首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Understanding of the factors involved in determining the level of central arterial blood pressure in mammals has been clouded by inappropriate allometric analyses that fail to account for phylogenetic relationships among species, and require pressure to approach 0 as body size decreases. The present study analyses systolic, mean arterial, and diastolic blood pressure in 47 species of mammal with phylogenetically informed techniques applied to two‐parameter equations. It also sets nonlinear, three‐parameter equations to the data to remove the assumption of the two‐parameter power equation that the smallest animals must have negligible blood pressure. These analyses show that blood pressure increases with body size. Nonlinear analyses show that mean blood pressure increases from 93 mmHg in a 10 g mouse to 156 mmHg in a 4 tonne elephant. The scaling exponent of blood pressure is generally lower than, though not significantly different from, the exponent predicted on the basis of the expected scaling of the vertical distance between the head and the heart. This indicates that compensation for the vertical distance above the heart is not perfect and suggests that the pressure required to perfuse the capillaries at the top of the body may decrease in larger species.  相似文献   

2.
This paper aims to test the contribution of ontogenetic scaling to sexual dimorphism of the facial skeleton in the African apes. Specifically, it addresses whether males and females of each species share a common postnatal ontogenetic shape trajectory for the facial skeleton. Where trajectories are found to differ, it is tested whether male and female trajectories: 1) diverge early, or 2) diverge later after sharing a common trajectory earlier in the postnatal period. Where ontogenetic shape trajectories are found to be shared, it is also tested whether males and females are ontogenetically scaled. This study uses geometric morphometric analyses of 28 landmarks from the facial skeletons of 137 G. g. gorilla (62 adults; 75 juveniles), 95 P. paniscus (34 adults; 61 juveniles), and 115 P. t. troglodytes (58 adults; 57 juveniles). On average, males and females share a common ontogenetic shape trajectory until around the eruption of the second permanent molars. In addition, for the same period, males and females in each species share a common ontogenetic scaling trajectory. After this period, males and females diverge both from each other and from the common juvenile ontogenetic shape and scaling trajectories within each species. Thus, the male and female facial skeleton shows ontogenetic scaling until around the point of the eruption of the second molar (i.e., around puberty and the development of secondary sexual characteristics), but subsequent sexual dimorphism occurs via divergent trajectories and not via ontogenetic scaling.  相似文献   

3.
    
Scaling predictions pioneered by A.V. Hill state that isometric changes in kinematics result from isometric changes in size. These predictions have been difficult to support because few animals display truly isometric growth. An exception to this rule is said to be the toads in the genus Bufo, which can grow over three orders of magnitude. To determine whether skull shape increases isometrically, I used linear measurements and geometric morphometrics to quantify shape variation in a size series of 69 skulls from the marine toad, B. marinus. Toads ranged in body mass from 1.8 gm to a calculated 1,558.9 gm. Of all linear measurements (S/V length, skull width, skull length, levator mass, depressor mass, adductor foramen area), only the area of the adductor foramen increased faster than body mass; the remaining variables increased more slowly. In addition, modeling the lower jaw as a lever‐arm system showed that the lengths of the closing in‐ and out‐levers scaled isometrically with body mass despite the fact that the skull itself is changing allometrically. Geometric morphometrics discerned areas of greatest variability with increasing body mass at the rear of the skull in the area of the squamosal bone and the adductor foramen. This increase in area of the adductor foramen may allow more muscle to move the relatively greater mass of the lower jaw in larger toads, although adductor mass scales with body mass. If B. marinus feeds in a similar manner to other Bufo, these results imply that morphological allometry may still result in kinematic isometry. J. Morphol. 241:115–126, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
    
