首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Quantifying the relative contribution of multiple isolation barriers to gene flow between recently diverged species is essential for understanding speciation processes. In parapatric populations, local adaptation is thought to be a major contributor to the evolution of reproductive isolation. However, extrinsic postzygotic barriers assessed in reciprocal transplant experiments are often neglected in empirical assessments of multiple isolation barriers. We analyzed multiple isolation barriers between two closely related species of the plant genus Dianthus, a genus characterized by the most rapid species diversification in plants reported so far. Although D. carthusianorum L. and D. sylvestris Wulf. can easily be hybridized in crossing experiments, natural hybrids are rare. We found that in parapatry, pollinator‐mediated prezygotic reproductive isolation barriers are important for both D. carthusianorum (0.761) and D. sylvestris (0.468). In contrast to D. carthusianorum, high hybrid viability in D. sylvestris (–0.491) was counteracted by strong extrinsic postzygotic isolation (0.900). Our study highlights the importance of including reciprocal transplant experiments for documenting extrinsic postzygotic isolation and demonstrates clearly divergent strategies and hence asymmetric pre‐ and postzygotic reproductive isolation between closely related species. It also suggests that pollinator‐mediated and ecological isolation could have interacted in synergistic ways, further stimulating rapid speciation in Dianthus.  相似文献   

2.
Speciation occurs when reproductive barriers substantially reduce gene flow between lineages. Understanding how specific barriers contribute to reproductive isolation offers insight into the initial forces driving divergence and the evolutionary and ecological processes responsible for maintaining diversity. Here, we quantified multiple pre‐ and post‐pollination isolating barriers in a pair of closely related California Jewelflowers (Streptanthus, Brassicaceae) living in an area of sympatry. S. breweri and S. hesperidis are restricted to similar serpentine habitats; however, populations are spatially isolated at fine‐scales and rarely co‐occur in intermixed stands. Several intrinsic postzygotic barriers were among the strongest we quantified, yet, postzygotic barriers currently contribute little to overall reproductive isolation due to the cumulative strength of earlier‐acting extrinsic barriers, including spatial isolation, and flowering time and pollinator differences. Data from multiple years suggest that pre‐pollination barriers may have different strengths depending on annual environmental conditions. Similarly, crossing data suggest that the strength of intrinsic isolation may vary among different population pairs. Estimates of total reproductive isolation in S. breweri and S. hesperidis are robust to uncertainty and variability in individual barrier strength estimates, demonstrating how multiple barriers can act redundantly to prevent gene flow between close relatives living in sympatry.  相似文献   

3.
Disentangling the strength and importance of barriers to reproduction that arise between diverging lineages is central to our understanding of species origin and maintenance. To date, the vast majority of studies investigating the importance of different barriers to reproduction in plants have focused on short‐lived temperate taxa while studies of reproductive isolation in trees and tropical taxa are rare. Here, we systematically examine multiple barriers to reproduction in an Amazonian tree, Protium subserratum (Burseraceae) with diverging lineages of soil specialist ecotypes. Using observational, molecular, distributional, and experimental data, we aimed to quantify the contributions of individual prezygotic and postzygotic barriers including ecogeographic isolation, flowering phenology, pollinator assemblage, pollen adhesion, pollen germination, pollen tube growth, seed development, and hybrid fitness to total reproductive isolation between the ecotypes. We were able to identify five potential barriers to reproduction including ecogeographic isolation, phenological differences, differences in pollinator assemblages, differential pollen adhesion, and low levels of hybrid seed development. We demonstrate that ecogeographic isolation is a strong and that a combination of intrinsic and extrinsic prezygotic and postzygotic barriers may be acting to maintain near complete reproductive isolation between edaphically divergent populations of the tropical tree, P. subserratum.  相似文献   

