共查询到20条相似文献,搜索用时 0 毫秒
1.
Ecological factors may contribute to reproductive isolation if differential local adaptation causes immigrant or hybrid fitness reduction. Because local adaptation results from the interaction between natural selection and adaptive traits, it is crucial to investigate both to understand ecological speciation. Previously, we used niche modelling to identify local water availability as an environmental correlate of incipient ecological speciation between two subspecies in Boechera stricta, a close relative of Arabidopsis. Here, we performed several large‐scale glasshouse experiments to investigate the divergence of various physiological, phenological and morphological traits. Although we found no significant difference in physiological traits, the Western subspecies has significantly faster growth rate, larger leaf area, less succulent leaves, delayed reproductive time and longer flowering duration. These trait differences are concordant with previous results that habitats of the Western genotypes have more consistent water availability, while Eastern genotypes inhabit locations with more ephemeral water supplies. In addition, by comparing univariate and multivariate divergence of complex traits (QST) to the genomewide distribution of SNP FST, we conclude that the aspects of phenology and morphology (but not physiology) are under divergent selection. In addition, we also identified several highly diverged traits without obvious water‐related functions. 相似文献
2.
《Evolutionary Applications》2017,10(10):1067-1075
The rapidly increasing rate of urbanization has a major impact on the ecology and evolution of species. While increased temperatures are a key aspect of urbanization (“urban heat islands”), we have very limited knowledge whether this generates differentiation in thermal responses between rural and urban populations. In a common garden experiment, we compared the thermal performance curves (TPCs) for growth rate and mortality in larvae of the damselfly Coenagrion puella from three urban and three rural populations. TPCs for growth rate shifted vertically, consistent with the faster–slower theoretical model whereby the cold‐adapted rural larvae grew faster than the warm‐adapted urban larvae across temperatures. In line with costs of rapid growth, rural larvae showed lower survival than urban larvae across temperatures. The relatively lower temperatures hence expected shorter growing seasons in rural populations compared to the populations in the urban heat islands likely impose stronger time constraints to reach a certain developmental stage before winter, thereby selecting for faster growth rates. In addition, higher predation rates at higher temperature may have contributed to the growth rate differences between urban and rural ponds. A faster–slower differentiation in TPCs may be a widespread pattern along the urbanization gradient. The observed microgeographic differentiation in TPCs supports the view that urbanization may drive life‐history evolution. Moreover, because of the urban heat island effect, urban environments have the potential to aid in developing predictions on the impact of climate change on rural populations. 相似文献
3.
4.
B. L. Phillips J. Llewelyn A. Hatcher S. Macdonald C. Moritz 《Journal of evolutionary biology》2014,27(12):2687-2694
The two foremost hypotheses on the evolutionary constraints on an organism's thermal sensitivity – the hotter‐is‐better expectation, and the specialist–generalist trade‐off – have received mixed support from empirical studies testing for their existence. Could these conflicting results reflect confusion regarding the organizational level (i.e. species > population > individual) at which these constraints should manifest? We propose that these evolutionary constraints should manifest at different organizational levels because of differences in their underlying causes and requirements. The hotter‐is‐better expectation should only manifest across separate evolutionary units (e.g. species, populations), and not within populations. The specialist–generalist trade‐off, by contrast, should manifest within as well as between separate evolutionary units. We measured the thermal sensitivity of sprint performance for 440 rainforest sun skinks (Lampropholis coggeri) representing 10 populations, and used the resulting performance curves to test for evidence for the hypothesized constraints at two organizational levels: (i) across populations and (ii) within populations. As predicted, the hotter‐is‐better expectation was evident only at the across‐population level, whereas the specialist–generalist trade‐off was evident within, as well as across, populations. Our results suggest that, depending on the processes that drive them, evolutionary constraints can manifest at different organizational levels. Consideration of these underlying processes, and the organizational level at which a constraint should manifest, may help resolve conflicting empirical results. 相似文献
5.
