共查询到20条相似文献,搜索用时 15 毫秒
1.
David M. Green Clifford W. Zeyl Timothy F. Sharbel 《Journal of evolutionary biology》1993,6(3):417-441
Chromosomes exhibiting elevated levels of differentiation are termed hypervariable but no proposed mechanisms are sufficient to account for such enhanced evolutionary divergence. Both hypervariable sex and supernumerary (B) chromosomes were investigated in the endemic New Zealand frog, Leiopelma hochstetteri, which is chromosomally polymorphic both within and between populations and has sufficiently elevated variation that different populations can be identified solely by their C-banded karyotypes. This frog is further distinguished by the univalent, female-specific W-chromosome (0W/00 sex determination) uniquely possessed by North Island populations. This sex chromosome exhibited variation in morphology, size, and heterochromatin distribution, sufficient to resolve 11 different types, including isochromosomes. Five of the 12 populations examined also had supernumerary chromosomes that varied in number (up to 15 per individual) and morphology. Specific variations seen among the hypervariable chromosomes could have resulted from heterochromatinisation, chromosome fusions, loss-of-function mutations, deletions, and/or duplications. Frogs of the same species from Great Barrier Island, however, had neither supernumeraries nor the female-specific chromosome. The 0W/00 sex chromosome system must have been derived after the isolation of Great Barrier Island from North Island populations by raised sea levels between 14 000 and 8000 years ago. Furthermore, biochemical divergence between populations is minor and therefore the chromosomal variation seen is comparatively recent in origin. The one characteristic common to all known hypervariable chromosomes is curtailment or lack of recombination. Their accelerated evolution therefore is possible via the mechanism of Muller's ratchet, either alone or in concert with other factors. 相似文献
2.
Root Gorelick Danielle Fraser Melissa Mansfield Jeff W. Dawson Sanoji Wijenayake Susan M. Bertram 《Biological journal of the Linnean Society. Linnean Society of London》2016,119(2):488-496
As a result of suppressed recombination, heterogametic sex chromosomes (either Y or W) are usually assumed to gradually shorten over evolutionary time as a way to remove accumulated mutations. However, suppressed recombination removes the most obvious mechanism for excising portions of sex chromosomes. We examined ratios of W/Z chromosome size across 224 bird species from 146 genera. Much of the data were obtained from a previous study (Rutkowska et al. 2012. Biology Letters 8 : 636–638), who, similar to ourselves, found no gradual decrease in W chromosome length over evolutionary time. However, we show an abrupt decrease in W chromosome length at or just after the phylogenetic split between the two extant bird superorders, Paleognathae and Neognathae, indicating that the key to understanding sex chromosome evolution may have little to do with gradual suppression of recombination. 相似文献
3.
Nicolas Perrin 《Evolution; international journal of organic evolution》2009,63(12):3043-3049
Nonrecombining Y chromosomes are expected to degenerate through the progressive accumulation of deleterious mutations. In lower vertebrates, however, most species display homomorphic sex chromosomes. To address this, paradox I propose a role for sex reversal, which occasionally occurs in ectotherms due to the general dependence of physiological processes on temperature. Because sex‐specific recombination patterns depend on phenotypic, rather than genotypic sex, homomorphic X and Y chromosomes are expected to recombine in sex‐reversed females. These rare events should generate bursts of new Y haplotypes, which will be quickly sorted out by natural or sexual selection. By counteracting Muller's ratchet, this regular purge should prevent the evolutionary decay of Y chromosomes. I review empirical data supporting this suggestion, and propose further investigations for testing it. 相似文献
4.
Sex chromosomes are expected to evolve suppressed recombination, which leads to degeneration of the Y and heteromorphism between the X and Y. Some sex chromosomes remain homomorphic, however, and the factors that prevent degeneration of the Y in these cases are not well understood. The homomorphic sex chromosomes of the European tree frogs (Hyla spp.) present an interesting paradox. Recombination in males has never been observed in crossing experiments, but molecular data are suggestive of occasional recombination between the X and Y. The hypothesis that these sex chromosomes recombine has not been tested statistically, however, nor has the X‐Y recombination rate been estimated. Here, we use approximate Bayesian computation coupled with coalescent simulations of sex chromosomes to quantify X‐Y recombination rate from existent data. We find that microsatellite data from H. arborea, H. intermedia and H. molleri support a recombination rate between X and Y that is significantly different from zero. We estimate that rate to be approximately 105 times smaller than that between X chromosomes. Our findings support the notion that very low recombination rate may be sufficient to maintain homomorphism in sex chromosomes. 相似文献
5.
