首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coevolutionary theory predicts that the most common long‐term outcome of the relationships between brood parasites and their hosts should be coevolutionary cycles based on a dynamic change selecting the currently least‐defended host species, given that when well‐defended hosts are abandoned, hosts will be selected to decrease their defences as these are usually assumed to be costly. This is assumed to be the case also in brood parasite‐host systems. Here I examine the frequency of the three potential long‐term outcomes of brood parasite–host coevolution (coevolutionary cycles, lack of rejection, and successful resistance) in 182 host species. The results of simple exploratory comparisons show that coevolutionary cycles are very scarce while the lack of rejection and successful resistance, which are considered evolutionary enigmas, are much more frequent. I discuss these results considering (i) the importance of different host defences at all stages of the breeding cycle, (ii) the role of phenotypic plasticity in long‐term coevolution, and (iii) the evolutionary history of host selection. I suggest that in purely antagonistic coevolutionary interactions, such as those involving brood parasites and their hosts, that although cycles will exist during an intermediate phase of the interactions, the arms race will end with the extinction of the host or with the host acquiring successful resistance. As evolutionary time passes, this resistance will force brood parasites to use previously less suitable host species. Furthermore, I present a model that represents the long‐term trajectories and outcomes of coevolutionary interactions between brood parasites and their hosts with respect to the evolution of egg‐rejection defence. This model suggests that as an increasing number of species acquire successful resistance, other unparasitized host species become more profitable and their parasitism rate and the costs imposed by brood parasitism at the population level will increase, selecting for the evolution of host defences. This means that although acceptance is adaptive when the parasitism rate and the costs of parasitism are very low, this cannot be considered to represent an evolutionary equilibrium, as conventional theory has done to date, because it is not stable.  相似文献   

2.
Parasite transmission strategies strongly impact host–parasite co‐evolution and virulence. However, studies of vector‐borne parasites such as avian malaria have neglected the potential effects of host relatedness on the exchange of parasites. To test whether extended parental care in the presence of vectors increases the probability of transmission from parents to offspring, we used high‐throughput sequencing to develop microsatellites for malaria‐like Leucocytozoon parasites of a wild raptor population. We show that host siblings carry genetically more similar parasites than unrelated chicks both within and across years. Moreover, chicks of mothers of the same plumage morph carried more similar parasites than nestlings whose mothers were of different morphs, consistent with matrilineal transmission of morph‐specific parasite strains. Ours is the first evidence of an association between host relatedness and parasite genetic similarity, consistent with vector‐mediated parent‐to‐offspring transmission. The conditions for such ‘quasi‐vertical’ transmission may be common and could suppress the evolution of pathogen virulence.  相似文献   

3.
Colonial organisms host a large diversity of symbionts (collectively, parasites, mutualists, and commensals) that use vertical transmission (from parent colony to offspring colony) and/or horizontal transmission to disperse between host colonies. The early life of some colonies, characterized by the dispersal and establishment of solitary individuals, may constrain vertical transmission and favor horizontal transmission between large established colonies. We explore this possibility with the miniature cockroach Attaphila fungicola, a symbiont of leaf‐cutter ants and the mutualist fungal gardens they cultivate. The early life of a leaf‐cutter colony is characterized by the dispersal of a female alate (winged “queen”) carrying a fungal pellet, and the subsequent establishment of a foundress (workerless “queen”) raising her incipient fungal garden and colony. Roaches hitchhike on female alates during leaf‐cutter nuptial flights, which strongly suggests that roaches are vertically transmitted to foundresses and their incipient colonies; however, weak compatibility between roaches and incipient gardens may constrain roach vertical transmission. Reciprocally, opportunities for horizontal transmission between large established colonies with abundant fungal gardens may weaken selection against roach‐induced harm (virulence) of incipient gardens. We use a laboratory experiment, behavioral observations, field surveys, and a transmission model to estimate the effect roaches have on the survivorship of incipient gardens and the frequency of roach vertical transmission. Contrary to traditional assumptions, our results indicate that roaches harm incipient gardens and predominantly use horizontal transmission between established leaf‐cutter colonies. Ultimately, “costs of generalism” associated with infecting disparate stages of a host''s lifecycle (e.g., incipient vs. established colonies) may constrain the vertical transmission of roaches and a broad range of symbionts.  相似文献   

