首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers.  相似文献   

2.

Background and Aims

How generalist plants diverge in response to pollinator selection without becoming specialized is still unknown. This study explores this question, focusing on the evolution of the pollination system in the pollination generalist Erysimum mediohispanicum (Brassicaceae).

Methods

Pollinator assemblages were surveyed from 2001 to 2010 in 48 geo-referenced populations covering the entire geographic distribution of E. mediohispanicum. Bipartite modularity, a complex network tool, was used to find the pollination niche of each population. Evolution of the pollination niches and the correlated evolution of floral traits and pollination niches were explored using within-species comparative analyses.

Key Results

Despite being generalists, the E. mediohispanicum populations studied can be classified into five pollination niches. The boundaries between niches were not sharp, the niches differing among them in the relative frequencies of the floral visitor functional groups. The absence of spatial autocorrelation and phylogenetic signal indicates that the niches were distributed in a phylogeographic mosaic. The ancestral E. mediohispanicum populations presumably belonged to the niche defined by a high number of beetle and ant visits. A correlated evolution was found between pollination niches and some floral traits, suggesting the existence of generalist pollination ecotypes.

Conclusions

It is conjectured that the geographic variation in pollination niches has contributed to the observed floral divergence in E. mediohispanicum. The process mediating this floral divergence presumably has been adaptive wandering, but the adaptation to the local pollinator faunas has been not universal. The outcome is a landscape where a few populations locally adapted to their pollination environment (generalist pollination ecotypes) coexist with many populations where this local adaptation has failed and where the plant phenotype is not primarily shaped by pollinators.  相似文献   

3.
The role of pollinators in floral divergence has long attracted the attention of evolutionary biologists. Although abundant studies have reported the effect of pollinators on flower‐shape variation and plant speciation, the influence of pollinators on plant species differentiation during rapid radiations and the specific consequences of shifts among similar pollinators are not well understood. Here, we evaluate the association between pollinators and floral morphology in a closely related and recently diversifying clade of Linaria species (sect. Supinae subsect. Supinae). Our approach combined pollinator observations, functional floral morphometric measures and phylogenetic comparative analyses. The fauna visiting Linaria species was determined by extensive surveys and categorized by a modularity algorithm, and the size and shape of flowers were analysed by means of standard and geometric morphometric measures. Standard measures failed to find relationships between the sizes of representative pollinators and flowers. However, discriminant function analyses of geometric morphometric data revealed that pollination niches are finer predictors of flower morphologies in Linaria if compared with phylogenetic relationships. Species with the most restrictive flowers displayed the most slender spurs and were pollinated by bees with larger proboscides. These restrictive flower shapes likely appeared more than once during the evolutionary history of the study group. We show that floral variation can be driven by shifts between pollinators that have been traditionally included in a single functional group, and discuss the consequences of such transitions for plant species differentiation during rapid radiations.  相似文献   

4.
Attraction of pollinators and successful pollen transfer represent the primary targets of selection during flower evolution, leading to repeated evolutionary shifts between pollinators and consequently to the diversification of floral forms. However, most studies in floral evolution focus on the characteristics of flowers with straight corolla tube. Here, we report on an unusual form of sigmoid corolla combined with protandry and herkogamy in a Chinese species of Gesneriaceae, Oreocharis pumila (formerly Opithandra pumila). Contrary to species with sigmoid corollas studied previously, the base of the corolla tube of this species is inclined at an oblique angle downwards before the tube bends forward, and the stigma and anthers are included in the upper part of the corolla tube. The plants were found to be self‐compatible but incapable of autonomous selfing. Successful pollination was found to depend fully on the presence of insect pollinators (Nomia sp.) and pollen grains are the greatest reward for the visitors. Different from the other sigmoid flowers, the sigmoid corolla of O. pumila was not found to favor insect pollinators with long flexible proboscises. A mechanical fit between floral morphology and pollinator was found, in which only small insect visitors with specialized visiting behavior are legitimate pollinators. The protandry combined with herkogamy in the sigmoid corolla tube strongly ensures pollination efficiencies. Oreocharis pumila is the only species with sigmoid corolla in the genus Oreocharis. We hypothesize that such a corolla has arisen through selection due to inadequate pollination in early spring in the mountainous habitat that O. pumila occupies.  相似文献   