White and Seymour examined the scaling of central arterial blood pressure against body mass in mammals ranging in size from a 30 g mouse to a 4080 kg elephant. Exponents in power functions fitted to each of three datasets (systolic, diastolic, and mean arterial pressure) were reported to be significantly greater than zero and indistinguishable from 0.33. The first of these outcomes would indicate that blood pressure increases with body size, whereas the second is consistent with the heart working against gravity to move blood to the head. Taken together, these results seemingly refute the notion that the cephalic circulation functions as an energy‐neutral siphon. However, the main findings by White and Seymour were presented in the form of graphs that distorted the relationships between the variables of interest. I use simple graphics to show that the data were unsuited from the outset for use in allometric analyses and that conclusions of the investigation are not well supported.  相似文献   

5.
滇金丝猴下颌的生物力学研究   总被引:5,自引:0,他引:5  
潘汝亮  彭燕章 《动物学报》1991,37(4):389-396
利用生物力学原理,判别分析和异速生长对我国特有的滇金丝猴下颌研究表明,由于雄性比雌性具有相对更长的下颌,导致了整个下颌结构在两性间的差异。在所分析的8个变量中,4个被选为性别鉴别的重要特征,判别式为:D=-27.65-0.729CONM1+0.596MANDL+1.204MANDSYM-1.778MANCORPW。与猕猴和长鼻猴相比,滇金丝猴具有相对短的下颌骨,较宽的下颌髁和较高的下颌体。这些特征保障了下颌齿,特别是颊齿列更有利于叶类食物的咀嚼,即有利于咀嚼过程中消除下颌的疲劳。  相似文献   

6.
    
Early observations led Sanio [ Wissen. Bot. , 8 , (1872) 401] to state that xylem conduit diameters and lengths in a coniferous tree increase from the apex down to a height below which they begin to decrease towards the tree base. Sanio's law of vertical tapering has been repeatedly tested with contradictory results and the debate over the scaling of conduit diameters with distance from the apex has not been settled. The debate has recently acquired new vigour, as an accurate knowledge of the vertical changes in wood anatomy has been shown to be crucial to scaling metabolic properties to plant and ecosystem levels. Contrary to Sanio's hypothesis, a well known model (MST, metabolic scaling theory) assumes that xylem conduits monotonically increase in diameter with distance from the apex following a power law. This has been proposed to explain the three-fourth power scaling between size and metabolism seen across plants. Here, we (i) summarized available data on conduit tapering in trees and (ii) propose a new numerical model that could explain the observed patterns. Data from 101 datasets grouped into 48 independent profiles supported the notions that phylogenetic group (angiosperms versus gymnosperms) and tree size strongly affected the vertical tapering of conduit diameter. For both angiosperms and gymnosperms, within-tree tapering also varied with distance from the apex. The model (based on the concept that optimal conduit tapering occurs when the difference between photosynthetic gains and wall construction costs is maximal) successfully predicted all three major empirical patterns. Our results are consistent with Sanio's law only for large trees and reject the MST assumptions that vertical tapering in conduit diameter is universal and independent of rank number.  相似文献   

7.
Captorhinids are a speciose clade of sauropsids that are crucial to understand several aspects of basal amniote general biology. Members of the Captorhinidae explored different diets and, amongst basal amniotes, were one of the first groups to demonstrate high‐fibre herbivory. Several papers have been published on the cranial anatomy of captorhinids, but there are relatively few studies which focus on the post‐cranium, especially on the appendicular skeleton and long bones. This contribution presents the first quantitative long bone scaling in Captorhinidae performed through morphometric analyses. From classical biomechanical research, it is well‐established that to accommodate an increase in size, gravity will result in elastic deformation of long bones. This outcome is especially significant in terrestrial tetrapods with a sprawling limb posture such as captorhinids, where great torsional stresses are applied to long bones, both during locomotion and in the resting phase. In this paper, we test whether the consistent evolutionary size increase in captorhinids led to major re‐patterning in long bone structure as theoretically expected, based on the theory of elastic similarity. Morphometric analysis shows that, apart from a small positive allometry in the humerus, captorhinid long bones scale geometrically as body size increases. Thus, the predicted elastic similarity to maintain similar levels in peak stress with an increase in dimensions does not seem not to apply to long bone evolution in captorhinids. We propose that, as already observed experimentally in larger‐bodied varanid lizards, large captorhinids could also mitigate size‐related increases in stress by reducing femur rotation and increasing the percentage of the stride cycle during which the right hindfoot was on the ground (i.e. the duty factor). In this way, large captorhinids could avoid reaching peak stress thresholds by sacrificing speed during locomotion and without a substantial long bone re‐patterning or postural change.  相似文献   

8.
    