E. Cherif S. Zehdi‐Azouzi A. Crabos K. Castillo N. Chabrillange J.‐C. Pintaud A. Salhi‐Hannachi S. Glémin F. Aberlenc‐Bertossi 《Journal of evolutionary biology》2016,29(8):1513-1522
Understanding the driving forces and molecular processes underlying dioecy and sex chromosome evolution, leading from hermaphroditism to the occurrence of male and female individuals, is of considerable interest in fundamental and applied research. The genus Phoenix, belonging to the Arecaceae family, consists uniquely of dioecious species. Phylogenetic data suggest that the genus Phoenix has diverged from a hermaphroditic ancestor which is also shared with its closest relatives. We have investigated the cessation of recombination in the sex‐determination region within the genus Phoenix as a whole by extending the analysis of P. dactylifera SSR sex‐related loci to eight other species within the genus. Phylogenetic analysis of a date palm sex‐linked PdMYB1 gene in these species has revealed that sex‐linked alleles have not clustered in a species‐dependent way but rather in X and Y‐allele clusters. Our data show that sex chromosomes evolved from a common autosomal origin before the diversification of the extant dioecious species. 相似文献
6.
Sex in the wild: How and why field‐based studies contribute to solving the problem of sex* 下载免费PDF全文
Maurine Neiman Patrick G. Meirmans Tanja Schwander Stephanie Meirmans 《Evolution; international journal of organic evolution》2018,72(6):1194-1203
Why and how sexual reproduction is maintained in natural populations, the so‐called “queen of problems,” is a key unanswered question in evolutionary biology. Recent efforts to solve the problem of sex have often emphasized results generated from laboratory settings. Here, we use a survey of representative “sex in the wild” literature to review and synthesize the outcomes of empirical studies focused on natural populations. Especially notable results included relatively strong support for mechanisms involving niche differentiation and a near absence of attention to adaptive evolution. Support for a major role of parasites is largely confined to a single study system, and only three systems contribute most of the support for mutation accumulation hypotheses. This evidence for taxon specificity suggests that outcomes of particular studies should not be more broadly extrapolated without extreme caution. We conclude by suggesting steps forward, highlighting tests of niche differentiation mechanisms in both laboratory and nature, and empirical evaluation of adaptive evolution‐focused hypotheses in the wild. We also emphasize the value of leveraging the growing body of genomic resources for nonmodel taxa to address whether the clearance of harmful mutations and spread of beneficial variants in natural populations proceeds as expected under various hypotheses for sex. 相似文献
7.
An interaction between sex-linked inheritance and sex-biased mutation rates may affect the rate of adaptive evolution. Males have much higher mutation rates than females in several vertebrate and plant taxa. When evolutionary rates are limited by the supply of favorable new mutations, then genes will evolve faster when located on sex chromosomes that spend more time in males. For mutations with additive effects, Y-linked genes evolve fastest, followed by Z-linked genes, autosomal genes, X-linked genes, and finally W-linked and cytoplasmic genes. This ordering can change when mutations show dominance. The predicted differences in substitution rates may be detectable at the molecular level. Male-biased mutation could cause adaptive changes to accumulate more readily on certain kinds of chromosomes and favor animals with Z-W sex determination to have rapidly evolving male sexual displays. 相似文献
8.
Gordon SP López-Sepulcre A Reznick DN 《Evolution; international journal of organic evolution》2012,66(3):912-918
Evolutionary theory predicts that the sex linkage of sexually selected traits can influence the direction and rate of evolutionary change, and also itself be subject to selection. Theory abounds on how sex-specific selection, mate choice, or other phenomena should favor different types of sex-linked inheritance, yet evidence in nature remains limited. Here, we use hormone assays in Trinidadian guppies to explore the extent to which linkage of male coloration differs among populations adapted to varying predation regimes. Results show there is consistently higher degree of X- and autosomal linkage in body coloration among populations adapted to low-predation environments. More strikingly, analyses of an introduced population of guppies from a high- to a low-predation environment suggest that this difference can change in 50 years or less. 相似文献
9.
