial and appendicular skeletal elements have seldom been seen as a cojoined morphological complex. The present study examines the pelvis morphogenesis in the mouse (Mus musculus), with special focuses on the axio‐appendicular linkage, the formation and number of elements, and the joint formation. Serial histological sections of specimens from Theiler stages (TH) 18–25 (Theiler, 1972) were examined using bright field microscopy. 3D‐models of the growing pelvis were reconstructed from these serial sections. The generated 3D‐models were subsequently integrated into a computer‐animated 4D‐visualization illustrating the complex developmental dynamics of the mammalian pelvis morphogenesis. The findings demonstrate that the pelvic element forms from a single mesenchymal condensation in close vicinity to the appendicular skeleton. From the early start of development the pelvic element is limb‐associated, and quite lately connects to the axial skeleton. Additionally, the 4D‐visualization of the entire developmental process reveals a yet unnoticed reorientation of the mouse pelvic element from an initial posteriorly oblique developmental position to a ventrally oblique definitive position. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.

Objectives

To advance our understanding of the evolution of the hominin foot by quantifying integration and responses to selection in the foot of modern humans.

Materials and Methods

The sample includes 247 female and male adult individuals from Euro-American, Afro-American, European, and Amerindian populations. We collected 190 linear measurements from the 26 skeletal elements that constitute the modern human foot. With these data, we calculated the magnitudes of integration and the ability of the foot to respond to selection demands.

Results

The results revealed that distal phalanges are less integrated, more evolvable, and more flexible than proximal elements (i.e., proximal phalanges and metatarsals). Also, bones from the medial ray (e.g., hallux) show stronger integration and weaker evolvability than their counterparts from the lateral column (e.g., fifth ray), following this trend from medial to lateral positions. Among the tarsals, the talus and calcaneus are the most integrated, least evolvable, and flexible elements from that module.

Discussion

These results suggest that selection for bipedalism would have reorganized the variance/covariance matrix of the foot. The hallux might have been under strong functional selection pressures for bipedal requirements, resulting in a strong integration and low evolvability. Also, differences in the developmental process of each bone seem to have played an essential role in the degree of evolvability, showing those elements that develop earlier have less ability to respond to selection demands.  相似文献   

13.
Phenotypic integration and modularity describe the strength and pattern of interdependencies between traits. Integration and modularity have been proposed to influence the trajectory of evolution, either acting as constraints or facilitators. Here, we examine trends in the integration and modularity of pectoral fin morphology in teleost fishes using geometric morphometrics. We compare the fin shapes of the highly diverse radiation of acanthomorph fishes to lower teleosts. Integration and modularity are measured using two‐block partial least squares analysis and the covariance ratio coefficient between the radial bones and lepidotrichia of the pectoral fins. We show that the fins of acanthomorph fishes are more tightly integrated but also more morphologically diverse and faster evolving compared to nonacanthomorph fishes. The main pattern of shape covariation in nonacanthomorphs is concordant with the main trajectory of evolution between nonacanthomorphs and acanthomorphs. Our findings support a facilitating role for integration during the acanthomorph diversification. Potential functional consequences and developmental mechanisms of fin integration are discussed.  相似文献   

14.
In this study, the evolution of the long bones in a group of basal synapsids was analysed, belonging to the caseids (Synapsida, Caseasauria, Caseidae), a crucial Palaeozoic group of terrestrial vertebrates. During their evolutionary history, caseids transitioned from small faunivorous tetrapods such as Eocasea martini (reaching ~20 cm total length), to gigantic herbivores such as Cotylorhynchus hancocki (reaching almost 7 m in length). In this analysis, morphometric techniques (i.e. Principal Component Analysis, Reduced Major Axis (regression) slopes) and phylogenetic methods (construction of metric trees) were used in a comparative and integrated way in order to study the major changes in the long bones in the course of caseid evolution, and identify in which nodes and terminal branches more extreme repatterning of structures is concentrated. The analysis showed a decoupling between the long bones of the fore‐ and hindlimbs, with the hind leg remaining more conservative and congruent to a basal pattern. By contrast, the forelimbs (especially the ulna and radius) show greater restructuring in the course of evolution, with an allometric strengthening not limited to species of very large size. An overbuilt appendicular skeleton was detected as early as taxa small to medium in size, indicating that the strengthening is not related in a simple and linear way to a structural response to gigantic body size. Because this robust structure is already present in small‐ to medium‐sized taxa, it may have been subsequently exapted, allowing to reach the colossal body size of more derived members of Caseidae, which rank among the largest reached throughout the Palaeozoic.  相似文献   

15.
Pollinator‐mediated natural selection on single traits, such as corolla tube or spur length, has been well documented. However, flower phenotypes are usually complex, and selection is expected to act on several traits that functionally interact rather than on a single isolated trait. Despite the fact that selection on complex phenotypes is expectedly widespread, multivariate selection modelling on such phenotypes still remains under‐explored in plants. Species of the subfamily Asclepiadoideae (Apocynaceae) provide an opportunity to study such complex flower contrivances integrated by fine‐scaled organs from disparate developmental origin. We studied the correlation structure among linear floral traits (i) by testing a priori morphological, functional or developmental hypotheses among traits and (ii) by exploring the organization of flower covariation, considering alternative expectations of modular organization or whole flower integration through conditional dependence analysis (CDA) and integration matrices. The phenotypic selection approach was applied to determine whether floral traits involved in the functioning of the pollination mechanism were affected by natural selection. Floral integration was low, suggesting that flowers are organized in more than just one correlation pleiad; our hypothetical functional correlation matrix was significantly correlated with the empirical matrix, and the CDA revealed three putative modules. Analyses of phenotypic selection showed significant linear and correlational gradients, lending support to expectations of functional interactions between floral traits. Significant correlational selection gradients found involved traits of different floral whorls, providing evidence for the existence of functional integration across developmental domains.  相似文献   