The scaling of body parts is central to the expression of morphology across body sizes and to the generation of morphological diversity within and among species. Although patterns of scaling‐relationship evolution have been well documented for over one hundred years, little is known regarding how selection acts to generate these patterns. In part, this is because it is unclear the extent to which the elements of log‐linear scaling relationships—the intercept or mean trait size and the slope—can evolve independently. Here, using the wing–body size scaling relationship in Drosophila melanogaster as an empirical model, we use artificial selection to demonstrate that the slope of a morphological scaling relationship between an organ (the wing) and body size can evolve independently of mean organ or body size. We discuss our findings in the context of how selection likely operates on morphological scaling relationships in nature, the developmental basis for evolved changes in scaling, and the general approach of using individual‐based selection experiments to study the expression and evolution of morphological scaling.  相似文献   

9.
    
Allometric biomass allocation theory predicts that leaf biomass (ML) scaled isometrically with stem (MS) and root (MR) biomass, and thus above‐ground biomass (leaf and stem) (MA) and root (MR) scaled nearly isometrically with below‐ground biomass (root) for tree seedlings across a wide diversity of taxa. Furthermore, prior studies also imply that scaling constant should vary with species. However, litter is known about whether such invariant isometric scaling exponents hold for intraspecific biomass allocation, and how variation in scaling constants influences the interspecific scaling relationship between above‐ and below‐ground biomass. Biomass data of seedlings from five evergreen species were examined to test scaling relationships among biomass components across and within species. Model Type II regression was used to compare the numerical values of scaling exponents and constants among leaf, stem, root, and above‐ to below‐ground biomass. The results indicated that ML and MS scaled in an isometric or a nearly isometric manner with MR, as well as MA to MR for five woody species. Significant variation was observed in the Y‐intercepts of the biomass scaling curves, resulting in the divergence for intraspecific scaling and interspecific scaling relationships for ML versus MS and ML versus MR, but not for MS versus MR and MA versus MR. We conclude, therefore, that a nearly isometric scaling relationship of MA versus MR holds true within each of the studied woody species and across them irrespective the negative scaling relationship between leaf and stem.  相似文献   

10.
采用定点方法,对太行山猕猴下颌骨有关变量作了测量、统计和分析。通过对太行山猕猴下颌生物力学、异速生长的研究表明,雄性下颌相对较长,与此有关的生物力学特点是下颌髁后缘至M1近中侧长、下颌髁后缘至M3下次小尖长和下颌支高等阻力臂减小,而下颌髁长、下颌髁宽、下颌体高Ⅱ、下颌体宽Ⅱ、下颌联合长等变量则增强,使咀嚼力增加。这些特点均与其生态对策密切相关。研究结果还与有关材料进行了比较,表明太行山猕猴与国内其他地区的猕猴存在着明显差异。  相似文献   

11.
D'Arcy Thompson developed a method of coordinates which allowed for a geometrical presentation of form and form change. While his grid transformations have received much attention, little work in the geometry of form and form change has occurred since. We present a three-dimensional nonhomogeneous finite-element scaling method which allows for the mathematical and geometrical measurement of form change in addition to the graphical representation of these deformations as D'Arcy Thompson grids. This allows a reconciliation between geometrical and statistical methods for analyzing form. The method involves quantification of the transformation of one form into another in three dimensions without special registration and contains algorithms for obtaining a mean form. The method is applied to an analysis of variation in cranial form among adult male rhesus macaques from the Cayo Santiago skeletal collection. Variation was greatest in the superior-inferior direction, followed by the anterior-posterior and medial-lateral directions. The upper facial region is particularly variable. An analysis of allometry relative to local size variation shows that the larger any particular region is, the relatively greater its height, narrower its width, and shorter its length. An analysis of allometry relative to overall size showed that the upper face is positively allometric, the occipital region is strongly negatively allometric, and the other regions are isometric. After within-group variation is characterized, as described here, between-group studies, such as growth series and phylogenetic series, can be performed.  相似文献   