Mutation rate may be condition dependent, whereby individuals in poor condition, perhaps from high mutation load, have higher mutation rates than individuals in good condition. Agrawal (J. Evol. Biol.15, 2002, 1004) explored the basic properties of fitness-dependent mutation rate (FDMR) in infinite populations and reported some heuristic results for finite populations. The key parameter governing how infinite populations evolve under FDMR is the curvature (k) of the relationship between fitness and mutation rate. We extend Agrawal's analysis to finite populations and consider dominance and epistasis. In finite populations, the probability of long-term existence depends on k. In sexual populations, positive curvature leads to low equilibrium mutation rate, whereas negative curvature results in high mutation rate. In asexual populations, negative curvature results in rapid extinction via 'mutational meltdown', whereas positive curvature sometimes allows persistence. We speculate that fitness-dependent mutation rate may provide the conditions for genetic architecture to diverge between sexual and asexual taxa. 相似文献
10.
Michail Rovatsos Jasna Vuki? Petros Lymberakis Luká? Kratochvíl 《Proceedings. Biological sciences / The Royal Society》2015,282(1821)
Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. 相似文献
11.
Eddie K. H. Ho Aneil F. Agrawal 《Evolution; international journal of organic evolution》2017,71(7):1865-1875
Finite populations of asexual and highly selfing species suffer from a reduced efficacy of selection. Such populations are thought to decline in fitness over time due to accumulating slightly deleterious mutations or failing to adapt to changing conditions. These within‐population processes that lead nonrecombining species to extinction may help maintain sex and outcrossing through species level selection. Although inefficient selection is proposed to elevate extinction rates over time, previous models of species selection for sex assumed constant diversification rates. For sex to persist, classic models require that asexual species diversify at rates lower than sexual species; the validity of this requirement is questionable, both conceptually and empirically. We extend past models by allowing asexual lineages to decline in diversification rates as they age, that is nonrecombining lineages “senesce” in diversification rates. At equilibrium, senescing diversification rates maintain sex even when asexual lineages, at young ages, diversify faster than their sexual progenitors. In such cases, the age distribution of asexual lineages contains a peak at intermediate values rather than showing the exponential decline predicted by the classic model. Coexistence requires only that the average rate of diversification in asexuals be lower than that of sexuals. 相似文献
12.
13.
The frozen niche variation hypothesis proposes that asexual clones exploit a fraction of a total resource niche available to the sexual population from which they arise. Differences in niche breadth may allow a period of coexistence between a sexual population and the faster reproducing asexual clones. Here, we model the longer term threat to the persistence of the sexual population from an accumulation of clonal diversity, balanced by the cost to the asexual population resulting from a faster rate of accumulation of deleterious mutations. We use Monte-Carlo simulations to quantify the interaction of niche breadth with accumulating deleterious mutations. These two mechanisms may act synergistically to prevent the extinction of the sexual population, given: (1) sufficient genetic variation, and consequently niche breadth, in the sexual population; (2) a relatively slow rate of accumulation of genetic diversity in the clonal population; (3) synergistic epistasis in the accumulation of deleterious mutations. 相似文献
14.
Michail Rovatsos Jasna Vukić Marie Altmanová Martina Johnson Pokorná Jiří Moravec Lukáš Kratochvíl 《Molecular ecology》2016,25(13):3120-3126
Sex chromosomes are believed to be stable in endotherms, but young and evolutionary unstable in most ectothermic vertebrates. Within lacertids, the widely radiated lizard group , sex chromosomes have been reported to vary in morphology and heterochromatinization, which may suggest turnovers during the evolution of the group. We compared the partial gene content of the Z‐specific part of sex chromosomes across major lineages of lacertids and discovered a strong evolutionary stability of sex chromosomes. We can conclude that the common ancestor of lacertids, living around 70 million years ago (Mya), already had the same highly differentiated sex chromosomes. Molecular data demonstrating an evolutionary conservation of sex chromosomes have also been documented for iguanas and caenophidian snakes. It seems that differences in the evolutionary conservation of sex chromosomes in vertebrates do not reflect the distinction between endotherms and ectotherms, but rather between amniotes and anamniotes, or generally, the differences in the life history of particular lineages. 相似文献
15.
