首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Female mate choice has often been proposed to play an important role in cases of rapid speciation, in particular in the explosively evolved haplochromine cichlid species flocks of the Great Lakes of East Africa. Little, if anything, is known in cichlid radiations about the heritability of female mating preferences. Entirely sympatric distribution, large ecological overlap and conspicuous differences in male nuptial coloration, and female preferences for these, make the sister species Pundamilia pundamilia and P. nyererei from Lake Victoria an ideally suited species pair to test assumptions on the genetics of mating preferences made in models of sympatric speciation. Female mate choice is necessary and sufficient to maintain reproductive isolation between these species, and it is perhaps not unlikely therefore, that female mate choice has been important during speciation. A prerequisite for this, which had remained untested in African cichlid fish, is that variation in female mating preferences is heritable. We investigated mating preferences of females of these sister species and their hybrids to test this assumption of most sympatric speciation models, and to further test the assumption of some models of sympatric speciation by sexual selection that female preference is a single-gene trait. We find that the differences in female mating preferences between the sister species are heritable, possibly with quite high heritabilities, and that few but probably more than one genetic loci contribute to this behavioural speciation trait with no apparent dominance. We discuss these results in the light of speciation models and the debate about the explosive radiation of cichlid fishes in Lake Victoria.  相似文献   

2.
The ecological niche and mate preferences have independently been shown to be important for the process of speciation. Here, we articulate a novel mechanism by which ecological niche use and mate preference can be linked to promote speciation. The degree to which individual niches are narrow and clustered affects the strength of divergent natural selection and population splitting. Similarly, the degree to which individual mate preferences are narrow and clustered affects the strength of divergent sexual selection and assortative mating between diverging forms. This novel perspective is inspired by the literature on ecological niches; it also explores mate preferences and how they may contribute to speciation. Unlike much comparative work, we do not search for evolutionary patterns using proxies for adaptation and sexual selection, but rather we elucidate how ideas from niche theory relate to mate preference, and how this relationship can foster speciation. Recognizing that individual and population niches are conceptually and ecologically linked to individual and population mate preference functions will significantly increase our understanding of rapid evolutionary diversification in nature. It has potential to help solve the difficult challenge of testing the role of sexual selection in the speciation process. We also identify ecological factors that are likely to affect individual niche and individual mate preference in synergistic ways and as a consequence to promote speciation. The ecological niche an individual occupies can directly affect its mate preference. Clusters of individuals with narrow, differentiated niches are likely to have narrow, differentiated mate preference functions. Our approach integrates ecological and sexual selection research to further our understanding of diversification processes. Such integration may be necessary for progress because these processes seem inextricably linked in the natural world.  相似文献   

3.
Recent and rapid radiations provide rich material to examine the factors that drive speciation. Most recent and rapid radiations that have been well-characterized involve species that exhibit overt ecomorphological differences associated with clear partitioning of ecological niches in sympatry. The most diverse genus of rodents, Rattus (66 species), evolved fairly recently, but without overt ecomorphological divergence among species. We used multilocus molecular phylogenetic data and five fossil calibrations to estimate the tempo of diversification in Rattus, and their radiation on Australia and New Guinea (Sahul, 24 species). Based on our analyses, the genus Rattus originated at a date centered on the Pliocene-Pleistocene boundary (1.84-3.17 Ma) with a subsequent colonization of Sahul in the middle Pleistocene (0.85-1.28 Ma). Given these dates, the per lineage diversification rates in Rattus and Sahulian Rattus are among the highest reported for vertebrates (1.1-1.9 and 1.6-3.0 species per lineage per million years, respectively). Despite their rapid diversification, Rattus display little ecomorphological divergence among species and do not fit clearly into current models of adaptive radiations. Lineage through time plots and ancestral state reconstruction of ecological characters suggest that diversification of Sahulian Rattus was most rapid early on as they expanded into novel ecological conditions. However, rapid lineage accumulation occurred even when morphological disparity within lineages was low suggesting that future studies consider other phenotypes in the diversification of Rattus.  相似文献   

