首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Both genetic differentiation and phenotypic plasticity might be expected to affect the location of geographic range limits. Co‐gradient variation (CoGV), plasticity that is congruent with genetic differentiation, may enhance performance at range margins, whereas its opposite, counter‐gradient variation (CnGV) may hinder performance. Here we report findings of reciprocal transplant experiments intended to tease apart the roles of differentiation and plasticity in producing phenotypic variation across a geographic border between two plant subspecies. Clarkia xantiana ssp. xantiana and C. xantiana ssp. parviflora are California‐endemic annuals that replace each other along a west‐east gradient of declining precipitation. We analyzed variation in floral traits, phenological traits, and vegetative morphological and developmental traits by sowing seeds of 18 populations (six of ssp. xantiana and 12 of ssp. parviflora) at three sites (one in each subspecies' exclusive range and one in the subspecies' contact zone), in two growing seasons (an exceptionally wet El Niño winter and a much drier La Niña winter). Significant genetic differences between subspecies appeared in 11 of 12 traits, and differences were of the same sign as in nature. These findings are consistent with the hypothesis that selection is responsible for subspecies differences. Geographic variation within subspecies over part of the spatial gradient mirrored between‐subspecies differences present at a larger scale. All traits showed significant plasticity in response to spatial and temporal environmental variation. Plasticity patterns ranged from spatial and temporal CoGV (e.g., in node of first flower), to spatial CnGV (e.g., in flowering time), to patterns that were neither CoGV nor CnGV (the majority of traits). Instances of CoGV may reflect adaptive plasticity and may serve to increase performance under year‐to‐year environmental variation and at sites near the subspecies border. However, the presence of spatial CnGV in some critical traits suggests that subspecies ranges may also be constrained by patterns of plasticity.  相似文献   

2.
Current divergent selection may promote floral trait differentiation among conspecific populations in flowering plants. However, whether this applies to complex traits such as colour or scents has been little studied, even though these traits often vary within species. In this study, we compared floral colour and odour as well as selective pressures imposed upon these traits among seven populations belonging to three subspecies of the widespread, generalist orchid Anacamptis coriophora. Colour was characterized using calibrated photographs, and scents were sampled using dynamic headspace extraction and analysed using gas chromatography–mass spectrometry. We then quantified phenotypic selection exerted on these traits by regressing fruit set values on floral trait values. We showed that the three studied subspecies were characterized by different floral colour and odour, with one of the two predominant floral volatiles emitted by each subspecies being taxon‐specific. Plant size was positively correlated with fruit set in most populations, whereas we found no apparent link between floral colour and female reproductive success. We detected positive selection on several taxon‐specific compounds in A. coriophora subsp. fragrans, whereas no selection was found on floral volatiles of A. coriophora subsp. coriophora and A. coriophora subsp. martrinii. This study is one of the first to document variation in phenotypic selection exerted on floral scents among conspecific populations. Our results suggest that selection could contribute to ongoing chemical divergence among A. coriophora subspecies.  相似文献   

3.
Both differences in local plant density and phenotypic traits may affect pollination and plant reproduction, but little is known about how density affects trait–fitness relationships via changes in pollinator activity. In this study we examined how plant density and traits interact to determine pollinator behaviour and female reproductive success in the self‐incompatible, perennial herb Phyteuma spicatum. Specifically, we hypothesised that limited pollination service in more isolated plants would lead to increased selection for traits that attract pollinators. We conducted pollinator observations and assessed trait–fitness relationships in a natural population, whose individuals were surrounded by a variable number of inflorescences. Both local plant density and plant phenotypic traits affected pollinator foraging behaviour. At low densities, pollinator visitation rates were low, but increased with increasing inflorescence size, while this relationship disappeared at high densities, where visitation rates were higher. Plant fitness, in terms of seed production per plant and per capsule, was related to both floral display size and flowering time. Seed production increased with increasing inflorescence size and was highest at peak flowering. However, trait–fitness relationships were not density‐dependent, and differences in seed production did not appear to be related to differences in pollination. The reasons for this remain unclear, and additional studies are needed to fully understand and explain the observed patterns.  相似文献   