16.
The skeleton is a complex arrangement of anatomical structures that covary to various degrees depending on both intrinsic and extrinsic factors. Among the Feliformia, many species are characterized by predator lifestyles providing a unique opportunity to investigate the impact of highly specialized hypercarnivorous diet on phenotypic integration and shape diversity. To do so, we compared the shape of the skull, mandible, humerus, and femur of species in relation to their feeding strategies (hypercarnivorous vs. generalist species) and prey preference (predators of small vs. large prey) using three-dimensional geometric morphometric techniques. Our results highlight different degrees of morphological integration in the Feliformia depending on the functional implication of the anatomical structure, with an overall higher covariation of structures in hypercarnivorous species. The skull and the forelimb are not integrated in generalist species, whereas they are integrated in hypercarnivores. These results can potentially be explained by the different feeding strategies of these species. Contrary to our expectations, hypercarnivores display a higher disparity for the skull than generalist species. This is probably due to the fact that a specialization toward high-meat diet could be achieved through various phenotypes. Finally, humeri and femora display shape variations depending on relative prey size preference. Large species feeding on large prey tend to have robust long bones due to higher biomechanical constraints.  相似文献   

17.
18.
Muscles, bones, and tendons in the adult tetrapod limb are intimately integrated, both spatially and functionally. However, muscle and bone evolution do not always occur hand in hand. We asked, how does the loss of limb bones affect limb muscle anatomy, and do these effects vary among different lineages? To answer these questions, we compared limb muscular and skeletal anatomy among gymnophthalmid lizards, which exhibit a remarkable variation in limb morphology and different grades of digit and limb reduction. We mapped the characters onto a phylogeny of the group to assess the likelihood that they were acquired independently. Our results reveal patterns of reduction of muscle and bone elements that did not always coincide and examples of both, convergent and lineage‐specific non‐pentadactyl musculoskeletal morphologies. Among lineages in which non‐pentadactyly evolved independently, the degree of convergence seems to depend on the number of digits still present. Most tetradactyl and tridactyl limbs exhibited profound differences in pattern and degree of muscle loss/reduction, and recognizable morphological convergence occurred only in extremely reduced morphologies (e.g., spike‐like appendix). We also found examples of muscles that persisted although the bones to which they plesiomorphically attach had been lost, and examples of muscles that had been lost although their normal bony attachments persisted. Our results demonstrate that muscle anatomy in reduced limbs cannot be predicted from bone anatomy alone, meaning that filling the gap between osteological and myological data is an important step toward understanding this recurrent phenomenon in the evolution of tetrapods. J. Morphol. 276:1290–1310, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
SUMMARY Mammals are remarkably diverse in limb lengths and proportions, but the number and kind of developmental mechanisms that contribute to length differences between limb bones remain largely unknown. Intra- and interspecific differences in bone length could result from variations in the cellular processes of endochondral bone growth, creating differences in rates of chondrocyte proliferation or hypertrophy, variation in the shape and size of chondrocytes, differences in the number of chondrocytes in precursor populations and throughout growth, or a combination of these mechanisms. To address these questions, this study compared cellular mechanisms of endochondral bone growth in cross-sectional ontogenetic series of the appendicular skeleton of two rodent species: the mouse ( Mus musculus ) and Mongolian gerbil ( Meriones unguiculatus ). Results indicate that multiple cellular processes of endochondral bone growth contribute to phenotypic differences in limb bone length. The data also suggest that separate developmental processes contribute to intraspecific length differences in proximal versus distal limb bones, and that these proximo-distal mechanisms are distinct from mechanisms that contribute to interspecific differences in limb bone length related to body size. These developmental "divisions of labor" are hypothesized to be important features of vertebrate limb development that allow (1) morphology in the autopods to evolve independently of the proximal limb skeleton, and (2) adaptive changes in limb proportions related to locomotion to evolve independently of evolutionary changes in body size.  相似文献   

20.
Summary Forelimbs of Day 11 and Day 12 embryonic mice were excised and cultured for 3 d in the presence of either 0.25 μg (8×10−7 M), 0.5 μg(1.7×10−6 M), or 1.0 μg (3.3×10−6 M) of all-rans retinoic acid (RA) per milliliter of culture medium. Cultured limbs were fixed, stained, and mounted whole on glass slides and evaluated with computerized optical image analysis for RA-induced effects on the area and shape of the total limb and individual bone anlagen. Relative effects of RA on total bone, soft tissue, long bone, and paw regions were also examined. With Day 11 forelimbs total bone area was increased by 10.5% by the low dose of RA. The increase was mostly in long bones and at the expense of soft tissue. Total bone area was increased 9.3% with Day 12 forelimbs. This increase was primarily in the paw. The high dose of RA decreased Day 11 forelimb area, primarily affecting long bones. Day 12 forelimbs were not significantly affected by the high dose of RA. Effects of the imtermediate dose were primarily limited to reduction in soft tissue area. Long bone:paw and soft tissue: bone ratios reflected these effects. The high dose produced a consistent rounding or shortening of Day 11 forelimb bones. On Day 12 0.5 μg/ml RA produced an inconsistent pattern of rounding of bone anlagen. Treatment with the high dose on Day 12 produced angular rather than rounded contours in many cases, as indicated by shape factor values closer to zero than obtained with controls. These data show that direct exposure to RA can affect both the size and shape of bone anlagen of the developing limb; the low dose enhances and the high dose depresses development. The results support previous studies which suggest that RA may play a critical role in the control of cell activities such as cell migration, proliferation, and cytodifferentiation in the development of the cartilaginous bone anlagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号