4.
Few studies have quantified the full range of pre‐ and postzygotic barriers that limit introgression between closely related plant species. Here, we assess the strength of four isolating mechanisms operating between two morphologically similar and very closely related sympatric orchid taxa, Chiloglottis valida and C. aff. jeanesii. Each taxon sexually attracts its specific wasp pollinator via distinct floral volatile chemistry. Behavioral experiments with flowers and synthetic versions of their floral volatiles confirmed that very strong pollinator isolation is mediated by floral odor chemistry. However, artificially placing flowers of the two taxa in contact proximity revealed the potential for rare interspecific pollination. Although we found hybrid vigor in F1 hybrids produced by hand‐crossing, genetic analysis at both nuclear and chloroplast loci showed significant and moderate‐to‐strong genetic differentiation between taxa. A Bayesian clustering method for the detection of introgression at nuclear loci failed to find any evidence for hybridization across 571 unique genotypes at one site of sympatry. Rather than inhibiting gene flow, postpollination barriers surveyed here show no contribution to overall reproductive isolation. This demonstrates the primacy of pollinators in maintaining species boundaries in these orchids, which display one of the strongest known examples of prepollination floral isolation.  相似文献   

5.
Understanding speciation depends on an accurate assessment of the reproductive barriers separating newly diverged populations. In several taxonomic groups, prezygotic barriers, especially preferences for conspecific mates, are thought to play the dominant role in speciation. However, the importance of postzygotic barriers (i.e., low fitness of hybrid offspring) may be widely underestimated. In this study, we examined how well the widely used proxy of postzygotic isolation (reproductive output of F1 hybrids) reflects the long‐term fitness consequences of hybridization between two closely related species of birds. Using 40 species‐specific single nucleotide polymorphism (SNP) markers, we genotyped a mixed population of collared and pied flycatchers (Ficedula albicollis and F. hypoleuca) to identify grand‐ and great grand‐offspring from interspecific crosses to derive an accurate, multigeneration estimate of postzygotic isolation. Two independent estimates of fitness show that hybridization results in 2.4% and 2.7% of the number of descendents typical of conspecific pairing. This postzygotic isolation was considerably stronger than estimates based on F1 hybrids. Our results demonstrate that, in nature, combined selection against hybrids and backcrossed individuals may result in almost complete postzygotic isolation between two comparatively young species. If these findings are general, postzygotic barriers separating hybridizing populations may be much stronger than previously thought.  相似文献   

6.
Evolutionists have long recognized the role of reproductive isolation in speciation, but the relative contributions of different reproductive barriers are poorly understood. We examined the nature of isolation between Mimulus lewisii and M. cardinalis, sister species of monkeyflowers. Studied reproductive barriers include: ecogeographic isolation; pollinator isolation (pollinator fidelity in a natural mixed population); pollen competition (seed set and hybrid production from experimental interspecific, intraspecific, and mixed pollinations in the greenhouse); and relative hybrid fitness (germination, survivorship, percent flowering, biomass, pollen viability, and seed mass in the greenhouse). Additionally, the rate of hybridization in nature was estimated from seed collections in a sympatric population. We found substantial reproductive barriers at multiple stages in the life history of M. lewisii and M. cardinalis. Using range maps constructed from herbarium collections, we estimated that the different ecogeographic distributions of the species result in 58.7% reproductive isolation. Mimulus lewisii and M. cardinalis are visited by different pollinators, and in a region of sympatry 97.6% of pollinator foraging bouts were specific to one species or the other. In the greenhouse, interspecific pollinations generated nearly 50% fewer seeds than intraspecific controls. Mixed pollinations of M. cardinalis flowers yielded >75% parentals even when only one-quarter of the pollen treatment consisted of M. cardinalis pollen. In contrast, both species had similar siring success on M. lewisii flowers. The observed 99.915% occurrence of parental M. lewisii and M. cardinalis in seeds collected from a sympatric population is nearly identical to that expected, based upon our field observations of pollinator behavior and our laboratory experiments of pollen competition. F1 hybrids exhibited reduced germination rates, high survivorship and reproduction, and low pollen and ovule fertility. In aggregate, the studied reproductive barriers prevent, on average, 99.87% of gene flow, with most reproductive isolation occurring prior to hybrid formation. Our results suggest that ecological factors resulting from adaptive divergence are the primary isolating barriers in this system. Additional studies of taxa at varying degrees of evolutionary divergence are needed to identify the relative importance of pre- and postzygotic isolating mechanisms in speciation.  相似文献   