4.
Closely related species often differ in traits that influence reproductive success, suggesting that divergent selection on such traits contribute to the maintenance of species boundaries. Gymnadenia conopsea ss. and Gymnadenia densiflora are two closely related, perennial orchid species that differ in (a) floral traits important for pollination, including flowering phenology, floral display, and spur length, and (b) dominant pollinators. If plant–pollinator interactions contribute to the maintenance of trait differences between these two taxa, we expect current divergent selection on flowering phenology and floral morphology between the two species. We quantified phenotypic selection via female fitness in one year on flowering start, three floral display traits (plant height, number of flowers, and corolla size) and spur length, in six populations of G. conopsea s.s. and in four populations of G. densiflora. There was indication of divergent selection on flowering start in the expected direction, with selection for earlier flowering in two populations of the early‐flowering G. conopsea s.s. and for later flowering in one population of the late‐flowering G. densiflora. No divergent selection on floral morphology was detected, and there was no significant stabilizing selection on any trait in the two species. The results suggest ongoing adaptive differentiation of flowering phenology, strengthening this premating reproductive barrier between the two species. Synthesis: This study is among the first to test whether divergent selection on floral traits contribute to the maintenance of species differences between closely related plants. Phenological isolation confers a substantial potential for reproductive isolation, and divergent selection on flowering time can thus greatly influence reproductive isolation and adaptive differentiation.  相似文献   

5.
Floral traits have largely been attributed to phenotypic selection in plant–pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator‐mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator‐mediated selection explained most of the between‐population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator‐mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.  相似文献   

6.
Most studies on pollinator‐mediated selection have been performed in generalized rather than specialized pollination systems. This situation has impeded evaluation of the extent to which selection acts on attraction or specialized key floral traits involved in the plant‐pollinator phenotypic interphase. We studied pollinator‐mediated selection in four populations of Nierembergia linariifolia, a self‐incompatible and oil‐secreting plant pollinated exclusively by oil‐collecting bees. We evaluated whether floral traits experience variable selection among populations and whether attraction and fit traits are heterogeneously selected across populations. Populations differed in every flower trait and selection was consistently observed for corolla size and flower shape, two traits involved in the first steps of the pollination process. However, we found no selection acting on mechanical‐fit traits. The observation that selection occurred upon attraction rather than mechanical‐fit traits, suggests that plants are not currently evolving fine‐tuned morphological adaptations to local pollinators and that phenotypic matching is not necessarily an expected outcome in this specialized pollination system.  相似文献   

7.
Hybridization between closely related lineages is a mechanism that might promote substantive changes in phenotypic traits of descendants, resulting in transgressive evolution. Interbreeding between divergent but morphologically similar lineages can produce exceptional phenotypes, but the potential for transgressive variation to facilitate long‐term trait changes in derived hybrid lineages has received little attention. We compare pollinator‐mediated selection on transgressive floral traits in both early‐generation and derived hybrid lineages of the Piriqueta cistoides ssp. caroliniana complex. The bowl‐shaped flowers of morphotypes in this complex have similar gross morphologies and attract a common suite of small insect pollinators. However, they are defined by significant differences in characters that generate pollinator interest and visitation, including floral area and petal separation. In common garden experiments, patterns of pollen deposition in early‐generation recombinant hybrids indicate that Piriqueta's pollinators favour flowers with greater area and reduced petal separation. Changes in floral morphology in derived hybrid lineages are consistent with predictions from selection gradients, but the magnitude of change is limited relative to the range of transgressive variation. These results suggest that hybridization provides variation for evolution of divergent floral traits. However, the potential for extreme transgressive variants to contribute to phenotypic shifts may be limited due to reduced heritability, evolutionary constraints or fitness trade‐offs.  相似文献   

