首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of diversification and character evolution using phylogenetic data attracts increasing interest from biologists. Recent statistical developments have resulted in a variety of tools for the inference of macroevolutionary processes in a phylogenetic context. In a recent paper Maddison (2006 Evolution, 60: 1743-1746) pointed out that uncareful use of some of these tools could lead to misleading conclusions on diversification or character evolution, and thus to difficulties in distinguishing both phenomena. I here present guidelines for the analyses of macroevolutionary data that may help to avoid these problems. The proper use of recently developed statistical methods may help to untangle diversification and character change, and so will allow us to address important evolutionary questions.  相似文献   

2.
Studies of character evolution often assume that a phylogeny's shape is determined independently of the characters, which then evolve as mere passengers along the tree's branches. However, if the characters help shape the tree, but this is not considered, biased inferences can result. Simulations of asymmetrical speciation (i.e., one character state conferring a higher rate of speciation than another) result in data that are interpreted to show a higher rate of change toward the diversification-enhancing state, even though the rates to and from this state were in fact equal. Conversely, simulations of asymmetrical character change yield data that could be misinterpreted as showing asymmetrical rates of speciation. Studies of biased diversification and biased character change need to be unified by joint models and estimation methods, although how successfully the two processes can be teased apart remains to be seen.  相似文献   

3.
The order Fagales (ca. 1325 species, 32 genera) is one of the most important orders of woody angiosperms in both tropical and temperate forests. Fagalean plants have diverse diaspores and dispersal modes, and have abundant macrofossil records. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of Fagales to date based on five plastid loci. We reconstructed the phylogenetic relationships within Fagales using parsimony, likelihood and Bayesian approaches. We inferred the evolutionary shifts of diaspore types, dispersal modes, habitats, and pollination syndromes, and estimated divergence times and rates of diversification. Fossil fruit records of Fagales were also reviewed. Our results suggest that fagalean families are all monophyletic and 29 of the 32 genera are monophyletic. The majority of inter-familial and inter-generic relationships were well resolved. Our evolutionary reconstructions indicate that winged diaspore is synapomorphic, and animal dispersal system is symplesiomorphic in Fagales. Within the order, the families diverged in the mid-Cretaceous but mainly diversified after the Cretaceous–Paleogene (K–Pg) boundary. The overwhelming majority of winged and wingless fruited genera diverged or diversified during the Paleogene, reflecting adaptation to wind and animal dispersals, respectively. Correlated evolution analyses strongly supported the correlated transitions between dispersal mode and habitat. The winged fruited groups often inhabit open habitats and are commonly dispersed abiotically, whereas the wingless fruits usually inhabit closed habitats and have a vertebrate-dispersal mode. Environmental changes triggered increased diversification of Fagales in the Paleogene together with evolution of diaspores and dispersal modes. Additionally, our paleobotanically calibrated time-scale for Fagales may be useful for ecological and physiological studies.  相似文献   

4.
Although only a small fraction of the estimated 6000 extant bryozoan species has been analysed in a molecular phylogenetic context, the resultant trees have increased our understanding of the interrelationships between major bryozoan groups, as well as between bryozoans and other metazoan phyla. Molecular systematic analyses have failed to recover the Lophophorata as a monophyletic clade until recently, when phylogenomic data placed the Brachiopoda as sister to a clade formed by Phoronida + Bryozoa. Among bryozoans, class Phylactolaemata has been shown to be the sister group of Gymnolaemata + Stenolaemata, corroborating earlier anatomical inferences. Despite persistent claims, there are no unequivocal bryozoans of Cambrian age: the oldest bryozoans are stenolaemates from the Tremadocian of China. Stenolaemates underwent a major radiation during the Ordovician, but the relationships between the six orders involved are poorly understood, mostly because the simple and plastic skeletons of stenolaemates make phylogenetic analyses difficult. Bryozoans were hard‐hit by the mass extinction/s in the late Permian and it was not until the Middle Jurassic that they began to rediversify, initially through the cyclostome stenolaemates. The most successful post‐Palaeozoic order (Cheilostomata) evolved a calcareous skeleton de novo from a soft‐bodied ancestor in the Late Jurassic, maintained a low diversity until the mid‐Cretaceous and then began to radiate explosively. A remarkable range of morphological structures in the form of highly modified zooidal polymorphs, or non‐zooidal or intrazooidal modular elements, is postulated to have evolved repeatedly in this group. Crucially, many of these structures have been linked to micropredator protection and can be interpreted as key traits linked to the diversification of cheilostomes.  相似文献   