4.
During sexual imprinting, offspring learn parental phenotypes and then select mates who are similar to their parents. Imprinting has been thought to contribute to the process of speciation in only a few rare cases; this is despite imprinting's potential to generate assortative mating and solve the problem of recombination in ecological speciation. If offspring imprint on parental traits under divergent selection, these traits will then be involved in both adaptation and mate preference. Such 'magic traits' easily generate sexual isolation and facilitate speciation. In this study, we show that imprinting occurs in two ecologically divergent stickleback species (benthics and limnetics: Gasterosteus spp.). Cross-fostered females preferred mates of their foster father's species. Furthermore, imprinting is essential for sexual isolation between species; isolation was reduced when females were raised without fathers. Daughters imprinted on father odour and colour during a critical period early in development. These traits have diverged between the species owing to differences in ecology. Therefore, we provide the first evidence that imprinting links ecological adaptation to sexual isolation between species. Our results suggest that imprinting may facilitate the evolution of sexual isolation during ecological speciation, may be especially important in cases of rapid diversification, and thus play an integral role in the generation of biodiversity.  相似文献   

5.
A key question in speciation research is how ecological and sexual divergence arise and interact. We tested the hypothesis that mate choice causes local adaptation and ecological divergence using the rationale that the performance~signal trait relationship should parallel the attractiveness~signal trait relationship. We used female fecundity as a measure of ecological performance. We used a species in the Enchenopa binotata treehopper complex, wherein speciation involves adaptation to novel environments and divergence in sexual communication. We used a full‐sibling, split‐family rearing design to estimate genetic correlations (rG) between fecundity and signal traits, and compared those relationships against population‐level mate preferences for the signal traits. Animal model estimates for rG between female fecundity and male signal traits overlapped zero—rejecting the hypothesis—but could reflect sample size limitations. The magnitude of rG correlated with the strength of the mate preferences for the corresponding signal traits, especially for signal frequency, which has the strongest mate preference and the most divergence in the complex. However, signal frequencies favored by the population‐level mate preference are not associated with high fecundity. Therefore, mate preferences do not appear to have been selected to favor high‐performance genotypes. Our findings suggest that ecological and sexual divergence may arise separately, but reinforce each other, during speciation.  相似文献   

6.
Detailed studies of reproductive isolation and how it varies among populations can provide valuable insight into the mechanisms of speciation. Here we investigate how the strength of premating isolation varies between sympatric and allopatric populations of threespine sticklebacks to test a prediction of the hypothesis of reinforcement: that interspecific mate discrimination should be stronger in sympatry than in allopatry. In conducting such tests, it is important to control for ecological character displacement between sympatric species because ecological character divergence may strengthen prezygotic isolation as a by-product. We control for ecological character displacement by comparing mate preferences of females from a sympatric population (benthics) with mate preferences of females from two allopatric populations that most closely resemble the sympatric benthic females in ecology and morphology. No-choice mating trials indicate that sympatric benthic females mate less readily with heterospecific (limnetic) than conspecific (benthic) males, whereas two different populations of allopatric females resembling benthics show no such discrimination. These differences demonstrate reproductive character displacement of benthic female mate choice. Previous studies have established that hybridization between sympatric species occurred in the past in the wild and that hybrid offspring have lower fitness than either parental species, thus providing conditions under which natural selection would favor individuals that do not hybridize. Results are therefore consistent with the hypothesis that female mate preferences have evolved as a response to reduced hybrid fitness (reinforcement), although direct effects of sympatry or a biased extinction process could also produce the pattern. Males of the other sympatric species (limnetics) showed a preference for smaller females, in contrast to the inferred ancestral preference for larger females, suggesting reproductive character displacement of limnetic male mate preferences as well.  相似文献   