8.
为了研究植物生长季内开花时间对花特征表型选择的影响,我们以青藏高原东缘高寒草地的毛茛状金莲花Trollius ranunculoides)为实验材料,在生长季内不同开花时间(花前期、花末期)测定花特征,观察访花昆虫的类群和访花频率,生长季结束后收集种子.根据昆虫访花的喜好和季节内类群与访花频率的变化,分析了不同开花时间毛茛状金莲花的花特征与昆虫的选择;并用种子产量表示雌性适合度,估计了毛茛状金莲花的花特征在不同开花时间所受的表型选择.结果表明:不同花期植物的花特征有显著差异,相应的访花昆虫的类群和频率也存在差异,不同类群昆虫访花喜好也不一样.蜂喜好花瓣和花萼较宽、花茎短和花茎数少的个体,这正符合花前期的特征,因而蜂的访花频率在花前期较高;蝇对花特征没有明显的偏好.而通过雌性适合度估计毛茛状金莲花花特征所受的表型选择则是:花前期,花茎较长和花茎数多的植株适合度大;花末期,花茎数多的植株适合度大.我们的研究表明:在植物生长季,花期的分化伴随着传粉昆虫活动的变化.不同花期,访花昆虫的变化可能对植物花特征的分化起了至关重要的作用.但是访花昆虫对花特征的选择与通过雌性适合度估计植物受到的选择不尽相同,这可能是由于其他因素造成的.  相似文献   

9.
We studied six populations of the hummingbird‐pollinated Nicotiana glauca to determine if the marked differences in the degree of floral‐pollinator mismatch between populations promote divergences in the pattern of pollinator‐mediated phenotypic selection on single traits and on the evolution of complexes of many interacting floral traits. We found evidence that flower phenotype is being shaped by pollinator‐mediated phenotypic selection, since corolla length was consistently under contemporary directional or stabilizing selection. Weak directional selection for longer corollas was found in two populations with low flower–pollinator mismatch; much stronger directional selection was detected for shorter corollas in two populations with high flower–pollinator mismatch; finally, the remaining two populations with intermediate flower–pollinator mismatch showed stabilizing selection for corolla length. N. glauca populations differed in every flower character measured but variations in pollinator‐mediated selection among populations were only observed for corolla length. Multiple covariation among traits was favoured, as suggested by the predominately functional patterns of integration and selection of complexes of many interacting floral traits. This was consistent with the patterns of correlational selection exhibited by four of the six populations, where corolla length was under significant selection in combination with corolla width, style length or stamen length. Overall floral integration was relatively high in all populations but phenotypic integration patterns were not clearly accounted by the degree of flower–pollinator mismatch or type of phenotypic selection, suggesting that trait covariation at the entire flower level is not explained by the current scenario of pollinator‐mediated selection.  相似文献   

10.

Background and Aims

Reproductive character displacement (RCD) is often an important signature of reinforcement when partially cross-compatible taxa meet in secondary sympatry. In this study, floral evolution is examined during the Holocene range expansion of Clarkia xantiana subsp. parviflora from eastern Pleistocene refugia to a western zone of sympatry with its sister taxon, subsp. xantiana. Floral divergence between the two taxa is greater in sympatry than allopatry. The goal was to test an alternative hypothesis to reinforcement – that floral divergence of sympatric genotypes is simply a by-product of adaptation to pollination environments that differ between the allopatric and sympatric portions of the subspecies'' range.

Methods

Floral trait data from two common garden studies were used to examine floral divergence between sympatric and allopatric regions and among phylogeographically defined lineages. In natural populations of C. x. parviflora, the magnitude of pollen limitation and reproductive assurance were quantified across its west-to-east range. Potted sympatric and allopatric genotypes were also reciprocally translocated between geographical regions to distinguish between the effects of floral phenotype versus contrasting pollinator environments on reproductive ecology.

Key Results

Sympatric populations are considerably smaller flowered with reduced herkogamy. Pollen limitation and the reproductive assurance value of selfing are greater in sympatric than in allopatric populations. Most significantly, reciprocal translocation experiments showed these differences in reproductive ecology cannot be attributed to contrasting pollinator environments between the sympatric and allopatric regions, but instead reflect the effects of flower size on pollinator attraction.

