首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) The range of temperature exposure of endotherms is narrow compared to ectotherms that can experience daily and seasonal temperature fluxes. (2) Comparison of the blood viscosity of amphibians (bullfrog, Woodhouse's toad, and marine toad) and mammals (horse, dog, and rat) at 3°C and 38°C was undertaken to determine if the effect of temperature on blood viscosity was diminished in amphibians relative to mammals. (3) Mammals did not consistently show greater changes in blood viscosity, plasma viscosity, or relative viscosity with decreasing temperatures relative to the amphibians in this study. (4) These data do not support our hypothesis that blood viscosity of amphibians is less affected by temperature than mammalian blood.  相似文献   

2.
Leucocytes are typically considered as a whole in studies examining telomere dynamics in mammals. Such an approach may be precarious, as leucocytes represent the only nucleated blood cells in mammals, their composition varies temporally, and telomere length differs between leucocyte types. To highlight this limitation, we examined here whether seasonal variation in leucocyte composition was related to variation in telomere length in free‐ranging mandrills (Mandrilllus sphinx). We found that the leucocyte profile of mandrills varied seasonally, with lower lymphocyte proportion being observed during the long dry season presumably because of the combined effects of high nematode infection and stress at that time of the year. Interestingly, this low lymphocyte proportion during the long dry season was associated with shorter telomeres. Accordingly, based on longitudinal data, we found that seasonal changes in lymphocyte proportion were reflected by corresponding seasonal variation in telomere length. Overall, these results suggest that variation in lymphocyte proportion in blood can significantly affect telomere measurements in mammals. However, lymphocyte proportion did not entirely explain variation in telomere length. For instance, a lower lymphocyte proportion with age could not fully explain shorter telomeres in older individuals. Overall, our results show that telomere length and leucocyte profile are strongly although imperfectly intertwined, which may obscure the relationship between telomere dynamics and ageing processes in mammals.  相似文献   

3.
When aquatically adapted mammals and birds swim submerged, they exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues and organs is reduced. The most intense dive response occurs during forced submersion which conserves blood oxygen for the brain and heart, thereby preventing asphyxiation. In free-diving animals, the dive response is less profound, and energy metabolism remains aerobic. However, even this relatively moderate bradycardia seems diametrically opposed to the normal cardiovascular response (i.e., tachycardia and peripheral vasodilation) during physical exertion. As a result, there has been a long-standing paradox regarding how aquatic mammals and birds exercise while submerged. We hypothesized based on cardiovascular modeling that heart rate must increase to ensure adequate oxygen delivery to active muscles. Here, we show that heart rate (HR) does indeed increase with flipper or fluke stroke frequency (SF) during voluntary, aerobic dives in Weddell seals (HR?=?1.48SF?-?8.87) and bottlenose dolphins (HR?=?0.99SF?+?2.46), respectively, two marine mammal species with different evolutionary lineages. These results support our hypothesis that marine mammals maintain aerobic muscle metabolism while swimming submerged by combining elements of both dive and exercise responses, with one or the other predominating depending on the level of exertion.  相似文献   

4.
Organ scaling in mammals: the kidneys   总被引:2,自引:0,他引:2  
Values of kidney weight in adult male and female mammals, both terrestrial and aquatic, as well as values for renal blood flow and glomerular number and diameter, were submitted to linear (log-log) regression analysis. The slope of the regression line for kidney weight in 63 species of adult terrestrial mammals was 0.85 %/- 0.01. No statistically significant difference was found between the slopes of the regression lines for male and female terrestrial mammals. The slope of regression line for kidney weight in eight species of adult aquatic mammals was 0.92 +/- 0.01. Again, no statistically significant difference was found between the slopes for males and females. However, the slope (0.92) of the regression line for aquatic mammals was significantly different from the slope (0.85) for terrestrial mammals (P much less than 0.001). The slope of the regression of renal blood flow on body weight was 0.82 +/- 0.01. This value is consistent with the hypothesis that renal blood flow represents a constant fraction of cardiac output (over about 3.4 orders of magnitude in body weight). The slopes of the regression lines for glomerular number (per kidney) and mean glomerular diameter were 0.59 +/- 0.02 and 0.11 +/- 0.01, respectively. A schematic model representing the scaling of energy-partitioning in mammals is introduced.  相似文献   

5.