4.
The aim of this study is to represent simultaneously changes in the spatial distribution of the Atlantic forest during the last 17,000 years. To characterize such changes, here we focused on three different forest physiognomies, evergreen, semi‐deciduous, and Araucaria, and we provide a list of indicator taxa for each class retrieved from the original published datasets. A review of the published fossil pollen records allowed us to classify regional behaviors in three main areas of distribution, north of 15°S, between 15° and 23°S and south of 23°S latitude that correspond to three climatic geographical barriers. Statistical probability density function method was used to illustrate changes in forest physiognomies throughout the three distribution areas. We show that the three modern barriers also functioned through the past. Asynchronous patterns of forest physiognomies are linked to an antiphasing pattern of monsoon precipitation between the northern and central area, whereas in the southern area, it is linked to the frequency and intensity of the polar advection in the subtropics. Our results attest to strong climate forcing on forest distribution between the late glacial and the interglacial period. They call into question the common reference to the last glacial maximum as a major (and sometimes as the only) driver of forest‐related vicariance and genetic diversity patterns, but suggest that instead, orbital cycles were the main drivers of the successive expansion/contraction of the Atlantic forest throughout the Quaternary.  相似文献   

5.
Plasmodium knowlesi is a significant cause of human malaria transmitted as a zoonosis from macaque reservoir hosts in South‐East Asia. Microsatellite genotyping has indicated that human infections in Malaysian Borneo are an admixture of two highly divergent sympatric parasite subpopulations that are, respectively, associated with long‐tailed macaques (Cluster 1) and pig‐tailed macaques (Cluster 2). Whole‐genome sequences of clinical isolates subsequently confirmed the separate clusters, although fewer of the less common Cluster 2 type were sequenced. Here, to analyse population structure and genomic divergence in subpopulation samples of comparable depth, genome sequences were generated from 21 new clinical infections identified as Cluster 2 by microsatellite analysis, yielding a cumulative sample size for this subpopulation similar to that for Cluster 1. Profound heterogeneity in the level of intercluster divergence was distributed across the genome, with long contiguous chromosomal blocks having high or low divergence. Different mitochondrial genome clades were associated with the two major subpopulations, but limited exchange of haplotypes from one to the other was evident, as was also the case for the maternally inherited apicoplast genome. These findings indicate deep divergence of the two sympatric P. knowlesi subpopulations, with introgression likely to have occurred recently. There is no evidence yet of specific adaptation at any introgressed locus, but the recombinant mosaic types offer enhanced diversity on which selection may operate in a currently changing landscape and human environment. Loci responsible for maintaining genetic isolation of the sympatric subpopulations need to be identified in the chromosomal regions showing fixed differences.  相似文献   

6.
1. Plants produce antimicrobial phytochemicals that can reduce growth and infectivity of parasites in animals. Pollinator parasites are transmitted between hosts that forage on shared flowers. Floral transmission directly exposes parasites to phytochemicals on floral surfaces and in nectar, both at flowers and, post‐ingestion, in the crop. This exposure could directly affect parasite transmission to new hosts. 2. Nectar chemical analyses were combined with field and cell culture experiments to test the effects of the floral phytochemical thymol on the transmission potential of the trypanosomatid gut parasite Crithidia in Bombus impatiens. First, thymol concentrations in Thymus vulgaris nectar were measured. Second, the effect of adding thymol to floral nectaries on parasite transmission to foraging bees was tested. Third, cell cultures were used to determine direct, dose‐dependent effects of short‐term thymol exposure on subsequent in vitro parasite growth. 3. A total of 26.1 ppm thymol was found in T. vulgaris nectar, five‐fold higher than previously documented in this species. However, addition of thymol to flowers of parasite‐inoculated inflorescences of four plant species did not affect acquisition of Crithidia infection during a foraging bout. Cell culture experiments showed that the thymol concentrations needed to reduce subsequent Crithidia growth by 50% (120 ppm) were 4.6‐fold higher than the highest detected nectar concentration. 4. Although thymol exposure can influence Crithidia viability, Crithidia are robust to the duration and magnitude of exposure encountered during floral foraging under natural conditions. These experiments suggest that any effects of thymol alone on Crithidia–host infection dynamics probably reflect indirect, possibly host‐mediated, effects of chronic thymol ingestion.  相似文献   