Conclusions

Floral evolution occurred during the westward range expansion of parviflora, particularly in the zone of sympatry with xantiana. No evidence was found that strongly reduced flower size in sympatric parviflora (and RCD between parviflora and xantiana) is due to adaptation to limited pollinator availability. Rather, floral divergence appears to have been driven by other factors, such as interactions with congenerics in secondary sympatry.  相似文献   

11.
The reproductive assurance hypothesis posits that selection favors self-pollination in flowering plants where mates and/or pollinators are scarce. A corollary is that self-pollinating populations are expected to be superior colonizers of mate- and pollinator-scarce environments. The California annual Clarkia xantiana includes outcrossing populations (ssp. xantiana) and autogamously self-pollinating populations (ssp. parviflora). Outcrossing is ancestral, and the subspecies have parapatric distributions with a narrow contact zone. We tested aspects of the reproductive assurance hypothesis by examining geographic and subspecies variation in the densities of mates and pollinators (native bees) and the density dependence of pollinator visitation and pollen receipt. Plant and flower densities, pollinator density, and pollinator visitation rates were lowest in the region of exclusively self-pollinating populations. Pollinator assemblages there lacked Clarkia-associated pollinator taxa that were common elsewhere. Self-pollinating populations in the contact zone generally had densities and visitation rates intermediate between allopatric self-pollinating populations and outcrossing populations. Visitation rate and pollen receipt increased significantly with plant density. These findings suggest that selection for reproductive assurance influenced the origin of self-pollination and/or that reproductive assurance influenced the geographic distribution of self-pollination. Geographic variation in pollinator assemblages may have generated variation in the value of reproductive assurance.  相似文献   

12.
Adaptive evolution can affect the successful establishment of invasive species, but changes in selective pressures, loss of genetic variation in relevant traits, and/or altered trait correlations can make adaptation difficult to predict. We used a common‐garden experiment to assess trait correlations and patterns of adaptation in the invasive plant, Geranium carolinianum, sampled across 20 populations in its native (United States) and invasive (China) ranges. We used multivariate QSTFST tests to determine if phenotypic differences between countries are attributable to adaptation. We also compared population‐level variation within each country to assess whether local adaptation resulted in similar multivariate phenotypes in the United States and China. Between countries, most phenotypic differences are indistinguishable from genetic drift, although we detected a signature of adaptation to the colder, drier winters in China. There was no evidence for increases in invasive traits in China. Within countries, strong multivariate adaptation appears to be driven by latitudinal climatic variation in the United States, but not in China. Additionally, adaptive trait combinations as well as their underlying correlations differ between the two countries, indicating that adaptation in invasive populations does not parallel patterns in native populations due to differences in selection pressures, genetic constraints, or both.  相似文献   

13.
During the past decade, two lines of research have advanced our understanding of micro‐evolution. On the one hand, a number of studies have generated evidence for strong selection on phenotypes ( Kingsolver et al. 2001 ) and the contemporary (sometimes deemed ‘rapid’) evolution of phenotypic traits ( Hendry & Kinnison 1999 ). On the other hand, other studies have sought to identify the genes that underlie ecologically important traits ( Ungerer et al. 2008 ). Over the next decade, micro‐evolutionists might expect considerable progress from the study of contemporary evolution at both the phenotypic and genetic level simultaneously. In this issue of Molecular Ecology, Le Rouzic et al. (2011) present a teaser for this approach. They examined contemporary evolution of an adaptive trait with a well‐studied genetic basis, the number of lateral plates, in threespine stickleback (Gasterosteus aculeatus L.). A time series of 20 years of change for this trait after introduction into a pond in Norway was compared with a similar time series of 12 years following the invasion of a lake in Alaska. Using a modelling approach, the authors then teased apart selection acting upon the phenotype and selection acting on a major effect gene. In both time series, selection was strong and consistent. The models suggested that selection could act directly on the phenotype, or through the gene’s pleiotropic effects.  相似文献   