The literature provides all the data needed to calculate the ratio between the amount of haemoglobin and the total surface area of erythrocytes in 54 species of mammals ranging in body mass from 2.5 g to more than 1000 kg. Analysis shows that the concentration of haemoglobin (Hb; g%) does not depend on the body mass of the mammals studied. The number of erythrocytes in 1 mm3 of blood (RBC; 106×mm−3) is significantly lower, and the diameter of these cells significantly higher, among larger mammals as opposed to smaller ones. The result is that the total surface area of erythrocytes in 1 mm3 of blood (TSAE; mm2×mm−3) is significantly lower among larger mammals, while the Hb/TSAE ratio (pg×μm−2) is significantly greater. These results point to the smaller size of erythrocytes of smaller mammals permitting much greater numbers to exist, thereby producing a greater TSAE and smaller Hb/TSAE ratio. The greater total surface area of red blood cells per unit volume of blood in small mammals can in turn be presumed to allow for full saturation of haemoglobin by oxygen, even where the period of contact between erythrocytes and air in the lungs is shorter than in their larger counterparts.

  相似文献   

6.
Organ scaling in mammals: the liver   总被引:2,自引:0,他引:2  
1. Values for liver weight, in growing and adult male and female mammals, both terrestrial and aquatic, as well as values for hepatic blood flow, blood volume and oxygen consumption are submitted to linear (log-log) regression analysis. 2. The slope of the regression line for liver weight on adult body weight in adult mammals was found to be 0.886. No statistically significant difference was found between male and female, nor between terrestrial and aquatic mammals (at the 1% confidence level). 3. Over about four orders of magnitude there is (on present evidence) a tendency for the mammalian liver to grow as about the 0.94 power of body weight (pre- and post-natal). 4. The slopes of the regression lines for hepatic blood flow, blood volume and oxygen consumption were found to be 0.91, 0.86 and 0.69, respectively. 5. The mean hepatocyte size in fixed tissue of rats was found to be 7400 micrometers 3. 6. It is argued that the slope of the regression line for hepatic oxygen consumption in mammals generally is likely to fall in the range of 0.67-0.77.  相似文献   

7.
There has been co-evolution of a long neck and high blood pressure in giraffes. How the cardiovascular system (CVS) has adapted to produce a high blood pressure, and how it compares with other similar sized mammals largely is unknown. We have measured body mass and heart structure in 56 giraffes of both genders ranging in body mass from 18 kg to 1500 kg, and developed allometric equations that relate changes in heart dimensions to growth and to cardiovascular function. Predictions made from these equations match measurements made in giraffes. We have found that heart mass increases as body mass increases but it has a relative mass of 0.51 ± 0.7% of body mass which is the same as that in other mammals. The left ventricular and interventricular walls are hypertrophied and their thicknesses are linearly related to neck length. Systemic blood pressure increases as body mass and neck length increase and is twice that of mammals of the same body mass. Cardiac output is the same as, but peripheral resistance double that predicted for similar sized mammals. We have concluded that increasing hydrostatic pressure of the column of blood during neck elongation results in cardiac hypertrophy and concurrent hypertrophy of arteriole walls raising peripheral resistance, with an increase in blood pressure following.  相似文献   

8.
The establishment of a publicly-accessible repository of physiological data on feeding in mammals, the Feeding Experiments End-user Database (FEED), along with improvements in reconstruction of mammalian phylogeny, significantly improves our ability to address long-standing questions about the evolution of mammalian feeding. In this study, we use comparative phylogenetic methods to examine correlations between jaw robusticity and both the relative recruitment and the relative time of peak activity for the superficial masseter, deep masseter, and temporalis muscles across 19 mammalian species from six orders. We find little evidence for a relationship between jaw robusticity and electromyographic (EMG) activity for either the superficial masseter or temporalis muscles across mammals. We hypothesize that future analyses may identify significant associations between these physiological and morphological variables within subgroups of mammals that share similar diets, feeding behaviors, and/or phylogenetic histories. Alternatively, the relative peak recruitment and timing of the balancing-side (i.e., non-chewing-side) deep masseter muscle (BDM) is significantly negatively correlated with the relative area of the mandibular symphysis across our mammalian sample. This relationship exists despite BDM activity being associated with different loading regimes in the symphyses of primates compared to ungulates, suggesting a basic association between magnitude of symphyseal loads and symphyseal area among these mammals. Because our sample primarily represents mammals that use significant transverse movements during chewing, future research should address whether the correlations between BDM activity and symphyseal morphology characterize all mammals or should be restricted to this "transverse chewing" group. Finally, the significant correlations observed in this study suggest that physiological parameters are an integrated and evolving component of feeding across mammals.  相似文献   