7.
Understanding the processes that underpin adaptive evolutionary shifts within major taxonomic groups has long been a research directive among many evolutionary biologists. Such phenomena are best studied in large monophyletic groups that occupy a broad range of habitats where repeated exposure to novel ecological opportunities has happened independently over time in different lineages. The gekkonid genus Cyrtodactylus is just such a lineage with approximately 300 species that range from South Asia to Melanesia and occupy a vast array of habitats. Ancestral state reconstructions using a stochastic character mapping analysis of nine different habitat preferences were employed across a phylogeny composed of 76% of the known species of Cyrtodactylus. This was done in order to ascertain which habitat preference is the ancestral condition and from that condition, the transition frequency to more derived habitat preferences. The results indicate that a general habitat preference is the ancestral condition for Cyrtodactylus and the frequency of transitioning from a general habitat preference to anything more specialized occurs approximately four times more often than the reverse. Species showing extreme morphological and/or ecological specializations generally do not give rise to species bearing other habitat preferences. The evolution of different habitat preferences is generally restricted to clades that tend to occur in specific geographic regions. The largest radiations in the genus occur in rocky habitats (granite and karst), indicating that the transition from a general habitat preference to a granite or karst‐dwelling life style may be ecologically uncomplicated. Two large, unrelated clades of karst‐associated species are centered in northern Indochina and the largest clade of granite‐associated species occurs on the Thai‐Malay Peninsula. Smaller, independent radiations of clades bearing other habitat preferences occur throughout the tree and across the broad distribution of the genus. With the exception of a general habitat preference, the data show that karst‐associated species far out‐number all others (29.6% vs. 0.4%–10.2%, respectively) and the common reference to karstic regions as “imperiled arcs of biodiversity” is not only misleading but potentially dangerous. Karstic regions are not simply refugia harboring the remnants of local biodiversity but are foci of speciation that continue to generate the most speciose, independent, radiations across the genus. Unfortunately, karstic landscapes are some of the most imperiled and least protected habitats on the planet and these data continue to underscore the urgent need for their conservation.  相似文献   

8.
Sexual imprinting occurs when juveniles learn mate preferences by observing the phenotypes of other members of their populations, and it is ubiquitous in nature. Imprinting strategies, that is which individuals and phenotypes are observed and how strong preferences become, vary among species. Imprinting can affect trait evolution and the probability of speciation, and different imprinting strategies are expected to have different effects. However, little is known about how and why different imprinting strategies evolve, or which strategies we should expect to see in nature. We used a mathematical model to study how the evolution of sexual imprinting depends on (1) imprinting costs and (2) the sex‐specific fitness effects of the phenotype on which individuals imprint. We found that even small fixed costs prevent the evolution of sexual imprinting, but small relative costs do not. When imprinting does evolve, we identified the conditions under which females should evolve to imprint on their fathers, their mothers, or on other members of their populations. Our results provide testable hypotheses for empirical work and help to explain the conditions under which sexual imprinting might evolve to promote speciation.  相似文献   

9.
A Fisherian model of sexual selection is combined with a diffusion model of mate dispersal to investigate the evolution of assortative mating in a sympatric population. Females mate with one of two types of polygynous males according to a male's display of one of two sex-limited, autosomal traits; these male traits may be associated with differential phenotypic mortalities. Through a Fisherian runaway process, female preferences and male traits can become associated in linkage disequilibrium, leading to patterns of assortative mating. Dispersing males, whose rate of movement is dependent on mating success, carry female preference genes with them, and displaced males thereby produce daughters with preference genes for their respective traits in locally higher than average frequencies. The reduced diffusion of the more preferred males permits the success of other male types in adjacent areas. Thus, mating-success dependent diffusion, when coupled with the rapid divergence in phenotypes possible under the Fisher process, can lead to the coexistence of two female preferences and two male traits in sympatry. We argue that many existing approaches to sympatric speciation fail to explain observed male polymorphisms because they exclude explicit spatial structure from their speciation models.  相似文献   