5.
Flowers show important structural variation as reproductive organs but the evolutionary forces underlying this diversity are still poorly understood. In animal‐pollinated species, flower shape is strongly fashioned by selection imposed by pollinators, which is expected to vary according to guilds of effective pollinators. Using the Antillean subtribe Gesneriinae (Gesneriaceae), we tested the hypothesis that pollination specialists pollinated by one functional type of pollinator have maintained more similar corolla shapes through time due to more constant and stronger selection constraints compared to species with more generalist pollination strategies. Using geometric morphometrics and evolutionary models, we showed that the corolla of hummingbird specialists, bat specialists, and species with a mixed‐pollination strategy (pollinated by hummingbirds and bats; thus a more generalist strategy) have distinct shapes and that these shapes have evolved under evolutionary constraints. However, we did not find support for greater disparity in corolla shape of more generalist species. This could be because the corolla shape of more generalist species in subtribe Gesneriinae, which has evolved multiple times, is finely adapted to be effectively pollinated by both bats and hummingbirds. These results suggest that ecological generalization is not necessarily associated with relaxed selection constraints.  相似文献   

6.
Switches in pollinators have been argued to be key drivers of floral evolution in angiosperms. However, few studies have tested the relationship between floral shape evolution and switches in pollination in large clades. In concert with a dated phylogeny, we present a morphometric analysis of corolla, anther connective, and style shape across 44% of nearly 1000 species of Salvia (Lamiaceae) and test four hypotheses of floral evolution. We demonstrate that floral morphospace of New World (NW) Salvia is largely distinct from that of Old World (OW) Salvia and that these differences are pollinator driven; shifts in floral morphology sometimes mirror shifts in pollinators; anther connectives (key constituents of the Salvia staminal lever) and styles co-evolved from curved to linear shapes following shifts from bee to bird pollination; and morphological differences between NW and OW bee flowers are partly the legacy of constraints imposed by an earlier shift to bird pollination in the NW. The distinctive staminal lever in Salvia is a morphologically diverse structure that has evolved in concert with both the corolla and style, under different pollinator pressures, and in contingent fashion.  相似文献   

7.
Natural selection should reduce phenotypic variation and increase integration of floral traits involved in placement of pollen grains on stigmas. In this study, we examine the role of pollinators and breeding system on the evolution of floral traits by comparing the patterns of floral phenotypic variances and covariances in 20 Ipomoea species that differ in their level of pollination specialization and pollinator dependence incorporating phylogenetic relatedness. Plants with specialized pollination (i.e., those pollinated by one functional group or by few morphospecies) displayed less phenotypic variation and greater floral integration than generalist plants. Self‐compatible species also displayed greater floral integration than self‐incompatible species. Floral traits involved in pollen placement and pick up showed less variation and greater integration than floral traits involved in pollinator attraction. Analytical models indicate that both breeding system and the number of morphospecies had significant effects on floral integration patterns although only differences in the former were significant after accounting for phylogeny. These results suggest that specialist/self‐compatible plants experience more consistent selection on floral traits than generalist/self‐incompatible plants. Furthermore, pollinators and breeding system promote integration of floral traits involved in pollen placement and pick up rather than integration of the whole flower.  相似文献   

8.
Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator‐mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co‐occurrence patterns to determine the role of pollinator‐mediated processes in structuring plant communities dominated by congeners. We surveyed three species‐rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co‐flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44–48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co‐occurrence. Together, it appears that pollinators influence community assemblage in these three clades.  相似文献   

9.
Floral visitor assemblages within plant populations are usually composed of different visitors, and the relative abundance of these visitors also varies. Therefore, identifying the relative strength of these floral visitors driving floral evolution within the population is an important step in predicting the evolutionary trajectory of floral traits. Using supplemental hand pollination and nectar-robbing exclusion treatments, we experimentally identified the relative strengths of legitimate pollinators (that visit flowers through the corolla tube entrance) and nectar robbers (that visit flowers by biting a hole in the corolla tube or using an existing hole) driving floral evolution within the Primula secundiflora population. We also estimated legitimate pollinator- and nectar robber-mediated selection separately for pin and thrum flowers. Both legitimate pollinators and nectar robbers mediated selection on pollination efficiency traits in P. secundiflora population. Legitimate pollinators mediated selection for wider corolla tubes, whereas nectar robbers mediated selection for longer corolla tubes. In addition, nectar robber-mediated selection on corolla tube length marginally varied between the pin and thrum flowers. Nectar robber mediated selection for longer corolla tube length in the pin flowers not in the thrum flowers. These results indicate that legitimate pollinators and nectar robbers within a population can drive differential evolutionary trajectories of floral traits.  相似文献   