Emilien Luquet Patrik Rdin Mrch Maria Cortzar‐Chinarro Yvonne Meyer‐Lucht Jacob Hglund Anssi Laurila 《Journal of evolutionary biology》2019,32(4):356-368
Although adaptive divergence along environmental gradients has repeatedly been demonstrated, the role of post‐glacial colonization routes in determining phenotypic variation along gradients has received little attention. Here, we used a hierarchical QST–FST approach to separate the roles of adaptive and neutral processes in shaping phenotypic variation in moor frog (Rana arvalis) larval life histories along a 1,700 km latitudinal gradient across northern Europe. This species has colonized Scandinavia via two routes with a contact zone in northern Sweden. By using neutral SNP and common garden phenotypic data from 13 populations at two temperatures, we showed that most of the variation along the gradient occurred between the two colonizing lineages. We found little phenotypic divergence within the lineages; however, all phenotypic traits were strongly diverged between the southern and northern colonization routes, with higher growth and development rates and larger body size in the north. The QST estimates between the colonization routes were four times higher than FST, indicating a prominent role for natural selection. QST within the colonization routes did not generally differ from FST, but we found temperature‐dependent adaptive divergence close to the contact zone. These results indicate that lineage‐specific variation can account for much of the adaptive divergence along a latitudinal gradient. 相似文献
6.
Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist–specialist trade‐offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade‐offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life‐history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature‐mediated trade‐off between juvenile survival and size at maturity, suggesting that trade‐offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist–specialist dimension. 相似文献
7.
Analysis of size of offspring reared through three laboratory generations from populations of the field grasshopper Chorthippus brunneus from 27 sites around the British Isles showed that offspring were larger towards the cooler-wetter conditions in the western and northern limits of the range. This variation had a significant genetic component. There was a trade-off between clutch size and offspring size between and within populations. Under favourable thermal and feeding conditions maternal fitness was optimal when individuals produced the largest clutches of the smallest eggs, but under poor conditions maternal fitness was optimal when individuals produced small clutches of very large offspring. Calculation of geometric mean fitness over time indicated that having larger offspring near to the edge of the range could be advantageous as a conservative risk-spreading strategy. As well as geographic variation in egg size, significant environment-genotype interactions in egg size in relation to temperature were observed. 相似文献
8.
Edwin Lebrija‐Trejos Peter B. Reich Andres Hernández S. Joseph Wright 《Ecology letters》2016,19(9):1071-1080
Multiple niche‐based processes including conspecific negative density dependence (CNDD) determine plant regeneration and community structure. We ask how interspecific and intraspecific density‐dependent interactions relate to plant life histories and associated functional traits. Using hierarchical models, we analysed how such interactions affected first‐year survival of seedling recruits of 175 species in a tropical forest, and how species abundances and functional traits are related to interspecific variation in density‐dependent effects. Conspecific seedling neighbour effects prevailed over the effects of larger conspecific and all heterospecific neighbours. Tolerance of seedling CNDD enhanced recruit survival and subsequent abundance, all of which were greater among larger seeded, slow‐growing and well‐defended species. Niche differentiation along the growth–survival trade‐off and tolerance of seedling CNDD strongly correlated with regeneration success, with manifest consequences for community structure. The ability of larger seeded species to better tolerate CNDD suggests a novel mechanism for CNDD to contribute to seed‐size variation and promote species coexistence through a tolerance–fecundity trade‐off. 相似文献
9.
Catriona Condon Brandon S. Cooper Sam Yeaman Michael J. Angilletta Jr. 《Evolution; international journal of organic evolution》2014,68(3):720-728
In variable environments, selection should favor generalists that maintain fitness across a range of conditions. However, costs of adaptation may generate fitness trade‐offs and lead to some compromise between specialization and generalization that maximizes fitness. Here, we evaluate the evolution of specialization and generalization in 20 populations of Drosophila melanogaster experimentally evolved in constant and variable thermal environments for 3 years. We developed genotypes from each population at two temperatures after which we measured fecundity across eight temperatures. We predicted that constant environments would select for thermal specialists and that variable environments would select for thermal generalists. Contrary to our predictions, specialists and generalists did not evolve in constant and spatially variable environments, respectively. However, temporal variation produced a type of generalist that has rarely been considered by theoretical models of developmental plasticity. Specifically, genotypes from the temporally variable selective environment were more fecund across all temperatures than were genotypes from other environments. These patterns suggest certain allelic effects and should inspire new directions for modeling adaptation to fluctuating environments. 相似文献
10.