10.
Premating behavioral isolation is increasingly recognized as an important part of ecological speciation, where divergent natural selection causes the evolution of reproductive barriers. A number of studies have now demonstrated that traits under divergent natural selection also affect mate preferences. However, studies of single species pairs only capture a snapshot of the speciation process, making it difficult to assess the role of mate preferences throughout the entire process. Heliconius butterflies are well known for their brightly colored mimetic warning patterns, and previous studies have shown that these patterns are also used as mate recognition cues. Here, we present mate preference data for four pairs of sister taxa, representing different stages of divergence, which together allow us to compare diverging mate preferences across the continuum of Heliconius speciation. Using a novel Bayesian approach, our results support a model of ecological speciation in which strong premating isolation arises early, but continues to increase throughout the continuum from polymorphic populations through to "good," sympatric ecologically divergent species.  相似文献   

11.
Biological diversification often includes burst of lineage splitting. Such “radiation” has been known to act as evolutionary arenas with the potential to generate unique phylogenetic clusters and further novel groups. Although these radiations when accompanied by ecological diversification, so-called “adaptive radiation” have persisted as a central premise in evolutionary biology, the ecological and genetic mechanism of such rapid diversification has remained unclear. There are several critical definitions for the pattern of adaptive radiation, and those provide delimitation of adaptive and non-adaptive radiation. That being said, only a few studies have provided any clear demarcations in our understanding of the adaptive and non-adaptive causes of radiation from the mechanism of speciation. Here, we review the current consensus for the causes of adaptive radiation, especially along with the recent theoretical synthesis of “ecological speciation.” Further, we suggest the signature of adaptive and non-adaptive radiation in the earliest stages of diversification from the viewpoint of speciation. These criteria from the speciation view are useful to find the cases with the signatures of adaptive/non-adaptive radiation.  相似文献   

12.
Evolutionary radiations are one plausible explanation for the rich biodiversity on Earth. Adaptive radiations are the most studied form of evolutionary radiations, and ecological opportunity has been identified as one factor permitting them. Competition among individuals is supposedly highest in populations of conspecifics. Divergent modes of resource use might minimize trophic overlap, and thus intersexual competition, resulting in ecological character displacement between sexes. However, the role of intersexual differentiation in speciation processes is insufficiently studied. The few studies available suggest that intersexual niche differentiation exists in adaptive radiations, but their role within the radiation, and the extent of differentiation within the organism itself, remains largely unexplored. Here, we test the hypothesis that multiple morphological structures are affected by intersexual niche differentiation in “roundfin” Telmatherina, the first case where intersexual niche differentiation was demonstrated in an adaptive fish radiation. We show that sexes of two of the three morphospecies differ in several structural components of the head, all of these are likely adaptive. Sexual dimorphism is linked to the respective morphospecies‐specific ecology and affects several axes of variation. Trait variation translates into different feeding modes, processing types, and habitat usages that add to interspecific variation in all three morphospecies. Intrasexual selection, that is, male–male competition, may contribute to variation in some of the traits, but appears unlikely in internal structures, which are invisible to other individuals. We conclude that intersexual variation adds to the adaptive diversity of roundfins and might play a key role in minimizing intersexual competition in emerging radiations.  相似文献   

13.
The neutral theory of biodiversity purports that patterns in the distribution and abundance of species do not depend on adaptive differences between species (i.e. niche differentiation) but solely on random fluctuations in population size (“ecological drift”), along with dispersal and speciation. In this framework, the ultimate driver of biodiversity is speciation. However, the original neutral theory made strongly simplifying assumptions about the mechanisms of speciation, which has led to some clearly unrealistic predictions. In response, several recent studies have combined neutral community models with more elaborate speciation models. These efforts have alleviated some of the problems of the earlier approaches, while confirming the general ability of neutral theory to predict empirical patterns of biodiversity. However, the models also show that the mode of speciation can have a strong impact on relative species abundances. Future work should compare these results to diversity patterns arising from non‐neutral modes of speciation, such as adaptive radiations.  相似文献   