9.
Many diving mammals are known for their ability to deal with nitrogen supersaturation and to tolerate apnea for extended periods. They are all characterized by high oxygen-carrying capacity in blood together with high oxygen storage in their muscle mass due to large myoglobin concentrations. The above properties theoretically also imply a high tissue antioxidant defenses (AD) to counteract reactive oxygen species (ROS) generation associated with the rapid transition from apnea to reoxygenation. Different enzymatic (superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione S-transferase), and non-enzymatic (levels of glutathione) AD as well as cellular damage (thiobarbituric acid-reactive substances contents, as a measure of lipoperoxidation) were measured in blood samples obtained from anesthetized animals, and also in blood obtained from recently dead diving mammals, and compared to some terrestrial mammals (n=5 in both groups). The results confirmed that diving mammals have, in general, higher antioxidant status compared to non-diving mammals. Apparently, to avoid exposure of tissues to changing high oxygen levels, and therefore to avoid an oxidative stress condition related to antioxidant consumption and increased ROS generation, diving mammals possess constitutive high levels of antioxidants in tissues. These data are in agreement with short-term AD adaptations related to torpor and to animals that experience large daily changes in oxygen consumption. These data are similar to the long-term adaptations of animals that undergo hibernation, estivation, freezing-thawing and dehydration-rehydration processes. In summary, animals that routinely face high changes in oxygen availability and/or consumption seem to show a general strategy to prevent oxidative damage by having either appropriate high constitutive AD and/or the ability to undergo arrested states, where depressed metabolic rates minimize the oxidative challenge.  相似文献   

10.
11.
Hystricomorph rodents are a group of species that belong to the suborder Hystricognathi. They mainly inhabit South American (caviomorph) and African (phiomorph) habitats. This group of rodents has a divergent insulin structure. For example, insulin in this group of rodents exhibits only 1-10% of biological activity in comparison to other mammals. Therefore, hystricomorph rodents may hypothetically be unable to regulate blood glucose concentration as non-hystricomorph mammals. In this work we evaluated blood glucose concentration in nine species of caviomorph rodents, with emphasis on species belonging to the families Abrocomidae, Ctenomyidae and Octodontidae. Specifically we: (1) measured glucose concentrations after a fasting period; and (2) conducted a glucose tolerance test. In the latter assay we used Octodon degus as a representative species of the genus Octodon. Results showed that blood glucose concentration values after fasting, and in the glucose tolerance test, were within the expected range for mammals. We postulate that this group of rodents has compensatory traits that may permit the maintenance of standard values of plasma glucose.  相似文献   

12.
The immune system of marine mammals is of comparative interest because of its adaptation to the aquatic environment. Little information, however, is available on its cellular and molecular components. Here, we used a cross-reactive antibody to MHC class II molecules and an immunoglobulin-specific antiserum for identifying these molecular species on lymphocytes of the bottlenosed dolphin, Tursiops truncatus. Limited structural analyses indicated that class II molecules and immunoglobulins of dolphin closely resemble those of other vertebrates. In the peripheral blood of most land mammals both class II and immunoglobulins are usually found on B but not T lymphocytes. Expression of immunoglobulins on dolphin peripheral blood lymphocytes suggests a ratio of B cells to T cells comparable to that of land mammals. However, unlike the majority of land mammals, virtually 100% of the peripheral T cells display pronounced expression of class II molecules, generally considered an indication of T cell activation. It is therefore possible that the physiology of T cell activation has unusual attributes in the dolphin. It is especially interesting that some land mammals, namely swine (ungulates) and dogs and cats (carnivores), also express class II molecules on peripheral blood T lymphocytes. Since ungulates and carnivores are thought to share a common distant ancestry with toothed whales, the evolutionary history may be more relevant than the environmental history in determining these unusual attributes.  相似文献   