12.
A common feature of mycorrhizal observation is the growth of the infection on the plant root as a percent of the infected root or root tip length. Often, this is measured as a logistic curve with an eventual, though usually transient, plateau. It is shown in this paper that the periods of stable percent infection in the mycorrhizal growth cycle correspond to periods where both the plant and mycorrhiza growth rates and likely metabolism are tightly coupled.  相似文献   

13.
    
The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height–diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed‐effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade‐intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life‐history strategies, phylogenetic history, and environmental limitations at biogeographical scales.  相似文献   

14.
    
Energy storage in arthropods has important implications for survival and reproduction. The lipid content of 276 species of adult arthropods with wet mass in the range 0.2–6.13 g is determined to assess how lipid mass scales with body mass. The relative contribution of lipids to total body mass is investigated with respect to phylogeny, ontogeny and sex. The lipid content of adult insects, arachnids, and arthropods in general shows an isometric scaling relationship with respect to body mass (M) (Marthropod lipid = ?1.09 ×Mdry1.01 and Marthropod lipid = ?1.00 ×Mlean0.98). However, lipid allocation varies between arthropod taxa, as well as with sex and developmental stage within arthropod taxa. Female insects and arachnids generally have higher lipid contents than males, and larval holometabolous insects and juvenile arachnids have higher lipid contents than adults.  相似文献   

15.
    
Abstract.  1. In the size–grain hypothesis (a) long legs allow walking organisms to step over gaps and pores in substrate but prohibit them from entering those gaps; (b) the world is more rugose for small organisms; and (c) the relative cost of long legs increases as organisms grow smaller. The hypothesis predicts a positive allometry of leg length ( = mass b where b > 0.33 of isometry), a pattern that robustly holds for ants.
2. Toward testing for leg length allometries in other taxa, arthropods were extracted from the Panama leaf litter and measured. Three common taxa (spiders, diplopods, Coleoptera) yielded b s that exceeded 0.33 while three others (Acarina, Pseudoscorpiones, and Collembola) did not. The exponent b tended to increase ( P = 0.06, n = 7) with an arthropod taxon's average body mass.
3. Since leg length in cursorial organisms tends toward isometry in very small and very large taxa (i.e. mammals) this suggests that the size–grain hypothesis may best apply at a transition zone of intermediate body mass: the macroarthropods.
4. Body length was a robust predictor of mass in all groups despite variation in shape.  相似文献   

16.
    
Morphological scaling relationships between organ and body size—also known as allometries—describe the shape of a species, and the evolution of such scaling relationships is central to the generation of morphological diversity. Despite extensive modeling and empirical tests, however, the modes of selection that generate changes in scaling remain largely unknown. Here, we mathematically model the evolution of the group‐level scaling as an emergent property of individual‐level variation in the developmental mechanisms that regulate trait and body size. We show that these mechanisms generate a “cryptic individual scaling relationship” unique to each genotype in a population, which determines body and trait size expressed by each individual, depending on developmental nutrition. We find that populations may have identical population‐level allometries but very different underlying patterns of cryptic individual scaling relationships. Consequently, two populations with apparently the same morphological scaling relationship may respond very differently to the same form of selection. By focusing on the developmental mechanisms that regulate trait size and the patterns of cryptic individual scaling relationships they produce, our approach reveals the forms of selection that should be most effective in altering morphological scaling, and directs researcher attention on the actual, hitherto overlooked, targets of selection.  相似文献   

17.
A primary goal of macroecology is to identify principles that apply across varied ecosystems and taxonomic groups. Here we show that the allometric relationship observed between maximum abundance and body size for terrestrial plants can be extended to predict maximum population densities of marine phytoplankton. These results imply that the abundance of primary producers is similarly constrained in terrestrial and marine systems by rates of energy supply as dictated by a common allometric scaling law. They also highlight the existence of general mechanisms linking rates of individual metabolism to emergent properties of ecosystems.  相似文献   

18.
    