14.
African cichlid fish: a model system in adaptive radiation research   总被引:9,自引:0,他引:9  
The African cichlid fish radiations are the most diverse extant animal radiations and provide a unique system to test predictions of speciation and adaptive radiation theory. The past few years have seen major advances in the phylogenetics, evolutionary biogeography and ecology of cichlid fish. Most of this work has concentrated on the most diverse radiations. Unfortunately, a large number of small radiations and 'non-radiations' have been overlooked, potentially limiting the contribution of the cichlid system to our understanding of speciation and adaptive radiation. I have reviewed the literature to identify 33 intralacustrine radiations and 76 failed radiations. For as many as possible I collected information on lake size, age and phylogenetic relationships. I use these data to address two questions: (i) whether the rate of speciation and the resulting species richness are related to temporal and spatial variation in ecological opportunity and (ii) whether the likelihood of undergoing adaptive radiation is similar for different African cichlid lineages. The former is a key prediction of the ecological theory of adaptive radiation that has been presumed true but remains untested for cichlid radiations. The second is based on the hypothesis that the propensity of cichlids to radiate is due to a key evolutionary innovation shared by all African cichlids. The evidence suggests that speciation rate declines through time as niches get filled up during adaptive radiation: young radiations and early stages of old radiations are characterized by high rates of speciation, whereas at least 0.5 Myr into a radiation speciation becomes a lot less frequent. The number of species in cichlid radiations increases with lake size, supporting the prediction that species diversity increases with habitat heterogeneity, but also with opportunity for isolation by distance. Finally, the data suggest that the propensity to radiate within lakes is a derived property that evolved during the evolutionary history of some African cichlids, and the appearance of which does not coincide with the appearance of proposed key innovations in morphology and life history.  相似文献   

15.
According to Darwin, sympatric speciation is driven by disruptive, frequency-dependent natural selection caused by competition for diverse resources. Recently, several authors have argued that disruptive sexual selection can also cause sympatric speciation. Here, we use hypergeometric phenotypic and individual-based genotypic models to explore sympatric speciation by sexual selection under a broad range of conditions. If variabilities of preference and display traits are each caused by more than one or two polymorphic loci, sympatric speciation requires rather strong sexual selection when females exert preferences for extreme male phenotypes. Under this kind of mate choice, speciation can occur only if initial distributions of preference and display are close to symmetric. Otherwise, the population rapidly loses variability. Thus, unless allele replacements at very few loci are enough for reproductive isolation, female preferences for extreme male displays are unlikely to drive sympatric speciation. By contrast, similarity-based female preferences that do not cause sexual selection are less destabilizing to the maintenance of genetic variability and may result in sympatric speciation across a broader range of initial conditions. Certain groups of African cichlids have served as the exclusive motivation for the hypothesis of sympatric speciation by sexual selection. Mate choice in these fishes appears to be driven by female preferences for extreme male phenotypes rather than similarity-based preferences, and the evolution of premating reproductive isolation commonly involves at least several genes. Therefore, differences in female preferences and male display in cichlids and other species of sympatric origin are more likely to have evolved as isolating mechanisms under disruptive natural selection.  相似文献   

16.
Pythons and boas are globally distributed and distantly related radiations with remarkable phenotypic and ecological diversity. We tested whether pythons, boas and their relatives have evolved convergent phenotypes when they display similar ecology. We collected geometric morphometric data on head shape for 1073 specimens representing over 80% of species. We show that these two groups display strong and widespread convergence when they occupy equivalent ecological niches and that the history of phenotypic evolution strongly matches the history of ecological diversification, suggesting that both processes are strongly coupled. These results are consistent with replicated adaptive radiation in both groups. We argue that strong selective pressures related to habitat‐use have driven this convergence. Pythons and boas provide a new model system for the study of macro‐evolutionary patterns of morphological and ecological evolution and they do so at a deeper level of divergence and global scale than any well‐established adaptive radiation model systems.  相似文献   

17.
The evolution of ecological specialization has been a central topic in ecology because specialized adaptations to divergent environments can result in reproductive isolation and facilitate speciation. However, the order in which different aspects of habitat adaptation and habitat preference evolve is unclear. Timema walking-stick insects feed and mate on the host plants on which they rest. Previous studies of T. cristinae ecotypes have documented divergent, host-specific selection from visual predators and the evolution of divergent host and mate preferences between populations using different host-plant species (Ceanothus or Adenostoma). Here we present new data that show that T. podura, a nonsister species of T. cristinae, has also formed ecotypes on these host genera and that in both species these ecotypes exhibit adaptive divergence in color-pattern and host preference. Color-pattern morphs exhibit survival trade-offs on different hosts due to differential predation. In contrast, fecundity trade-offs on different hosts do not occur in either species. Thus, host preference in both species has evolved before divergent physiological adaptation but in concert with morphological adaptations. Our results shed light onto which traits are involved in the initial stages of ecological specialization and ecologically based reproductive isolation.  相似文献   