5.
6.
7.
Differentiation of genera of the modern (Late Miocene to Recent) South American rodent family Ctenomyidae would have been linked to the acquisition of disparate adaptations to digging and life underground. In accordance with this hypothesis, the delimitation of lineages and genera in the ctenomyid fossil record is evaluated here following an adaptation-rooted criterion that involves both an assessment of the monophyly and of the adaptive profiles of recognized clades. The application of such a criterion, including morphofunctional information, delimited four cohesive lineages among crown ctenomyids (i.e. euhypsodont species of the Late Miocene to Recent): Eucelophorus (Early Pliocene–Middle Pleistocene), Xenodontomys-Actenomys (Late Miocene–Pliocene), Praectenomys (Pliocene) and Ctenomys (including Paractenomys ; Pliocene–Recent); in addition, the results supported the status of Xenodontomys as a paraphyletic ancestor of Actenomys . The cladogenesis that gave rise to the crown group would have occurred immediately after the acquisition of euhypsodonty in a Xenodontomys simpsoni -like ancestor during the Late Miocene. This putative ancestor would have had fossorial habits and moderate digging specializations, an adaptive profile maintained in Xenodontomys-Actenomys . Eucelophorus and Ctenomys would have independently evolved subterranean habits at least since the Pliocene. Although the earliest history of the only living representative, Ctenomys , is known only fragmentarily, remains from Esquina Blanca (Uquía Formation), in north-western Argentina, suggest a minimum age of around 3.5 Ma (Early–Late Pliocene) for the differentiation of the genus. This date agrees with recent molecular estimates.  相似文献   

8.
Actinopterygii (ray‐finned fishes) and Elasmobranchii (sharks, skates and rays) represent more than half of today's vertebrate taxic diversity (approximately 33000 species) and form the largest component of vertebrate diversity in extant aquatic ecosystems. Yet, patterns of ‘fish’ evolutionary history remain insufficiently understood and previous studies generally treated each group independently mainly because of their contrasting fossil record composition and corresponding sampling strategies. Because direct reading of palaeodiversity curves is affected by several biases affecting the fossil record, analytical approaches are needed to correct for these biases. In this review, we propose a comprehensive analysis based on comparison of large data sets related to competing phylogenies (including all Recent and fossil taxa) and the fossil record for both groups during the Mesozoic–Cainozoic interval. This approach provides information on the ‘fish’ fossil record quality and on the corrected ‘fish’ deep‐time phylogenetic palaeodiversity signals, with special emphasis on diversification events. Because taxonomic information is preserved after analytical treatment, identified palaeodiversity events are considered both quantitatively and qualitatively and put within corresponding palaeoenvironmental and biological settings. Results indicate a better fossil record quality for elasmobranchs due to their microfossil‐like fossil distribution and their very low diversity in freshwater systems, whereas freshwater actinopterygians are diverse in this realm with lower preservation potential. Several important diversification events are identified at familial and generic levels for elasmobranchs, and marine and freshwater actinopterygians, namely in the Early–Middle Jurassic (elasmobranchs), Late Jurassic (actinopterygians), Early Cretaceous (elasmobranchs, freshwater actinopterygians), Cenomanian (all groups) and the Paleocene–Eocene interval (all groups), the latter two representing the two most exceptional radiations among vertebrates. For each of these events along with the Cretaceous‐Paleogene extinction, we provide an in‐depth review of the taxa involved and factors that may have influenced the diversity patterns observed. Among these, palaeotemperatures, sea‐levels, ocean circulation and productivity as well as continent fragmentation and environment heterogeneity (reef environments) are parameters that largely impacted on ‘fish’ evolutionary history, along with other biotic constraints.  相似文献   