10.
Floral traits have largely been attributed to phenotypic selection in plant–pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator‐mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator‐mediated selection explained most of the between‐population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator‐mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.  相似文献   

11.
  • The association between plants and flower visitors has been historically proposed as a main factor driving the evolutionary change of both flower and pollinator phenotypes. The considerable diversity in floral morphology within the tribe Antirrhineae has been traditionally related to pollinator types. We used empirical data on the flower visitors from 59 Antirrhineae taxa from the literature and our own field surveys, which provide an opportunity to test whether flower phenotypes are reliable predictors of visitors and pollinator niches.
  • The degree of adjustment between eight key floral traits and actual visitors was explored by testing the predictive value of inferred pollinator syndromes (i.e. suites of floral traits that characterise groups of plant species related to pollination). Actual visitors and inferred pollinator niches (categorisation of visitors’ association using a modularity algorithm) were also explored using Linear Discriminant Analysis (LDA).
  • The bee pollinator niche is correctly classified for flowers with dull corolla colour, without nectar guides, as the most important predictor. Both predictive value and statistical classification prove useful in classifying Antirrhineae taxa and the bee pollinator niche, mostly as a consequence of the high proportion of genera and taxa with occluded corollas primarily visited by bees. Our predictive approach rendered a high Positive Predictive Value (PPV) of floral traits in the diagnosis of visitors/pollinator niches. In particular, a high PPV was found for bees as both visitors and forming pollinator niches. In addition, LDA showed that four pollinator niches are well defined based on floral traits.
  • The large number of species visited by bees irrespective of pollinator syndromes leads us to hypothesise their generalist pollinator role, despite the phenotypically specialised flowers of Antirrhineae.
  相似文献   

12.
Although specialized interactions, including those involving plants and their pollinators, are often invoked to explain high species diversity, they are rarely explored at macroevolutionary scales. We investigate the dynamic evolution of hummingbird and bat pollination syndromes in the centropogonid clade (Lobelioideae: Campanulaceae), an Andean‐centered group of ∼550 angiosperm species. We demonstrate that flowers hypothesized to be adapted to different pollinators based on flower color fall into distinct regions of morphospace, and this is validated by morphology of species with known pollinators. This supports the existence of pollination syndromes in the centropogonids, an idea corroborated by ecological studies. We further demonstrate that hummingbird pollination is ancestral, and that bat pollination has evolved 13 times independently, with ∼11 reversals. This convergence is associated with correlated evolution of floral traits within selective regimes corresponding to pollination syndrome. Collectively, our results suggest that floral morphological diversity is extremely labile, likely resulting from selection imposed by pollinators. Finally, even though this clade's rapid diversification is partially attributed to their association with vertebrate pollinators, we detect no difference in diversification rates between hummingbird‐ and bat‐pollinated lineages. Our study demonstrates the utility of pollination syndromes as a proxy for ecological relationships in macroevolutionary studies of certain species‐rich clades.  相似文献   

13.
Floral traits are adapted by plants to attract pollinators. Some of those plants that have different pollinators in different regions adapt to each pollinator in each region to maximize their pollination success. Mucuna macrocarpa (Fabaceae) limits the pollinators using its floral structure and is pollinated by different mammals in different regions. Here, we examine the relationships between floral traits of M. macrocarpa and the external morphology of mammalian pollinators in different regions of its distribution. Field surveys were conducted on Kyushu and Okinawajima Island in Japan, and in Taiwan, where the main pollinators are the Japanese macaque Macaca fuscata, Ryukyu flying fox Pteropus dasymallus, and red‐bellied squirrel Callosciurus erythraeus, respectively. We measured the floral shapes, nectar secretion patterns, sugar components, and external morphology of the pollinators. Results showed that floral shape was slightly different among regions and that flower sizes were not correlated with the external morphology of the pollinators. Volume and sugar rate of nectar were not significantly different among the three regions and did not change throughout the day in any of the regions. However, nectar concentration was higher in Kyushu than in the other two regions. These results suggest that the floral traits of M. macrocarpa are not adapted to each pollinator in each region. Although this plant limits the number of pollinators using its flower structure, it has not adapted to specific mammals and may attract several species of mammals. Such generalist‐like pollination system might have evolved in the Old World.  相似文献   