7.
How polymorphisms are maintained within populations over long periods of time remains debated, because genetic drift and various forms of selection are expected to reduce variation. Here, we study the genetic architecture and maintenance of phenotypic morphs that confer crypsis in Timema cristinae stick insects, combining phenotypic information and genotyping‐by‐sequencing data from 1,360 samples across 21 populations. We find two highly divergent chromosomal variants that span megabases of sequence and are associated with colour polymorphism. We show that these variants exhibit strongly reduced effective recombination, are geographically widespread and probably diverged millions of generations ago. We detect heterokaryotype excess and signs of balancing selection acting on these variants through the species’ history. A third chromosomal variant in the same genomic region likely evolved more recently from one of the two colour variants and is associated with dorsal pattern polymorphism. Our results suggest that large‐scale genetic variation associated with crypsis has been maintained for long periods of time by potentially complex processes of balancing selection.  相似文献   

8.
The changes in the fish assemblage of the Capivara Reservoir, Brazil, were assessed over a 20 year period. Of 50 native fishes present in the initial samples, 27 were no longer present in the final samples, but there had been an addition of 11 invasive fishes, suggesting the occurrence of substantial shifts in fish diversity and abundance.  相似文献   

9.
Male and nulliparous female mosquitoes were surveyed for evidence of vertical WNV infection in East Baton Rouge Parish, Louisiana. Adult male mosquitoes collected by trapping and aspiration, and adult male and nulliparous female mosquitoes reared from field‐collected larvae were tested. Adult male Culex spp., female Aedes albopictus (Skuse), and female Culex quinquifasciatus Say mosquitoes that were collected as larvae were test‐positive for WNV RNA. Infectious WNV was detected using virus isolation in field‐collected male Aedes triseriatus Say and Culex salinarius Coquillett; these data represent the first field evidence of vertical transmission of WNV in Ae. triseriatus and Cx. salinarius.  相似文献   

10.
Seed dispersal is a key ecological process in tropical forests, with effects on various levels ranging from plant reproductive success to the carbon storage potential of tropical rainforests. On a local and landscape scale, spatial patterns of seed dispersal create the template for the recruitment process and thus influence the population dynamics of plant species. The strength of this influence will depend on the long‐term consistency of spatial patterns of seed dispersal. We examined the long‐term consistency of spatial patterns of seed dispersal with spatially explicit data on seed dispersal by two neotropical primate species, Leontocebus nigrifrons and Saguinus mystax (Callitrichidae), collected during four independent studies between 1994 and 2013. Using distributions of dispersal probability over distances independent of plant species, cumulative dispersal distances, and kernel density estimates, we show that spatial patterns of seed dispersal are highly consistent over time. For a specific plant species, the legume Parkia panurensis, the convergence of cumulative distributions at a distance of 300 m, and the high probability of dispersal within 100 m from source trees coincide with the dimension of the spatial–genetic structure on the embryo/juvenile (300 m) and adult stage (100 m), respectively, of this plant species. Our results are the first demonstration of long‐term consistency of spatial patterns of seed dispersal created by tropical frugivores. Such consistency may translate into idiosyncratic patterns of regeneration.  相似文献   

11.
12.
Even though parasitic flatworms are one of the most species‐rich groups of hermaphroditic organisms, we know virtually nothing of their mating systems (selfing or kin‐mating rates) in nature. Hence, we lack an understanding of the role of inbreeding in parasite evolution. The natural mating systems of parasitic flatworms have remained elusive due to the inherent difficulty in generating progeny‐array data in many parasite systems. New developments in pedigree reconstruction allow direct inference of realized selfing rates in nature by simply using a sample of genotyped individuals. We built upon this advancement by utilizing the closed mating systems, that is, individual hosts, of endoparasites. In particular, we created a novel means to use pedigree reconstruction data to estimate potential kin‐mating rates. With data from natural populations of a tapeworm, we demonstrated how our newly developed methods can be used to test for cosibling transmission and inbreeding depression. We then showed how independent estimates of the two mating system components, selfing and kin‐mating rates, account for the observed levels of inbreeding in the populations. Thus, our results suggest that these natural parasite populations are in inbreeding equilibrium. Pedigree reconstruction analyses along with the new companion methods we developed will be broadly applicable across a myriad of parasite species. As such, we foresee that a new frontier will emerge wherein the diverse life histories of flatworm parasites could be utilized in comparative evolutionary studies to broadly address ecological factors or life history traits that drive mating systems and hence inbreeding in natural populations.  相似文献   