7.
Tetraploid lineages are typically reproductively isolated from their diploid ancestors by post‐zygotic isolation via triploid sterility. Nevertheless, polyploids often also exhibit ecological divergence that could contribute to reproductive isolation from diploid ancestors. In this study, we disentangled the contribution of different forms of reproductive isolation between sympatric diploid and autotetraploid individuals of the food‐deceptive orchid Anacamptis pyramidalis by quantifying the strength of seven reproductive barriers: three prepollination, one post‐pollination prezygotic and three post‐zygotic. The overall reproductive isolation between the two cytotypes was found very high, with a preponderant contribution of two prepollination barriers, that is phenological and microhabitat differences. Although the contribution of post‐zygotic isolation (triploid sterility) is confirmed in our study, these results highlight that prepollination isolation, not necessarily involving pollinator preference, can represent a strong component of reproductive isolation between different cytotypes. Thus, in the context of polyploidy as quantum speciation, that generates reproductive isolation via triploid sterility, ecological divergence can strengthen the reproductive isolation between cytotypes, reducing the waste of gametes in low fitness interploidy crosses and thus favouring the initial establishment of the polyploid lineage. Under this light, speciation by polyploidy involves ecological processes and should not be strictly considered as a nonecological form of speciation.  相似文献   

8.
Understanding the relative roles of intrinsic and extrinsic reproductive barriers, and their interplay within the geographic context of diverging taxa, remains an outstanding challenge in the study of speciation. We conducted a comparative analysis of reproductive isolation in California Jewelflowers (Streptanthus, s.l., Brassicaceae) by quantifying potential barriers to gene flow at multiple life history stages in 39 species pairs spanning five million years of evolutionary divergence. We quantified nine potential pre‐ and postzygotic barriers and explored patterns of reproductive isolation in relation to genetic distance. Intrinsic postzygotic isolation was initially weak, increased at intermediate genetic distances, and reached a threshold characterized by complete genetic incompatibility. Climatic niche differences were strong at shallow genetic distances, and species pairs with overlapping ranges showed slight but appreciable phenological isolation, highlighting the potential for ecological barriers to contribute to speciation. Geographic analyses suggest that speciation is not regionally allopatric in the California Jewelflowers, as recently diverged taxa occur in relatively close proximity and display substantial range overlap. Young pairs are characterized by incomplete intrinsic postzygotic isolation, suggesting that extrinsic barriers or fine‐scale spatial segregation are more important early in the divergence process than genetic incompatibilities.  相似文献   

9.
The isolation barriers restricting gene flow between populations or species are of crucial interest for understanding how biological species arise and how they are maintained. Few studies have examined the entire range of possible isolation barriers from geographic isolation to next generation hybrid viability. Here, we present a detailed analysis of isolation barriers between two flowering plant species of the genus Petunia (Solanaceae). Petunia integrifolia and P. axillaris feature divergent pollination syndromes but can produce fertile hybrids when crossed in the laboratory. Both Petunia species are primarily isolated in space but appear not to hybridize in sympatry. Our experiments demonstrate that pollinator isolation is very high but not strong enough to explain the absence of hybrids in nature. However, pollinator isolation in conjunction with male gametic isolation (i.e., pollen-pistil interaction) can explain the lack of natural hybridization, while postzygotic isolation barriers are low or nonexistent. Our study supports the notion that reproductive isolation in flowering plants is mainly caused by pre- rather than postzygotic isolation mechanisms.  相似文献   

10.
Empirical estimates of the relative importance of different barriers to gene flow between recently diverged species are important for understanding processes of speciation. I investigated the factors contributing to reproductive isolation between Costus pulverulentus and C. scaber (Costaceae), two closely related hummingbird-pollinated understory Neotropical herbs. I studied broad-scale geographic isolation, microhabitat isolation, flowering phenology, overlap in pollinator assemblages, floral constancy by pollinators, mechanical floral isolation, pollen-pistil interactions, seed set in interspecific crosses, and postzygotic isolation (hybrid seed germination, greenhouse survival to flowering, and pollen fertility). Aside from substantial geographic isolation, I found evidence for several factors contributing to reproductive isolation in the sympatric portion of their geographic ranges, but the identity and relative strength of these factors varied depending on the direction of potential gene flow. For C. pulverulentus as the maternal parent, mechanical floral isolation was the most important factor, acting as a complete block to interspecific pollen deposition. For C. scaber as the maternal parent, microhabitat isolation, pollinator assemblage, mechanical floral isolation, and postpollination pollen-pistil incompatibility were important. Overall, prezygotic barriers were found to be strong, resulting in 100% reproductive isolation for C. pulverulentus as the maternal parent and 99.0% reproductive isolation for C. scaber as the maternal parent. Some postzygotic isolation also was identified in the F1 generation, increasing total isolation for C. scaber to 99.4%. The results suggest that ecological factors, including habitat use and plant-pollinator interactions, contributed to speciation in this system and evolved before extensive intrinsic postzygotic isolation.  相似文献   