13.
The cross-sectional area of a nutrient foramen of a long bone is related to blood flow requirements of the internal bone cells that are essential for dynamic bone remodelling. Foramen area increases with body size in parallel among living mammals and non-varanid reptiles, but is significantly larger in mammals. An index of blood flow rate through the foramina is about 10 times higher in mammals than in reptiles, and even higher if differences in blood pressure are considered. The scaling of foramen size correlates well with maximum whole-body metabolic rate during exercise in mammals and reptiles, but less well with resting metabolic rate. This relates to the role of blood flow associated with bone remodelling during and following activity. Mammals and varanid lizards have much higher aerobic metabolic rates and exercise-induced bone remodelling than non-varanid reptiles. Foramen areas of 10 species of dinosaur from five taxonomic groups are generally larger than from mammals, indicating a routinely highly active and aerobic lifestyle. The simple measurement holds possibilities offers the possibility of assessing other groups of extinct and living vertebrates in relation to body size, behaviour and habitat.  相似文献   

14.
Marine mammals are known to dive up to 2000 m and, therefore, tolerate as much as 200 atm. of hydrostatic pressure. To examine possible metabolic adaptations to these elevated pressures, fresh blood samples from marine and terrestrial mammals were incubated for 2 h at 37 degrees C under 136 atm (2000 psi) of hydrostatic pressure. The consumption of plasma glucose and the production of lactate over the 2-h period were used to assess glycolytic flux in the red cells. The results indicate that glycolytic flux as measured by lactate production under pressure can be significantly depressed in most terrestrial mammals and either not altered or accelerated in marine mammals. The data also suggest that there is a significant shift in the ratio of lactate produced to glucose consumed under pressure. Interestingly, human and dolphin blood do not react to pressure. These combined data imply a metabolic adaptation to pressure in marine mammal RBC that may not be necessary in human or dolphin cells due to their unique patterns of glucose metabolism.  相似文献   

15.
Seasonal reproduction is common among mammals at all latitudes, even in the deep tropics. This paper (i) discusses the neuroendocrine pathways via which foraging conditions and predictive cues such as photoperiod enforce seasonality, (ii) considers the kinds of seasonal challenges mammals actually face in natural habitats, and (iii) uses the information thus generated to suggest how seasonal reproduction might be influenced by global climate change. Food availability and ambient temperature determine energy balance, and variation in energy balance is the ultimate cause of seasonal breeding in all mammals and the proximate cause in many. Photoperiodic cueing is common among long-lived mammals from the highest latitudes down to the mid-tropics. It is much less common in shorter lived mammals at all latitudes. An unknown predictive cue triggers reproduction in some desert and dry grassland species when it rains. The available information suggests that as our climate changes the small rodents of the world may adapt rather easily but the longer lived mammals whose reproduction is regulated by photoperiod may not do so well. A major gap in our knowledge concerns the tropics; that is where most species live and where we have the least understanding of how reproduction is regulated by environmental factors.  相似文献   

16.
Maximum left ventricular wall stress is calculated at end-diastolic volume and systemic arterial diastolic blood pressure, according to a thick-walled model for the principle of Laplace. Stress is independent of body mass and averages 13.9 kPa (+/-2.3; 95% confidence interval) in 24 species of mammals weighing 0.025-4,000 kg and 15.5 kPa (+/-4.7) in 12 birds weighing 0.014-110 kg. Birds have higher arterial blood pressures and larger hearts than mammals. Systolic and diastolic arterial blood pressures increase with body mass according to M(0.05) in mammals, and heart mass increases according to M(1.06) in the same species, further supporting the principle. However, blood pressure in birds is independent of body mass, and heart mass scales isometrically. End-diastolic stress values, calculated according to Laplace, are about one-third of peak stresses recorded in isolated mammalian myocardial preparations.  相似文献   