14.
Most studies on pollinator‐mediated selection have been performed in generalized rather than specialized pollination systems. This situation has impeded evaluation of the extent to which selection acts on attraction or specialized key floral traits involved in the plant‐pollinator phenotypic interphase. We studied pollinator‐mediated selection in four populations of Nierembergia linariifolia, a self‐incompatible and oil‐secreting plant pollinated exclusively by oil‐collecting bees. We evaluated whether floral traits experience variable selection among populations and whether attraction and fit traits are heterogeneously selected across populations. Populations differed in every flower trait and selection was consistently observed for corolla size and flower shape, two traits involved in the first steps of the pollination process. However, we found no selection acting on mechanical‐fit traits. The observation that selection occurred upon attraction rather than mechanical‐fit traits, suggests that plants are not currently evolving fine‐tuned morphological adaptations to local pollinators and that phenotypic matching is not necessarily an expected outcome in this specialized pollination system.  相似文献   

15.
The present study examines the degree of phenotypic stability in vegetative and floral traits in a population of the annual, self-compatible, and protandrous Nemophila menziesii (Hydrophyllaceae) and examines whether local pollinators select for a uniform floral phenotype in this population. I found a strong positive association between flower number, leaf size, shoot length, and pedicel length, implying a general effect of overall plant vigor on this suite of traits, while characters reflecting corolla shape were phenotypically stable across a broad range of plant sizes. However, results of a manipulative experiment indicate that individual flowers maintain high pollination success despite drastic changes in the size and shape of the corolla. This suggests that pollinator-mediated selection does not directly favor floral stability in N. menziesii or that selection was weak during the course of this study. Seed number per flower was positively correlated with plant size, which varied greatly from one patch to another.  相似文献   

16.
Shifts in pollen vectors favour diversification of floral traits, and differences in pollination strategies between congeneric sympatric species can contribute to reproductive isolation. Divergence in flowering phenology and selfing could also reduce interspecific crossing between self‐compatible species. We investigated floral traits and visitation rates of pollinators of two sympatric Encholirium species on rocky outcrops to evaluate whether prior knowledge of floral characters could indicate actual pollinators. Data on flowering phenology, visitation rates and breeding system were used to evaluate reproductive isolation. Flowering phenology overlapped between species, but there were differences in floral characters, nectar volume and concentration. Several hummingbird species visited flowers of both Encholirium spp., but the endemic bat Lonchophylla bokermanni and an unidentified sphingid only visited E. vogelii. Pollination treatments demonstrated that E. heloisae and E. vogelii were partially self‐compatible, with weak pollen limitation to seed set. Herbivores feeding on inflorescences decreased reproductive output of both species, but for E. vogelii the damage was higher. Our results indicate that actual pollinators can be known beforehand through floral traits, in agreement with pollination syndromes stating that a set of floral traits can be associated with the attraction of specific groups of pollinators. Divergence on floral traits and pollinator assemblage indicate that shifts in pollination strategies contribute to reproductive isolation between these Encholirium species, not divergence on flowering phenology or selfing. We suggest that hummingbird pollination might be the ancestral condition in Encholirium and that evolution of bat pollination made a substantial contribution to the diversification of this clade.  相似文献   