11.
The type of reproductive isolation prevalent in the initial stages of species divergence can affect the nature and rate of emergence of additional reproductive barriers that subsequently strengthen isolation between species. Different groups of Mediterranean deceptive orchids are characterized by different levels of pollinator specificity. Whereas food-deceptive orchid species show weak pollinator specificity, the sexually deceptive Ophrys species display a more specialized pollination strategy. Comparative analyses reveal that orchids with high pollinator specificity mostly rely on premating reproductive barriers and have very little postmating isolation. In this group, a shift to a novel pollinator achieved by modifying the odour bouquet may represent the main isolation mechanism involved in speciation. By contrast, orchids with weak premating isolation, such as generalized food-deceptive orchids, show strong evidence for intrinsic postmating reproductive barriers, particularly for late-acting postzygotic barriers such as hybrid sterility. In such species, chromosomal differences may have played a key role in species isolation, although strong postmating-prezygotic isolation has also evolved in these orchids. Molecular analyses of hybrid zones indicate that the types and strength of reproductive barriers in deceptive orchids with contrasting premating isolation mechanisms directly affect the rate and evolutionary consequences of hybridization and the nature of species differentiation.  相似文献   

12.
Sexual isolation, a reproductive barrier, can prevent interbreeding between diverging populations or species. Sexual isolation can have a clear genetic basis; however, it may also result from learned mate preferences that form via sexual imprinting. Here, we demonstrate that two sympatric species of mice—the white‐footed mouse (Peromyscus leucopus) and its sister species, the cotton mouse (P. gossypinus)—hybridize only rarely in the wild despite co‐occurrence in the same habitat and lack of any measurable intrinsic postzygotic barriers in laboratory crosses. We present evidence that strong conspecific mating preferences in each species result in significant sexual isolation. We find that these preferences are learned in at least one species: P. gossypinus sexually imprints on its parents, but in P. leucopus, additional factors influence mating preferences. Our study demonstrates that sexual imprinting contributes to reproductive isolation that reduces hybridization between otherwise interfertile species, supporting the role for learning in mammalian speciation.  相似文献   

13.
Speciation studies seek to clarify the origin of reproductive isolation, the various mechanisms working from mate recognition through postzygotic stages. Asymmetric effects of isolating barriers can result in asymmetrical gene introgression during interspecific hybridization. The flightless ground beetles Carabus yamato and C. albrechti are distributed parapatrically in Japan, showing repeated asymmetrical introgression of mitochondria from C. albrechti to C. yamato. This pattern suggests that reproductive isolation between these species is strong, but incomplete and asymmetric (i.e., weaker for the cross between a C. albrechti female and a C. yamato male). To test this hypothesis, we conducted interspecific mating experiments in the laboratory. The estimates of total reproductive isolation, which occurred mainly at the premating and postmating/prezygotic stages, were high (isolation index = 0.964 for C. yamato female × C. albrechti male and 0.886 for the reciprocal cross), supporting the hypothesis of strong, but incomplete isolation. However, the observed difference between the reciprocal crosses was not sufficiently large to conclude that it caused directional introgression of mitochondria. Instead, we found asymmetry in individual isolating barriers in the postmating/prezygotic stages that coincided with the prediction, perhaps resulting from morphological mismatch of heterospecific genitalia. Although this asymmetry was compensated for by an inverse asymmetry of isolation in the postzygotic stage, the contribution of these individual barriers to total isolation may change for our expectation when considering females mating with multiple heterospecific males.  相似文献   