9.
Species co-occur with different sets of other species across their geographical distribution, which can be either closely or distantly related. Such co-occurrence patterns and their phylogenetic structure within individual species ranges represent what we call the species phylogenetic fields (PFs). These PFs allow investigation of the role of historical processes—speciation, extinction and dispersal—in shaping species co-occurrence patterns, in both extinct and extant species. Here, we investigate PFs of large mammalian species during the last 3 Myr, and how these correlate with trends in diversification rates. Using the fossil record, we evaluate species'' distributional and co-occurrence patterns along with their phylogenetic structure. We apply a novel Bayesian framework on fossil occurrences to estimate diversification rates through time. Our findings highlight the effect of evolutionary processes and past climatic changes on species'' distributions and co-occurrences. From the Late Pliocene to the Recent, mammal species seem to have responded in an individualistic manner to climate changes and diversification dynamics, co-occurring with different sets of species from different lineages across their geographical ranges. These findings stress the difficulty of forecasting potential effects of future climate changes on biodiversity.  相似文献   

10.
The genus Abies is distributed discontinuously in the temperate and subtropical montane forests of the northern hemisphere. In Mesoamerica (Mexico and northern Central America), modern firs originated from the divergence of isolated mountain populations of migrating North American taxa. However, the number of ancestral species, migratory waves and diversification speed of these taxa is unknown. Here, variation in repetitive (Pt30204, Pt63718, and Pt71936) and non-repetitive (rbcL, rps18-rpl20 and trnL-trnF) regions of the chloroplast genome was used to reconstruct the phylogenetic relationships of the Mesoamerican Abies in a genus-wide context. These phylogenies and two fossil-calibrated scenarios were further employed to estimate divergence dates and diversification rates within the genus, and to test the hypothesis that, as in many angiosperms, conifers may exhibit accelerated speciation rates in the subtropics. All phylogenies showed five main clusters that mostly agreed with the currently recognized sections of Abies and with the geographic distribution of species. The Mesoamerican taxa formed a single group with species from southwestern North America of sections Oiamel and Grandis. However, populations of the same species were not monophyletic within this group. Divergence of this whole group dated back to the late Paleocene and the early Miocene depending on the calibration used, which translated in very low diversification rates (r0.0 = 0.026-0.054, r0.9 = 0.009-0.019 sp/Ma). Such low rates were a constant along the entire genus, including both the subtropical and temperate taxa. An extended phylogeographic analysis on the Mesoamerican clade indicated that Abies flinckii and A. concolor were the most divergent taxa, while the remaining species (A. durangensis, A. guatemalensis, A. hickelii, A. religiosa and A. vejari) formed a single group. Altogether, these results show that divergence of Mesoamerican firs coincides with a model of environmental stasis and decreased extinction rate, being probably prompted by a series of range expansions and isolation-by-distance.  相似文献   

11.
Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species’ body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species’ body size, to untangle its role on the diversification of a Neotropical species‐rich bird clade using trait‐dependent diversification models. We show that speciation rate is a positive hump‐shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned.  相似文献   

12.
13.
The osteology of the early Eocene (about 50 mya) avian taxon Pseudasturidae Mayr, 1998 is revised and its phylogenetic affinities are analysed. Members of the Pseudasturidae are known from abundant and excellently preserved skeletal material, both complete skeletons on slabs as well as isolated, three-dimensional bones. Although this taxon is thus among the best represented of all small early Tertiary birds, its systematic affinities were unknown so far. Derived osteological characters which are visible in newly recognized specimens from the Lower Eocene London Clay of England most convincingly support classification of the Pseudasturidae into the Psittaciformes (parrots). Both, in overall morphology and in terms of derived characters, the tarsometatarsus of the Pseudasturidae closely resembles that of the Eocene Quercypsittidae, which were assigned to the Psittaciformes by Mourer-Chauviré (1992 ). The Pseudasturidae are considered to be stem-group representatives of the Psittaciformes and the sister taxon of all other known psittaciform birds. The Eocene taxon lacks the specialized bill morphology of crown-group Psittaciformes of the Psittacidae. Several other osteological differences between the Pseudasturidae and the Psittacidae probably are also functionally correlated with the specialized feeding technique of the latter.  © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 136 , 715–729.  相似文献   