Thermal performance curves (TPCs) are continuous reaction norms that describe the relationship between organismal performance and temperature and are useful for understanding trade‐offs involved in thermal adaptation. Although thermal trade‐offs such as those between generalists and specialists or between hot‐ and cold‐adapted phenotypes are known to be genetically variable and evolve during thermal adaptation, little is known of the genetic basis to TPCs – specifically, the loci involved and the directionality of their effects across different temperatures. To address this, we took a multivariate approach, mapping quantitative trait loci (QTL) for locomotor activity TPCs in the fly, Drosophila serrata, using a panel of 76 recombinant inbred lines. The distribution of additive genetic (co)variance in the mapping population was remarkably similar to the distribution of mutational (co)variance for these traits. We detected 11 TPC QTL in females and 4 in males. Multivariate QTL effects were closely aligned with the major axes genetic (co)variation between temperatures; most QTL effects corresponded to variation for either overall increases or decreases in activity with a smaller number indicating possible trade‐offs between activity at high and low temperatures. QTL representing changes in curve shape such as the ‘generalist–specialist’ trade‐off, thought key to thermal adaptation, were poorly represented in the data. We discuss these results in the light of genetic constraints on thermal adaptation. 相似文献
11.
Trade-offs between life history and other traits play a key role in shaping the evolution of individuals. It is well established theoretically that the shapes of trade-off curves are as crucial to the evolutionary outcome as their strengths. However, measuring the shape of these relationships directly is often impractical. Here we use an indirect approach that examines the patterns seen within a population and then use theory to infer the shape of the trade-off curve. Using a bioassay we found that most individuals had either high susceptibility or relatively high resistance to a microparasite in a lepidopteran host population. According to general theory, this type of pattern in resistance would be most likely with a deceleratingly costly impact on fitness of increasing resistance. The implications and generality of the approach are discussed, along with the implications of the results to our understanding of the nature of innate resistance to parasites. 相似文献
12.
Norry FM Scannapieco AC Sambucetti P Bertoli CI Loeschcke V 《Molecular ecology》2008,17(20):4570-4581
The thermotolerance effect of heat hardening (also called short-term acclimation), knockdown resistance to high temperature (KRHT) with and without heat hardening and chill-coma recovery (CCR) are important phenotypes of thermal adaptation in insects and other organisms. Drosophila melanogaster from Denmark and Australia were previously selected for low and high KRHT, respectively. These flies were crossed to construct recombinant inbred lines (RIL). KRHT was higher in heat-hardened than in nonhardened RIL. We quantify the heat-hardening effect (HHE) as the ratio in KRHT between heat-hardened and nonhardened RIL. Composite interval mapping revealed a more complex genetic architecture for KRHT without heat-hardening than for KRHT in heat-hardened insects. Five quantitative trait loci (QTL) were found for KRHT, but only two of them were significant after heat hardening. KRHT and CCR showed trade-off associations for QTL both in the middle of chromosome 2 and the right arm of chromosome 3, which should be the result of either pleiotropy or linkage. The major QTL on chromosome 2 explained 18% and 27-33% of the phenotypic variance in CCR and KRHT in nonhardened flies, respectively, but its KRHT effects decreased by heat hardening. We discuss candidate loci for each QTL. One HHE-QTL was found in the region of small heat-shock protein genes. However, HHE-QTL explained only a small fraction of the phenotypic variance. Most heat-resistance QTL did not colocalize with CCR-QTL. Large-effect QTL for CCR and KRHT without hardening (basal thermotolerance) were consistent across continents, with apparent transgressive segregation for CCR. HHE (inducible thermotolerance) was not regulated by large-effect QTL. 相似文献
13.