14.
Speciation research dissects the genetics and evolution of reproductive barriers between parental species. Hybrids are the “gatekeepers” of gene flow, so it is also important to understand the behavioural mechanisms and genetics of any potential isolation from their parental species. We tested the role of multiple behavioural barriers in reproductive isolation among closely related field crickets and their hybrids (Teleogryllus oceanicus and Teleogryllus commodus). These species hybridize in the laboratory, but the behaviour of hybrids is unusual and there is little evidence for gene flow in the wild. We found that heterospecific pairs exhibited reduced rates of courtship behaviour due to discrimination by both sexes, and that this behavioural isolation was symmetrical. However, hybrids were not sexually selected against and exhibited high rates of courtship behaviour even though hybrid females are sterile. Using reciprocal hybrid crosses, we characterized patterns of interspecific divergence and inheritance in key sexual traits that might underlie the mating patterns we found: calling song, courtship song and cuticular hydrocarbons (CHCs). Song traits exhibited both sex linkage and transgressive segregation, whereas CHCs exhibited only the latter. Calculations of the strength of isolation exerted by these sexual traits suggest that close‐range signals are as important as long‐distance signals in contributing to interspecific sexual isolation. The surprisingly weak mating barriers observed between hybrids and parental species highlight the need to examine reproductive isolating mechanisms and their genetic bases across different potential stages of introgressive hybridization.  相似文献   

15.
We assessed prezygotic (probability of spawning) and postzygotic (hatching success) reproductive isolation among the three ecologically and morphologically similar species in the Fundulus notatus species complex. We employed a multi-generation breeding experiment to test the hypotheses that karyotypic differences, body size differences, or geographic isolation among populations will increase pre or postzygotic reproductive barriers. Overall, prezygotic barriers were strong and postzygotic barriers weak in crosses of non-hybrid heterospecifics (F1 hybrid crosses) while prezygotic barriers were weaker and postzygotic barriers stronger in crosses involving hybrid individuals (F2 hybrid crosses and backcrosses). Prezygotic barriers among the two smaller species (Fundulus notatus and F. euryzonus) broke down rapidly; first generation hybrids spawned (F2 hybrid crosses and backcrosses) as frequently as parental forms in intraspecific crosses. There was no increase in postzygotic barriers among species with cytogenetic differences. There were increased prezygotic, but not postzygotic, barriers among geographically isolated populations of one species. While pure males and females were just as likely to spawn with hybrids, some types of hybrid females suffered from increased sterility, but not inviability, over hybrid males. Female sterility was only seen in hybrids with a Fundulus euryzonus parent, while other female hybrids produced viable eggs.  相似文献   

16.
Reproductive barriers play an important role in the maintenance of species boundaries. However, to date, few studies have provided a detailed analysis of reproductive isolation barriers between species or examined their importance in maintaining species identity. This is the first detailed study into pre‐ and post‐zygotic reproductive isolation barriers in Antirrhinum, based on a mixed population with two species that rarely co‐occur. The study revealed that pollinator constancy and preference and poor hybrid seed viability were the most important reproductive isolating mechanisms. Reproductive isolation was practically complete by both pre‐ and post‐zygotic barriers. Average pre‐zygotic isolation was greater than post‐zygotic isolation, in accordance with the trend observed in flowering plants in which reproductive isolation is principally caused by pre‐zygotic mechanisms. However, average post‐zygotic isolation was also high, in contrast to what was expected among Antirrhinum spp. This case highlights the importance of quantifying the reproductive isolation barriers thoroughly to understand how and why species boundaries are maintained. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 159–172.  相似文献   

17.
New species arise through the evolution of reproductive barriers between formerly interbreeding lineages. Yet, comprehensive assessments of potential reproductive barriers, which are needed to make inferences on processes driving speciation, are only available for a limited number of systems. In this study, we estimated individual and cumulative strengths of seven prezygotic and six postzygotic reproductive barriers between the recently diverged taxa Silene dioica (L.) Clairv. and S. latifolia Poiret using both published and new data. A combination of multiple partial reproductive barriers resulted in near‐complete reproductive isolation between S. dioica and S. latifolia, consistent with earlier estimates of gene flow between the taxa. Extrinsic barriers associated with adaptive ecological divergence were most important, while intrinsic postzygotic barriers had moderate individual strength but contributed only little to total reproductive isolation. These findings are in line with ecological divergence as driver of speciation. We further found extensive variation in extrinsic reproductive isolation, ranging from sites with very strong selection against migrants and hybrids to intermediate sites where substantial hybridization is possible. This situation may allow for, or even promote, heterogeneous genetic divergence.  相似文献   