13.
Wolbachia are bacterial endosymbionts that manipulate the reproduction of their arthropod hosts. Although theory suggests that infections are frequently lost within host species due to the evolution of resistance, Wolbachia infect a huge number of species worldwide. This apparent paradox suggests that horizontal transmission between host species has been a key factor in shaping the global Wolbachia pandemic. Because Wolbachia infections are thus acquired and lost like any other infection, we use a standard epidemiological model to analyse Wolbachia horizontal transmission dynamics over evolutionary time. Conceptually modifying the model, we apply it not to transmission between individuals but between species. Because, on evolutionary timescales, infections spread frequently between closely related species and occasionally over large phylogenetic distances, we represent the set of host species as a small‐world network that satisfies both requirements. Our model reproduces the effect of basic epidemiological parameters, which demonstrates the validity of our approach. We find that the ratio between transmission rate and recovery rate is crucial for determining the proportion of infected species (incidence) and that, in a given host network, the incidence may still be increasing over evolutionary time. Our results also point to the importance of occasional transmission over long phylogenetic distances for the observed high incidence levels of Wolbachia. In conclusion, we are able to explain why Wolbachia are so abundant among arthropods, although selection for resistance within hosts often leads to infection loss. Furthermore, our unorthodox approach of using epidemiology in evolutionary time can be applied to all symbionts that use horizontal transmission to infect new hosts.  相似文献   

14.
1. Insects lack the acquired immune system of vertebrates, but there is some evidence that insect immunity can be primed against an encountered pathogen to mitigate the intensity of future infections within a life stage. 2. Many invertebrates have multiple life‐history stages separated by complete metamorphosis, but different life stages can often be infected by the same pathogens, and the potential loss of immune priming during metamorphosis could therefore have detrimental effects on the host. Evidence that invertebrate immune priming can persist through metamorphosis is still missing, and consequently it is unclear how host–parasite interactions change across different life‐history stages in the context of infection history. 3. By experimentally manipulating the infection history of the flour beetle Tribolium confusum, we show that intestinal gregarine parasite infections during the larval stage reduced parasite load in adults, demonstrating that a host‐controlled mechanism for parasite resistance can persist through complete metamorphosis in insects. 4. Infections reduced larval developmental rates and increased host mortality but only during the crucial metamorphic stage, indicating that parasites impact multiple life stages. In general, our results demonstrate that invertebrates can show surprisingly robust immune priming despite dramatic physiological changes and protect hosts across completely different life‐history stages.  相似文献   

15.
16.
The invasion of an established community by new species can trigger changes in community structure. Invasions often occur in phytophagous insect communities, the dynamics of which are driven by the structure of the host assemblage and the presence of competitors. In this study, we investigated how a community established through successive invasions changed over time, taking the last invasion as the reference. The community included four generalist and four specialist species of Tephritidae fruit flies. We analyzed a long‐term database recording observed numbers of flies per fruit for each species on 36 host plants, over 18 years, from 1991 to 2009. Community structure before the last invasion by Bactrocera zonata in 2000 was described in relation to host plant phylogeny and resource availability. Changes in the host range of each species after the arrival of Bzonata were then documented by calculating diversity indices. The flies in the community occupied three types of niches defined on the basis of plant phylogeny (generalists, Solanaceae specialist, and Cucurbitaceae specialists). After the arrival of Bzonata, no change in the host range of specialist species was observed. However, the host ranges of two generalist species, Ceratitis quilicii and Ceratitis capitata, tended to shrink, as shown by the decreases in species richness and host plant α‐diversity. Our study shows increased host specialization by generalist phytophagous insects in the field following the arrival of an invasive species sharing part of their resources. These findings could be used to improve predictions of new interactions between invaders and recipient communities.  相似文献   