17.
Floral variation among closely related species is thought to often reflect differences in pollination systems. Flowers of the large genus Impatiens are characterized by extensive variation in colour, shape and size and in anther and stigma positioning, but studies of their pollination ecology are scarce and most lack a comparative context. Consequently, the function of floral diversity in Impatiens remains enigmatic. This study documents floral variation and pollination of seven co‐occurring Impatiens spp. in the Southeast Asian diversity hotspot. To assess whether floral trait variation reflects specialization for different pollination systems, we tested whether species depend on pollinators for reproduction, identified animals that visit flowers, determined whether these visitors play a role in pollination and quantified and compared key floral traits, including floral dimensions and nectar characteristics. Experimental exclusion of insects decreased fruit and seed set significantly for all species except I. muscicola, which also received almost no visits from animals. Most species received visits from several animals, including bees, birds, butterflies and hawkmoths, only a subset of which were effective pollinators. Impatiens psittacina, I. kerriae, I. racemosa and I. daraneenae were pollinated by bees, primarily Bombus haemorrhoidalis. Impatiens chiangdaoensis and I. santisukii had bimodal pollination systems which combined bee and lepidopteran pollination. Floral traits differed significantly among species with different pollination systems. Autogamous flowers were small and spurless, and did not produce nectar; bee‐pollinated flowers had short spurs and large floral chambers with a wide entrance; and bimodally bee‐ and lepidopteran‐pollinated species had long spurs and a small floral chamber with a narrow entrance. Nectar‐producing species with different pollination systems did not differ in nectar volume and sugar concentration. Despite the high frequency of bee pollination in co‐occurring species, individuals with a morphology suggestive of hybrid origin were rare. Variation in floral architecture, including various forms of corolla asymmetry, facilitates distinct, species‐specific pollen‐placement on visiting bees. Our results show that floral morphological diversity among Impatiens spp. is associated with both differences in functional pollinator groups and divergent use of the same pollinator. Non‐homologous mechanisms of floral asymmetry are consistent with repeated independent evolution, suggesting that competitive interactions among species with the same pollination system have been an important driver of floral variation among Impatiens spp.  相似文献   

18.
Traditionally, plant–pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino‐Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC‐MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species‐specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant–pollinator interactions in these Asian Buddleja species.  相似文献   

19.
Plants might be under selection for both attracting efficient pollinators and deterring wasteful visitors. Particular floral traits can act as exploitation barriers by discouraging the unwelcome visitors. In the genus Penstemon, evolutionary shifts from insect pollination to more efficient hummingbird pollination have occurred repeatedly, resulting in the convergent evolution of floral traits commonly present in hummingbird-pollinated flowers. Two of these traits, a reduced or reflexed lower petal lip and a narrow corolla, were found in a previous flight-cage study to affect floral handling time by bumble bees, therefore potentially acting as “anti-bee” traits affecting preference. To test whether these traits do reduce bumble bee visitation in natural populations, we manipulated these two traits in flowers of bee-pollinated Penstemon strictus to resemble hummingbird-adapted close relatives and measured the preferences of free-foraging bees. Constricted corollas strongly deterred bee visitation in general, and particularly reduced visits by small bumble bees, resulting in immediate specialization to larger, longer-tongued bumble bees. Bees were also deterred—albeit less strongly—by lipless flowers. However, we found no evidence that lip removal and corolla constriction interact to further affect bee preference. We conclude that narrow corolla tubes and reduced lips in hummingbird-pollinated penstemons function as exploitation barriers that reduce bee access to nectaries or increase handling time.  相似文献   

20.
Contrasting flower color patterns that putatively attract or direct pollinators toward a reward are common among angiosperms. In the deceptive orchid Anacamptis morio, the lower petal, which makes up most of the floral display, has a light central patch with dark markings. Within populations, there is pronounced variation in petal brightness, patch size, amount of dark markings, and contrast between patch and petal margin. We tested whether pollinators mediate selection on these color traits and on morphology (plant height, number of flowers, corolla size, spur length), and whether selection is consistent with facilitated or negative frequency‐dependent pollination. Pollinators mediated strong selection for increased petal brightness (Δβpoll = 0.42) and contrast (Δβpoll = 0.51). Pollinators also tended to mediate stabilizing selection on brightness (Δγpoll = –0.27, n.s.) favoring the most common phenotype in the population. Selection for reduced petal brightness among hand‐pollinated plants indicated a fitness cost associated with brightness. The results demonstrate that flower color traits influence pollination success and seed production in A. morio, indicating that they affect attractiveness to pollinators, efficiency of pollen transfer, or both. The documented selection is consistent with facilitated pollination and selection for color convergence toward cooccurring rewarding species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号