18.
Reproductive isolation (RI) is a critical component of speciation and varies strongly in timing and strength among different sister taxa, depending on, for example the geography of speciation and divergence time. However, these factors may also produce variation in timing and strength among populations within species. Here we tested for variation in the expression of RI among replicate population pairs between the sister taxa Arabidopsis lyrata subsp. lyrata and A. arenicola. While the former is predominantly outcrossing, the latter is predominantly selfing. We focused on intrinsic prezygotic and postzygotic RI as both species occur largely in allopatry. We assessed RI by performing within-population crosses and interspecific between-population crosses, and by raising offspring. RI was generally high between all interspecific population pairs, but it varied in timing and strength depending on population history. Prezygotic isolation was strongest between the closest-related population pair, while early postzygotic isolation was high for all other population pairs. Furthermore, the timing and strength of RI depended strongly on cross direction. Our study provides empirical support that reproductive barriers between species are highly variable among population pairs and asymmetric within population pairs, and this variation seems to follow patterns typically described across species pairs.  相似文献   

19.
Identifying the phenotypes underlying postzygotic reproductive isolation is crucial for fully understanding the evolution and maintenance of species. One potential postzygotic isolating barrier that has rarely been examined is learning and memory ability in hybrids. Learning and memory are important fitness‐related traits, especially in scatter‐hoarding species, where accurate retrieval of hoarded food is vital for winter survival. Here, we test the hypothesis that learning and memory ability can act as a postzygotic isolating barrier by comparing these traits among two scatter‐hoarding songbird species, black‐capped (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis), and their naturally occurring hybrids. In an outdoor aviary setting, we find that hybrid chickadees perform significantly worse on an associative learning spatial task and are worse at solving a novel problem compared to both parental species. Deficiencies in learning and memory abilities could therefore contribute to postzygotic reproductive isolation between chickadee species. Given the importance of learning and memory for fitness, our results suggest that these traits may play an important, but as yet overlooked, role in postzygotic reproductive isolation.  相似文献   

20.
The interaction between floral traits and reproductive isolation is crucial to explaining the extraordinary diversity of angiosperms. Heterostyly, a complex floral polymorphism that optimizes outcrossing, evolved repeatedly and has been shown to accelerate diversification in primroses, yet its potential influence on isolating mechanisms remains unexplored. Furthermore, the relative contribution of pre‐ versus postmating barriers to reproductive isolation is still debated. No experimental study has yet evaluated the possible effects of heterostyly on pre‐ and postmating reproductive mechanisms. We quantify multiple reproductive barriers between the heterostylous Primula elatior (oxlip) and P. vulgaris (primrose), which readily hybridize when co‐occurring, and test whether traits of heterostyly contribute to reproductive barriers in unique ways. We find that premating isolation is key for both species, while postmating isolation is considerable only for P. vulgaris; ecogeographic isolation is crucial for both species, while phenological, seed developmental, and hybrid sterility barriers are also important in P. vulgaris, implicating sympatrically higher gene flow into P. elatior. We document for the first time that, in addition to the aforementioned species‐dependent asymmetries, morph‐dependent asymmetries affect reproductive barriers between heterostylous species. Indeed, the interspecific decrease of reciprocity between high sexual organs of complementary floral morphs limits interspecific pollen transfer from anthers of short‐styled flowers to stigmas of long‐styled flowers, while higher reciprocity between low sexual organs favors introgression over isolation from anthers of long‐styled flowers to stigmas of short‐styled flowers. Finally, intramorph incompatibility persists across species boundaries, but is weakened in long‐styled flowers of P. elatior, opening a possible backdoor to gene flow through intramorph pollen transfer between species. Therefore, patterns of gene flow across species boundaries are likely affected by floral morph composition of adjacent populations. To summarize, our study highlights the general importance of premating isolation and newly illustrates that both morph‐ and species‐dependent asymmetries shape boundaries between heterostylous species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号