17.
High‐density genotype data were analyzed in three lines of swine that express substantial variation in sow fertility to uncover regions of the genome potentially influenced during selection for litter size traits. The experimental lines examined include the Nebraska Index Line (NIL), which has been subjected to long‐term selection for litter size; a control line derived from the same population that founded NIL; and a commercial Duroc × Hampshire (D × H) population, in which no selection for litter size was practiced. Regions of the genome potentially affected by selection for litter size traits in NIL were determined by multiple lines of evidence, including altered allelic frequency compared to the other lines, loss of heterozygosity and relative extended haplotype homozygosity. Additionally, a genome‐wide association study for litter size traits was conducted in a population based on NIL and commercial maternal line genetics. Several genomic regions identified as putative signatures of selection overlapped with QTL for litter size traits. One of these regions, located on SSC2 (13–14 Mb), includes the candidate gene P2X3R, which plays a role in implantation and sustained release of hormones associated with reproductive processes. Sequencing identified synonymous SNPs in P2X3R that are fixed in NIL but polymorphic with nearly equal frequencies in the D × H line, indicating a potential role of P2X3R in sow fertility. These results suggest that data derived from these lines can help to uncover and understand a portion of the genetic variance associated with fertility traits in swine.  相似文献   

18.
Objective: Decreases in variety of foods consumed within high‐fat‐dense food groups and increases in variety of foods consumed within low‐fat‐dense food groups are associated with lower energy intake and greater weight loss during obesity treatment and may assist with weight loss maintenance. This study examined food group variety in 2237 weight loss maintainers in the National Weight Control Registry, who had lost 32.2 ± 18.0 kg (70.9 ± 39.5 lbs) and maintained a weight loss of at least 13.6 kg (30 lbs) for 6.1 ± 7.7 years. Research Methods and Procedures: At entry into the registry, registry members completed a food frequency questionnaire from which amount of variety consumed from different food groups was assessed. To provide a context for interpreting the level of variety occurring in the diet of registry participants, food group variety was compared between registry participants and 96 individuals who had recently participated in a behavioral weight loss program and had lost at least 7% of initial body weight. Results: Registry members reported consuming a diet with very low variety in all food groups, especially in those food groups higher in fat density. Registry participants consumed significantly (p < 0.001) less variety within all food groups, except fruit and combination foods, than recent weight losers after 6 months of weight loss treatment. Discussion: These results suggest that successful weight loss maintainers consume a diet with limited variety in all food groups. Restricting variety within all food groups may help with consuming a low‐energy diet and maintaining long‐term weight loss.  相似文献   

19.
The number of hepatitis B virus (HBV) carrier babies has decreased markedly since the introduction in Japan of an “at‐risk” strategy for preventing HBV infection. However, elimination of HBV infection from our country appears difficult. To clarify the limitations of the at‐risk strategy for preventing vertical transmission of HBV, causes of vertical transmission in a single hospital were retrospectively analyzed. The following causes were presumed in 17 carrier pediatric cases: five patients had prenatal HBV infection, HBV infection during/after the immunization program was confirmed in five cases, two patients had prenatal infection or infection during the immunization program and three cases were caused by human error (by the patients' guardians). Because their mothers were HBV‐negative at screening and only developed acute hepatitis B in the perinatal period, another two cases (Cases 3 and 10) did not undergo immunization because they were not subjects of the at‐risk strategy. Sequence analyses in ten patients revealed genotype C (subgenotype, C2/Ce) in nine cases and genotype A (subgenotype, A2/Ae) in one case (Case 3). In Japan, HBV subgenotype Ae has recently been found more frequently among sexually active men with acute hepatitis. There are concerns that horizontal transmission of HBV from these men to their pregnant partners could increase. These data suggest clear limitations to the at‐risk strategy in Japan and the possibility that the increase in genotype A may influence vertical transmission of HBV.  相似文献   

20.
Experimental evolution is becoming a popular approach to study the genomic selection response of evolving populations. Computer simulation studies suggest that the accuracy of the signature increases with the duration of the experiment. Since some assumptions of the computer simulations may be violated, it is important to scrutinize the influence of the experimental duration with real data. Here, we use a highly replicated Evolve and Resequence study in Drosophila simulans to compare the selection targets inferred at different time points. At each time point, approximately the same number of SNPs deviates from neutral expectations, but only 10% of the selected haplotype blocks identified from the full data set can be detected after 20 generations. Those haplotype blocks that emerge already after 20 generations differ from the others by being strongly selected at the beginning of the experiment and display a more parallel selection response. Consistent with previous computer simulations, our results demonstrate that only Evolve and Resequence experiments with a sufficient number of generations can characterize complex adaptive architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号