Animals may form groups in response to the foraging–vigilance trade‐off, through enhanced predator detection (collective detection hypothesis) or reduced predation risk to the individual (dilution hypothesis), allowing individuals to decrease vigilance levels. Both hypotheses predict decreasing individual vigilance levels with increasing group size; however, the collective detection hypothesis also predicts increasing overall group vigilance with increasing group size. However, in species in which vigilance and foraging are not mutually exclusive, where vigilance may not be as costly, neither of these hypotheses may apply. Here, we examine the relationship between group size and vigilance in the social Cape ground squirrel (Xerus inauris), a species that can combine foraging and vigilance behaviours. Ten groups were observed using scan sampling, measuring both group and individual vigilance and group size. A negative relationship existed between individual vigilance and group size and a positive relationship between group vigilance and group size. Therefore, in Cape ground squirrels, vigilance seems to be costly even though it can be combined with foraging behaviours. Furthermore, group vigilance behaviour gives support to the collective detection hypothesis, whilst individual vigilance gives support to both hypotheses. 相似文献
14.
Emily V. Saarinen Patrick F. Reilly James D. Austin 《Insect Conservation and Diversity》2016,9(6):517-528
- In poorly dispersing species gene flow can be facilitated when suitable habitat is widespread, allowing for increased dispersal between neighbouring locations. The Poweshiek skipperling [Oarisma poweshiek (Parker)], a federally endangered butterfly, has undergone a rapid, recent demographic decline following the loss of tallgrass prairie and fen habitats range wide. The loss of habitat, now restricted geographic range, and poor dispersal ability have left O. poweshiek at increased risk of extinction.
- We studied the population genetics of six remaining populations of O. poweshiek in order to test the hypothesis that gene flow was historically high despite limited long‐distance dispersal capability. Utilising nine microsatellite loci developed by PacBio sequencing, we tested for patterns of isolation by distance, low population genetic structure and alternative gene flow models.
- Populations from southern Manitoba, Canada to the Lower Peninsula of Michigan, USA are only weakly genetically differentiated despite having low diversity. We found no support for isolation by distance, and Bayesian estimates of historical gene flow support our hypothesis that high levels of gene flow previously connected populations from Michigan to Wisconsin.
- Prairie grasslands have been reduced tremendously over the past century, but the low mobility of O. poweshiek suggests that rapid loss of populations over the past decade cannot be simply explained by fragmentation of habitat.
- As a species at high risk of extinction, understanding historical processes of gene flow will allow for informed management decisions with respect to head‐starting individuals for population reintroductions and for conserving networks of habitat that will allow for high levels of gene flow.
15.
Seema N. Sheth Amy L. Angert 《Evolution; international journal of organic evolution》2014,68(10):2917-2931
The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within‐population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures. 相似文献
16.
Jofre Carnicer Constantí Stefanescu Roger Vila Vlad Dincă Xavier Font Josep Peñuelas 《Global Ecology and Biogeography》2013,22(1):6-18
Aim Adaptive trait continua are axes of covariation observed in multivariate trait data for a given taxonomic group. These continua quantify and summarize life‐history variation at the inter‐specific level in multi‐specific assemblages. Here we examine whether trait continua can provide a useful framework to link life‐history variation with demographic and evolutionary processes in species richness gradients. Taking an altitudinal species richness gradient for Mediterranean butterflies as a study case, we examined a suite of traits (larval diet breadth, adult phenology, dispersal capacity and wing length) and species‐specific habitat measures (temperature and aridity breadth). We tested whether traits and species‐specific habitat measures tend to co‐vary, whether they are phylogenetically conserved, and whether they are able to explain species distributions and spatial genetic variation in a large number of butterfly assemblages. Location Catalonia, Spain. Methods We formulated predictions associated with species richness gradients and adaptive trait continua. We applied principal components analyses (PCAs), structural equation modelling and phylogenetic generalized least squares models. Results We found that traits and species‐specific habitat measures covaried along a main PCA axis, ranging from multivoltine trophic generalists with high dispersal capacity to univoltine (i.e. one generation per year), trophic specialist species with low dispersal capacity. This trait continuum was closely associated with the observed distributions along the altitudinal gradient and predicted inter‐specific differences in patterns of spatial genetic variability (FST and genetic distances), population responses to the impacts of global change and local turnover dynamics. Main conclusions The adaptive trait continuum of Mediterranean butterflies provides an integrative and mechanistic framework to: (1) analyse geographical gradients in species richness, (2) explain inter‐specific differences in population abundances, spatial distributions and demographic trends, (3) explain inter‐specific differences in patterns of genetic variation (FST and genetic distances), and (4) study specialist–generalist life‐history transitions frequently involved in butterfly diversification processes. 相似文献
17.