17.
To establish interaction of atherogenic low-density lipoproteins (LDL) with the erythrocyte membrane, the content of lipid components in blood cells and serum LDL was studied in healthy people (donors) and in 12 species of vertebrates (the mammals non-predisposed to atherosclerosis — birds and fish). Lipid composition of blood cells and LDL was also analyzed in patients with pathologies: ischemic heart disease (IHD), bronchial asthma (BA), and chronic obstructive bronchitis (COB), as well as in 2 species of mammals predisposed to atherosclerosis, in whose blood LDL predominated. The content of lipids in the blood cells and LDL of the studied vertebrates has been found to depend on their taxonomy and on the clear trends either for an increase in the cholesterol content and a decrease in the phosphatidylcholine level in patients, particularly with IHD, or for a rise of the ratio of the content of the more saturated sphingomyelin and cholesterol to the less saturated phosphatidylcholine from the lower to the higher organisms, including humans (donors). The highest levels of free cholesterol in blood cells of total cholesterol in LDL, as well as of parameters of ratio of the cholesterol/phosphatidylcholine content have been revealed in patients, especially with IHD, and in the mammals predisposed to atherosclerosis, i.e. in representatives with predominance of blood LDL, in contrast to donors and the mammals resistant to atherosclerosis. The highest parameters of lipid components were determined in blood cells and LDL in patients with IHD. The lipid LDL composition affects directly the composition and ratio of lipids in blood cells.  相似文献   

18.
翼手目动物(蝙蝠)的食性多样性丰富,其食物包括昆虫、鱼类、两栖动物、爬行动物、鸟类、哺乳动物、植物果实、花、花粉、花蜜、叶片和血液等。其中,大约70%的蝙蝠主要以昆虫为食,而以血液为食的吸血蝙蝠只有3种,它们是哺乳动物中唯一的仅以血液为食的动物类群。因此,吸血蝙蝠是研究动物食性演化的重要模式动物。本文综述了吸血蝙蝠在形态学、生理学、行为学、感觉系统和肠道微生物等方面的研究,指出了吸血蝙蝠食性特化的适应性特征。随着普通吸血蝠高质量基因组的公布,我们将有机会探究食性相关基因在吸血蝙蝠中的功能改变,阐明动物食性转变的分子机理。本文将为吸血蝙蝠和其它动物食性转变的研究提供有益的参考。  相似文献   

19.
To investigate interaction of atherogenic low-density lipoproteins (LDL) with erythrocytic membrane, the content of lipid components in blood cells and serum LDL was studied in human in norm (donors) and in 12 species of vertebrates (the mammals non-predisposed to atherosclerosis - birds and fish). Lipid composition of blood cells and LDL was analyzed also in patients with pathologies: ischemic heart disease (IHD), bronchial asthma (BA), and chronic obstructive bronchitis (COB), and in 2 species of mammals predisposed to atherosclerosis, in whose blood LDL predominates. The content of lipids in cells and LDL of the studied vertebrates has been found to depend on their taxonomy and the clear trends both to an increase of the cholesterol content and to a decrease if the phosphatidylcholine level in patients, particu- larly with IHD, and on a rise of the ratio of the content of the more saturated sphingomyelin and cholesterol to the less saturated phosphatidylcholine from the lower to the higher organisms, including humans (donors). The highest levels of free cholesterol in blood cells, of total cholesterol in LDL, and of ration of the cholesterol/phosphatidylcholine content have been revealed in patients, especially with 1HB, and in the mammals predisposed to atherosclerosis, i. e., in representatives with predominance of blood LDL, unlike donors and the mammals resistant to atherosclerosis. The highest parameters of lipid components were determined in cells and LDL inhuman with IHD. The lipid LDL composition affects directly the composition and ratio of lipids in blood cells.  相似文献   

20.
Mammals that hibernate experience extreme metabolic states and body temperatures as they transition between euthermia, a state resembling typical warm blooded mammals, and prolonged torpor, a state of suspended animation where the brain receives as low as 10% of normal cerebral blood flow. Transitions into and out of torpor are more physiologically challenging than the extreme metabolic suppression and cold body temperatures of torpor per se. Mammals that hibernate show unprecedented capacities to tolerate cerebral ischemia, a decrease in blood flow to the brain caused by stroke, cardiac arrest or brain trauma. While cerebral ischemia often leads to death or disability in humans and most other mammals, hibernating mammals suffer no ill effects when blood flow to the brain is dramatically decreased during torpor or experimentally induced during euthermia. These animals, as adults, also display rapid and pronounced synaptic flexibility where synapses retract during torpor and rapidly re-emerge upon arousal. A variety of coordinated adaptations contribute to tolerance of cerebral ischemia in these animals. In this review we discuss adaptations in heterothermic mammals that may suggest novel therapeutic targets and strategies to protect the human brain against cerebral ischemic damage and neurodegenerative disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号