14.
The 24 extant crocodylian species are the remnants of a once much more diverse and widespread clade. Crocodylomorpha has an approximately 230 million year evolutionary history, punctuated by a series of radiations and extinctions. However, the group's fossil record is biased. Previous studies have reconstructed temporal patterns in subsampled crocodylomorph palaeobiodiversity, but have not explicitly examined variation in spatial sampling, nor the quality of this record. We compiled a dataset of all taxonomically diagnosable non‐marine crocodylomorph species (393). Based on the number of phylogenetic characters that can be scored for all published fossils of each species, we calculated a completeness value for each taxon. Mean average species completeness (56%) is largely consistent within subgroups and for different body size classes, suggesting no significant biases across the crocodylomorph tree. In general, average completeness values are highest in the Mesozoic, with an overall trend of decreasing completeness through time. Many extant taxa are identified in the fossil record from very incomplete remains, but this might be because their provenance closely matches the species’ present‐day distribution, rather than through autapomorphies. Our understanding of nearly all crocodylomorph macroevolutionary ‘events’ is essentially driven by regional patterns, with no global sampling signal. Palaeotropical sampling is especially poor for most of the group's history. Spatiotemporal sampling bias impedes our understanding of several Mesozoic radiations, whereas molecular divergence times for Crocodylia are generally in close agreement with the fossil record. However, the latter might merely be fortuitous, i.e. divergences happened to occur during our ephemeral spatiotemporal sampling windows.  相似文献   

15.
16.
Aim Nearly 150 years ago, T. H. Huxley modified Wallace’s Line, including the island of Palawan as a component of the Asian biogeographic realm and separating it from the oceanic Philippines. Although Huxley recognized some characteristics of a transition between the regions, Palawan has since been regarded primarily as a peripheral component of the Sunda Shelf. However, several recent phylogenetic studies of Southeast Asian lineages document populations on Palawan to be closely related to taxa from the oceanic Philippines, apparently contradicting the biogeographic association of Palawan with the Sunda Shelf. In the light of recent evidence, we evaluate taxonomic and phylogenetic data in an attempt to identify the origin(s) of Palawan’s terrestrial vertebrate fauna. Location The Sunda Shelf and the Philippines. Methods We review distributional and phylogenetic data for populations of terrestrial vertebrates from Palawan. Using taxonomic data, we compare the number of Palawan taxa (species and genera) shared with the Sunda Shelf and oceanic Philippines. Among widespread lineages, we use phylogenetic data to identify the number of Palawan taxa with sister relationships to populations or species from the Sunda Shelf or oceanic Philippines. Results Although many terrestrial vertebrate taxa are shared between Palawan and the Sunda Shelf, an increasing number of species and populations are now recognized as close relatives of lineages from the oceanic Philippines. Among the 39 putative lineages included in molecular phylogenetic studies with sampling from the Sunda Shelf, Palawan and the oceanic Philippines, 17 of them reveal sister relationships between lineages from Palawan and the oceanic Philippines. Main conclusions Rather than a simple nested subset of Sunda Shelf populations, Palawan is best viewed as having played multiple biogeographic roles, including a young and old extension of the Sunda Shelf, a springboard to diversification in the oceanic Philippines, and a biogeographic component of the Philippine archipelago. Palawan has a long, complex geological history, which may explain this variation in pattern. Huxley originally noted transitional elements in Palawan’s fauna; we therefore suggest that his modification of Wallace’s Line should be recognized as a filter zone, reflecting both his original intent and available taxonomic and molecular evidence.  相似文献   

17.
In this commentary, we discuss evidence for the phylogenetic affiliations of Tortotubus protuberans, the subject of Martin Smith's 2016 paper in the Botanical Journal of the Linnean Society entitled, ‘Cord‐forming Palaeozoic fungi in terrestrial assemblages’. We agree that the fossilized, branching, somatic filaments probably represent fungal hyphae. We were not convinced by Smith's proposal that T. protuberans represents Dikarya, the clade of fungi that includes most modern moulds, yeasts and mushrooms. To justify classification, Smith relied on structures that are analogous between Tprotuberans and modern fungi, and argued ‘that Dikarya can produce the range of morphologies expressed by Tprotuberans’. We review available information about homologies of the characteristics of Tprotuberans, including mycelial cords, retrograde growth, septal pores and ornamented hyphae. Retrograde growth in T. protuberans is intriguing from an evolutionary developmental point of view, but it differs sufficiently in fine detail when compared with growth patterns in croziers or clamp connections of Dikarya, so that homologies are unclear. Tortotubus protuberans is an important fossil form, but we suggest taking a step back and relating it to the distribution of character evolution through the fungal phylogeny rather than to derived characters of modern taxa.  相似文献   