Abundances and distributions of species are usually associated. This implies that as a species declines in abundance so does the number of sites it occupies. Conversely, when there is an increase in a species' range size, it is usually followed by an increase in population size (Gaston et al. 2000 ). This ecological phenomenon, also known as the abundance–occupancy relationship (AOR), is well documented in several species of animals and plants (Gaston et al. 2000 ) but has been little investigated in parasites. In this issue of Molecular Ecology, Drovetski et al. ( 2014 ) investigated the AOR in avian haemosporidians (vector‐borne blood parasites) using data from four well‐sampled bird communities. In support of the AOR, the research group found that the abundance of parasite cytochrome b lineages (a commonly used proxy for species identification within this group of parasites) was positively linked with the abundance of susceptible avian host species and that the most abundant haemospordian lineages were those with larger ranges. Drovetski et al. ( 2014 ) also found evidence for both hypotheses proposed to explain the AOR in parasites: the trade‐off hypothesis (TOH) and the niche‐breadth hypothesis (NBH). Interestingly, the main predictor of the AOR was the number of susceptible hosts (i.e. number of infected birds) and not the number of host species the parasites were able to exploit. 相似文献
18.
- Stressful or stochastic environments may have significant selective effects, leading to increased plasticity or stress resistance. Starvation is a type of stress commonly encountered among organisms inhabiting stochastic environments. Indeed, starvation endurance is an important trait, especially in sit‐and‐wait predators, which experience frequent fluctuations in prey arrivals because of their limited mobility.
- Differences in starvation endurance between antlions originating from Mediterranean (benign and predictable) and desert (harsher and stochastic) regions were investigated by exposing them to starvation in a fully factorial experiment using climate chambers simulating Mediterranean or desert climatic conditions.
- A trade‐off between growth rate and starvation endurance was also investigated by feeding the antlions at two different frequencies pre‐starvation. Additionally, the existence of growth compensation was tested for by measuring relative growth rate when feeding was resumed post‐starvation.
- Population of origin did not significantly affect rates of body mass loss during starvation or relative growth rates when feeding was resumed. Antlions that were fed less frequently during the feeding phase lost mass faster during the starvation phase, but grew faster during the compensation phase.
- This study emphasises the importance of testing responses to stress when investigating life‐history trade‐offs. Some phenotypic differences between populations might be apparent only when exposing the experimental organisms to external stress. Conversely, phenotypic differences apparent under stress‐free conditions might be masked by the effects of the stress factor. Adopting such an integrative approach allows elucidation of the level of plasticity in response to stress in different populations.
19.
20.
Hosts can utilize different types of defense against the effects of parasitism, including avoidance, resistance, and tolerance. Typically, there is tremendous heterogeneity among hosts in these defense mechanisms that may be rooted in the costs associated with defense and lead to trade‐offs with other life‐history traits. Trade‐offs may also exist between the defense mechanisms, but the relationships between avoidance, resistance, and tolerance have rarely been studied. Here, we assessed these three defense traits under common garden conditions in a natural host–parasite system, the trematode eye‐fluke Diplostomum pseudospathaceum and its second intermediate fish host. We looked at host individuals originating from four genetically distinct populations of two closely related salmonid species (Atlantic salmon, Salmo salar and sea trout, Salmo trutta trutta) to estimate the magnitude of variation in these defense traits and the relationships among them. We show species‐specific variation in resistance and tolerance and population‐specific variation in resistance. Further, we demonstrate evidence for a trade‐off between resistance and tolerance. Our results suggest that the variation in host defense can at least partly result from a compromise between different interacting defense traits, the relative importance of which is likely to be shaped by environmental components. Overall, this study emphasizes the importance of considering different components of the host defense system when making predictions on the outcome of host–parasite interactions. 相似文献