Feminization of complex traits in Drosophila melanogaster via female-limited X chromosome evolution*
Katrine K. Lund-Hansen Jessica K. Abbott Edward H. Morrow 《Evolution; international journal of organic evolution》2020,74(12):2703-2713
A handful of studies have investigated sexually antagonistic constraints on achieving sex-specific fitness optima, although exclusively through male-genome-limited evolution experiments. In this article, we established a female-limited X chromosome evolution experiment, where we used an X chromosome balancer to enforce the inheritance of the X through the matriline, thus removing exposure to male selective constraints. This approach eliminates the effects of sexually antagonistic selection on the X chromosome, permitting evolution toward a single sex-specific optimum. After multiple generations of selection, we found strong evidence that body size and development time had moved toward a female-specific optimum, whereas reproductive fitness and locomotion activity remained unchanged. The changes in body size and development time are consistent with previous results, and suggest that the X chromosome is enriched for sexually antagonistic genetic variation controlling these particular traits. The lack of change in reproductive fitness and locomotion activity could be due to a number of mutually nonexclusive explanations, including a lack of sexually antagonistic variance on the X chromosome for those traits or confounding effects of the use of the balancer chromosome. This study is the first to employ female-genome-limited selection and adds to the understanding of the complexity of sexually antagonistic genetic variation. 相似文献
16.
XY性染色体决定系统是决定植物性别的主要方式,但是对于其起源与演化机制却知之甚少。目前认为,携带控制雌蕊或雄蕊发育基因的一对常染色体由于某种未知原因的突变形成早期的neo-Y或neo-X性染色体,随着演化的进行,早期XY性染色体之间的重组逐渐受到抑制,非重组区域扩展最终形成异型的性染色体。研究发现,重复序列的累积以及DNA甲基化等因素都可能参与了XY性染色体的异染色质化、重组抑制及Y染色体体积增大过程。转座子作为一种基因组中含量最高的重复序列在性染色体演化中扮演了重要的角色,包括性染色体演化的起始激发,以及导致性染色体局部表观遗传修饰使其发生异染色质化扩展和重组抑制。文章综述了转座子在植物性染色体上的累积及其与性染色体异染色质化之间的关系,并简要分析了转座子在性染色体演化过程中的作用。 相似文献
17.
Antagonistic pleiotropy in species with separate sexes,and the maintenance of genetic variation in life‐history traits and fitness 下载免费PDF全文
Felix Zajitschek Tim Connallon 《Evolution; international journal of organic evolution》2018,72(6):1306-1316
Antagonistic pleiotropy (AP)—where alleles of a gene increase some components of fitness at a cost to others—can generate balancing selection, and contribute to the maintenance of genetic variation in fitness traits, such as survival, fecundity, fertility, and mate competition. Previous theory suggests that AP is unlikely to maintain variation unless antagonistic selection is strong, or AP alleles exhibit pronounced differences in genetic dominance between the affected traits. We show that conditions for balancing selection under AP expand under the likely scenario that the strength of selection on each fitness component differs between the sexes. Our model also predicts that the vast majority of balanced polymorphisms have sexually antagonistic effects on total fitness, despite the absence of sexual antagonism for individual fitness components. We conclude that AP polymorphisms are less difficult to maintain than predicted by prior theory, even under our conservative assumption that selection on components of fitness is universally sexually concordant. We discuss implications for the maintenance of genetic variation, and for inferences of sexual antagonism that are based on sex‐specific phenotypic selection estimates—many of which are based on single fitness components. 相似文献
18.
Mechanisms of speciation in cichlid fish were investigated by analyzing population genetic models of sexual selection on sex-determining genes associated with color polymorphisms. The models are based on a combination of laboratory experiments and field observations on the ecology, male and female mating behavior, and inheritance of sex-determination and color polymorphisms. The models explain why sex-reversal genes that change males into females tend to be X-linked and associated with novel colors, using the hypothesis of restricted recombination on the sex chromosomes, as suggested by previous theory on the evolution of recombination. The models reveal multiple pathways for rapid sympatric speciation through the origin of novel color morphs with strong assortative mating that incorporate both sex-reversal and suppressor genes. Despite the lack of geographic isolation or ecological differentiation, the new species coexists with the ancestral species either temporarily or indefinitely. These results may help to explain different patterns and rates of speciation among groups of cichlids, in particular the explosive diversification of rock-dwelling haplochromine cichlids. 相似文献
19.