14.
Understanding genetic variation for complex traits in heterogeneous environments is a fundamental problem in biology. In this issue of Molecular Ecology, Fournier‐Level et al. ( 2013 ) analyse quantitative trait loci (QTL) influencing ecologically important phenotypes in mapping populations of Arabidopsis thaliana grown in four habitats across its native European range. They used causal modelling to quantify the selective consequences of life history and morphological traits and QTL on components of fitness. They found phenology QTL colocalizing with known flowering time genes as well as novel loci. Most QTL influenced fitness via life history and size traits, rather than QTL having direct effects on fitness. Comparison of phenotypes among environments found no evidence for genetic trade‐offs for phenology or growth traits, but genetic trade‐offs for fitness resulted because flowering time had opposite fitness effects in different environments. These changes in QTL effects and selective consequences may maintain genetic variation among populations.  相似文献   

15.
Plant–pollinator interactions are thought to be major drivers of floral trait diversity. However, the relative importance of divergent pollinator‐mediated selection vs. neutral processes in floral character evolution has rarely been explored. We tested for adaptive floral trait evolution by comparing differentiation at neutral genetic loci to differentiation at quantitative floral traits in a putative Ipomopsis aggregata hybrid zone. Typical I. aggregata subsp. candida displays slender white tubular flowers that are typical of flowers pollinated by hawkmoths, and subsp. collina displays robust red tubular flowers typical of flowers pollinated by hummingbirds; yet, hybrid flower morphs are abundant across the East Slope of the Colorado Rockies. We estimated genetic differentiation (FST) for nuclear and chloroplast microsatellite loci and used a half‐sib design to calculate quantitative trait divergence (QST) from collection sites across the morphological hybrid zone. We found little evidence for population structure and estimated mean FST to be 0.032. QST values for several floral traits including corolla tube length and width, colour, and nectar volume were large and significantly greater than mean FST. We performed multivariate comparisons of neutral loci to genetic correlations within and between populations and found a strong signal for divergent selection, suggesting that specific combinations of floral display and reward traits may be the targets of selection. Our results show little support for historical subspecies categories, yet floral traits are more diverged than expected due to drift alone. Non‐neutral divergence for multivariate quantitative traits suggests that selection by pollinators is maintaining a correlation between display and reward traits.  相似文献   

16.
Ecological adaptation is the driving force during divergence with gene flow and generates reproductive isolation early in speciation. Although gene flow opposes divergence, local adaptation can be facilitated by factors that prevent the breakup of favorable allelic combinations. We investigated how selection, genetic architecture, and geography have contributed to the maintenance of floral trait divergence and pollinator isolation between parapatric ecotypes of Mimulus aurantiacus. Combining greenhouse, field, and genomic studies, we show that sharp clines in floral traits are maintained by spatially varying selection. Although adaptation breaks down where the ecotypes co‐occur, leading to the formation of a hybrid zone, the largely non‐overlapping distributions of the ecotypes shield them from immigrant genes, facilitating divergence across most of the range. In contrast to the sharp genetic discontinuities observed across most hybrid zones, we observed a gradual cline in genome‐wide divergence and a pattern of isolation by distance across the landscape. Thus, contrary to a long period of allopatry followed by recent re‐contact, our data suggest that floral trait divergence in M. aurantiacus may have evolved with locally restricted, but ongoing gene flow. Therefore, our study reveals how the geographic distribution of an organism can contribute to the evolution of premating isolation in the early stages of divergence with gene flow.  相似文献   