18.
Geospatial patterns in the distribution of regional biodiversity reflect the composite processes that underpin evolution: speciation, dispersal and extinction. The spatial distribution and phylogeny of a globally widespread and species rich bird family (Rallidae) were used to help assess the role of large‐scale biogeographical processes in diversity and diversification. Here, we examine how different geostatistical diversity metrics enhance our understanding of species distribution by linking occurrence records of rail species to corresponding species level phylogeny. Tropical regions and temperate zones contained a large proportion of rail species richness and phylogenetic diversity whilst small islands in Australian, Oceanian and Oriental regions held the highest weighted and phylogenetic endemism. Our results suggest that habitat connectivity and dispersal were important ecological features in rail evolution and distribution. Spatial isolation was a significant driver of diversification where islands in Oceania were centres of neo‐endemism with recent multiple and independent speciation events and could be considered as nurseries of biodiversity. Palaeo‐endemism was mostly associated with older stable regions, so despite extensive long distance range shifting these areas retain their own ancient and distinct character. Madagascar was the major area of palaeo‐endemism associated with the oldest rail lineages and could be considered a museum of rail diversity. This implies a mixture of processes determine the current distribution and diversity of rail clades with some areas dominated by recent ‘in situ’ speciation while others harbour old diversity with ecological traits that have stood the test of time.  相似文献   

19.
Understanding the patterns of genetic variations within fertility‐related genes and the evolutionary forces that shape such variations is crucial in predicting the fitness landscapes of subsequent generations. This study reports distinct evolutionary features of two differentially expressed mammalian proteins [CaMKIV (Ca2+/calmodulin‐dependent protein kinase IV) and CaS (calspermin)] that are encoded by a single gene, CAMK4. The multifunctional CaMKIV, which is expressed in multiple tissues including testis and ovary, is evolving at a relatively low rate (0.46–0.64 × 10?9 nucleotide substitutions/site/year), whereas the testis‐specific CaS gene, which is predominantly expressed in post‐meiotic cells, evolves at least three to four times faster (1.48–1.98 × 10?9 substitutions/site/year). Concomitantly, maximum‐likelihood‐based selection analyses revealed that the ubiquitously expressed CaMKIV is constrained by intense purifying selection and, therefore, remained functionally highly conserved throughout the mammalian evolution, whereas the testis‐specific CaS gene is under strong positive selection. The substitution rates of different mammalian lineages within both genes are positively correlated with GC content, indicating the possible influence of GC‐biased gene conversion on the estimated substitution rates. The observation of such unusually high GC content of the CaS gene (≈74%), particularly in the lineage that comprises the bovine species, suggests the possible role of GC‐biased gene conversion in the evolution of CaS that mimics positive selection.  相似文献   

20.
The megadiverse genus Carex (c. 2000 species, Cyperaceae) has a nearly cosmopolitan distribution, displaying an inverted latitudinal richness gradient with higher species diversity in cold‐temperate areas of the Northern Hemisphere. Despite great expansion in our knowledge of the phylogenetic history of the genus and many molecular studies focusing on the biogeography of particular groups during the last few decades, a global analysis of Carex biogeography and diversification is still lacking. For this purpose, we built the hitherto most comprehensive Carex‐dated phylogeny based on three markers (ETS–ITS–matK), using a previous phylogenomic Hyb‐Seq framework, and a sampling of two‐thirds of its species and all recognized sections. Ancestral area reconstruction, biogeographic stochastic mapping, and diversification rate analyses were conducted to elucidate macroevolutionary biogeographic and diversification patterns. Our results reveal that Carex originated in the late Eocene in E Asia, where it probably remained until the synchronous diversification of its main subgeneric lineages during the late Oligocene. E Asia is supported as the cradle of Carex diversification, as well as a “museum” of extant species diversity. Subsequent “out‐of‐Asia” colonization patterns feature multiple asymmetric dispersals clustered toward present times among the Northern Hemisphere regions, with major regions acting both as source and sink (especially Asia and North America), as well as several independent colonization events of the Southern Hemisphere. We detected 13 notable diversification rate shifts during the last 10 My, including remarkable radiations in North America and New Zealand, which occurred concurrently with the late Neogene global cooling, which suggests that diversification involved the colonization of new areas and expansion into novel areas of niche space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号