The metabolic theory of ecology (MTE) predicts the effects of body size and temperature on metabolism through considerations of vascular distribution networks and biochemical kinetics. MTE has also been extended to characterise processes from cellular to global levels. MTE has generated both enthusiasm and controversy across a broad range of research areas. However, most efforts that claim to validate or invalidate MTE have focused on testing predictions. We argue that critical evaluation of MTE also requires strong tests of both its theoretical foundations and simplifying assumptions. To this end, we synthesise available information and find that MTE's original derivations require additional assumptions to obtain the full scope of attendant predictions. Moreover, although some of MTE's simplifying assumptions are well supported by data, others are inconsistent with empirical tests and even more remain untested. Further, although many predictions are empirically supported on average, work remains to explain the often large variability in data. We suggest that greater effort be focused on evaluating MTE's underlying theory and simplifying assumptions to help delineate the scope of MTE, generate new theory and shed light on fundamental aspects of biological form and function.  相似文献   

19.
    
Several theories predict whole‐tree function on the basis of allometric scaling relationships assumed to emerge from traits of branching networks. To test this key assumption, and more generally, to explore patterns of external architecture within and across trees, we measure branch traits (radii/lengths) and calculate scaling exponents from five functionally divergent species. Consistent with leading theories, including metabolic scaling theory, branching is area preserving and statistically self‐similar within trees. However, differences among scaling exponents calculated at node‐ and whole‐tree levels challenge the assumption of an optimised, symmetrically branching tree. Furthermore, scaling exponents estimated for branch length change across branching orders, and exponents for scaling metabolic rate with plant size (or number of terminal tips) significantly differ from theoretical predictions. These findings, along with variability in the scaling of branch radii being less than for branch lengths, suggest extending current scaling theories to include asymmetrical branching and differential selective pressures in plant architectures.  相似文献   

20.
Pretzsch H 《Oecologia》2006,146(4):572-583
Experimental plots covering a 120 years' observation period in unthinned, even-aged pure stands of common beech (Fagus sylvatica), Norway spruce (Picea abies), Scots pine (Pinus sylvestris), and common oak (Quercus Petraea) are used to scrutinize Reineke's (1933) empirically derived stand density rule [see text], N=tree number per unit area, [see text]=mean stem diameter), Yoda's (1963) self-thinning law based on Euclidian geometry ([see text] [see text]=mean biomass per tree), and basic assumptions of West, Brown and Enquist's (1997, 1999) fractal scaling rules ([see text] [see text] w=biomass per tree, d=stem diameter). RMA and OLS regression provides observed allometric exponents, which are tested against the exponents, expected by the considered rules. Hope for a consistent scaling law fades away, as observed exponents significantly correspond with the considered rules only in a minority of cases: (1) exponent r of [see text] varies around Reineke's constant -1.605, but is significantly different from r=-2, supposed by Euclidian or fractal scaling, (2) Exponent c of the self-thinning line [see text] roams roughly about the Euclidian scaling constant -3/2, (3) Exponent a of [see text] tends to follow fractal scaling 8/3. The unique dataset's evaluation displays that (4) scaling exponents and their oscillation are species-specific, (5) Euclidian scaling of one relation and fractal scaling of another are coupled, depending on species. Ecological implications of the results in respect to self-tolerance (common oak>Norway spruce>Scots pine>common beech) and efficiency of space occupation (common beech>Scots pine>Norway spruce>common oak) are stressed and severe consequences for assessing, regulating and scheduling stand density are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号