17.
Gene exchange between locally adapted plant populations can have significant evolutionary consequences, including changes in genetic diversity, introduction of adaptive or maladaptive traits, disruptive of coadaptive gene complexes, and the creation of new ecotypes or even species. The potential for introgression between divergent populations will depend on the strength of selection against nonnative characters. Morphologically variable F2 hybrids of two Gilia capitata subspecies were used to evaluate the strength of phenotypic selection and the response to selection in the home habitats of each subspecies. At both sites, traits diagnostic of the subspecies were subject to significant phenotypic selection, probably mediated by direct selection on unmeasured correlated characters. Phenotypic selection favored native morphologies in all but a single case; leaf shape of one subspecies was favored in both habitats. The strength of selection varied between sites, with one site selecting more strongly against nonnative characters. Offspring of the F2 hybrids showed a significant evolutionary response to selection when grown in a common environment. Evolution was in the direction of similarity with the subspecies native to the site where selection was imposed. This result reveals that native character states are adaptive and suggests that selection will maintain native morphologies even after a substantial influx of genes from an ecologically and morphologically distinct, and locally adapted subspecies.  相似文献   

18.
Directional selection is prevalent in nature, yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. However, the genetic basis of this limit is unresolved. Given widespread pleiotropy, opposing selection on a trait may arise from the effects of the underlying alleles on other traits under selection, generating net stabilizing selection on trait genetic variance. These pleiotropic costs of trait exaggeration may arise through any number of other traits, making them hard to detect in phenotypic analyses. Stabilizing selection can be inferred, however, if genetic variance is greater among low‐ compared to high‐fitness individuals. We extend a recently suggested approach to provide a direct test of a difference in genetic variance for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on these traits, genetic variance differed between high‐ and low‐fitness individuals and was greater among the low‐fitness males for seven of eight CHCs, significantly more than expected by chance. Univariate tests of a difference in genetic variance were nonsignificant but likely have low power. Our results suggest that further CHC exaggeration in D. serrata in response to sexual selection is limited by pleiotropic costs mediated through other traits.  相似文献   

19.
Pollinator-mediated selection plays a major role in floral evolution and speciation. Floral traits that influence animal pollinator behavior are the target of pollinator-mediated selection, but can only evolve if floral phenotypes have underlying genetic variation. Thus, understanding the genetic basis of a floral trait is a crucial step in studying pollinator-mediated selection. In this study I tested the effect of quantitative trait loci (QTL) underlying floral traits on pollinator behavior in recombinant inbred lines (RILs) in the common sunflower, Helianthus annuus L. and its crop relative. The indirect effects of QTL on pollinator behavior, mediated by floral phenotypes, were analyzed for six insect visitor types using structural equation modeling (SEM) and path analysis. For three of the six visitor types (large and small bees and non-bee insects) valid models were revealed when all three levels (QTL, floral traits, and pollinator behavior) were incorporated. Nested model without genetics were validated for five of the six visitor types. The results suggest that insect behavior as a reaction to floral phenotypes is affected by the genetic architecture of floral traits. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: Heikki Hokkanen  相似文献   

20.
Covariation among traits can modify the evolutionary trajectory of complex structures. This process is thought to operate at a microevolutionary scale, but its long‐term effects remain controversial because trait covariation can itself evolve. Flower morphology, and particularly floral trait (co)variation, has been envisioned as the product of pollinator‐mediated selection. Available evidence suggests that major changes in pollinator assemblages may affect the joint expression of floral traits and their phenotypic integration. We expect species within a monophyletic lineage sharing the same pollinator type will show not only similarity in trait means but also similar phenotypic variance‐covariance structures. Here, we tested this expectation using eighteen Salvia species pollinated either by bees or by hummingbirds. Our findings indicated a nonsignificant multivariate phylogenetic signal and a decoupling between means and variance‐covariance phenotypic matrices of floral traits during the evolution to hummingbird pollination. Mean trait value analyses revealed significant differences between bee‐ and hummingbird‐pollinated Salvia species although fewer differences were detected in the covariance structure between groups. Variance‐covariance matrices were much more similar among bee‐ than hummingbird‐pollinated species. This pattern is consistent with the expectation that, unlike hummingbirds, bees physically manipulate the flower, presumably exerting stronger selection pressures favouring morphological convergence among species. Overall, we conclude that the evolution of hummingbird pollination proceeded through different independent transitions. Thus, although the evolution of hummingbird pollination led to a new phenotypic optimum, the process involved the diversification of the covariance structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号