18.
Evidence has been accumulating to support the process of reinforcement as a potential mechanism in speciation. In many species, mate choice decisions are influenced by cultural factors, including learned mating preferences (sexual imprinting) or learned mate attraction signals (e.g., bird song). It has been postulated that learning can have a strong impact on the likelihood of speciation and perhaps on the process of reinforcement, but no models have explicitly considered learning in a reinforcement context. We review the evidence that suggests that learning may be involved in speciation and reinforcement, and present a model of reinforcement via learned preferences. We show that not only can reinforcement occur when preferences are learned by imprinting, but that such preferences can maintain species differences easily in comparison with both autosomal and sex-linked genetically inherited preferences. We highlight the need for more explicit study of the connection between the behavioral process of learning and the evolutionary process of reinforcement in natural systems.  相似文献   

19.
Several empirical studies put forward sexual selection as an important driving force of sympatric speciation. This idea agrees with recent models suggesting that speciation may proceed by means of divergent Fisherian runaway processes within a single population. Notwithstanding this, the models so far have not been able to demonstrate that sympatric speciation can unfold as a fully adaptive process driven by sexual selection alone. Implicitly or explicitly, most models rely on nonselective factors to initiate speciation. In fact, they do not provide a selective explanation for the considerable variation in female preferences required to trigger divergent runaway processes. We argue that such variation can arise by disruptive selection but only when selection on female preferences is frequency dependent. Adaptive speciation is therefore unattainable in traditional female choice models, which assume selection on female preferences to be frequency independent. However, when frequency-dependent sexual selection processes act alongside mate choice, truly adaptive sympatric speciation becomes feasible. Speciation is then initiated independently of nonadaptive processes and does not suffer from the theoretical weaknesses associated with the current Fisherian runaway model of speciation. However, adaptive speciation requires the simultaneous action of multiple mechanisms, and therefore it occurs under conditions far more restrictive than earlier models of sympatric speciation by sexual selection appear to suggest.  相似文献   

20.
We investigate the plausibility of sympatric speciation through a modelling study. We built up a series of models with increasing complexity while focussing on questioning the realism of model assumptions by checking them critically against a particular biological system, namely the sympatric benthic and limnetic species of threespine stickleback in British Columbia, Canada. These are morphologically adapted to their feeding habits: each performs better in its respective habitat than do hybrids with intermediate morphology. Ecological character displacement through disruptive selection and competition, and reinforcement through mating preferences may have caused their divergence. Our model assumptions include continuous morphological trait(s) instead of a dimorphic trait, and mating preferences based on the same trait(s) as selected for in food competition. Initially, morphology is intermediate. We apply disruptive selection against intermediates, frequency-dependent resource competition, and one of two alternative mating preference mechanisms. Firstly, preference is based on similarity where mating preference may result from “imprinting” on conspecifics encountered in their preferred foraging habitat. Here, speciation occurs easily—ecological hybrid inferiority is not necessary. Hybrid inferiority reinforces the stringency of assortative mating. Secondly, individual preferences exist for different trait values. Here, speciation occurs when linkage disequilibrium between trait and preference develops, and some hybrid inferiority is required. Finally, if the morphology subject to disruptive selection, frequency-dependent competition, and mate choice, is coded for by two loci, linkage disequilibrium between the two loci is required for speciation. Speciation and reinforcement of stringency of choosiness are possible in this case too, but rarely. Results demonstrate the contingency of speciation, with the same starting point not necessarily producing the same outcome. The study resulted in flagging issues where models often lack in biological realism and issues where more empirical studies could inform on whether assumptions are likely valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号