首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A map of how mRNA travels through the ribosome is critical for any detailed understanding of the process of translation. This feat has recently been achieved using X-ray crystallography. The structure reveals, for the first time, details of the interactions between the mRNA and the 30S subunit beyond those at the tRNA binding sites. Elements of both 16S rRNA and ribosomal proteins contribute to mRNA binding. This work also identifies two tunnels that the mRNA passes through as it wraps around the 30S subunit. The mechanisms and mechanics of reading frame selection, translational fidelity, and translocation can now be informed by the structure.  相似文献   

2.
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.  相似文献   

3.
The possible involvement of 18S rRNA fragment 1638–1650, including basements of the helices h44 and h28, as well as nucleotides of the ribosomal decoding site in the cap-independent mode of the initiation of the translation of plant ribosomes is studied. This rRNA fragment is shown to be accessible for complementary interactions in the 40S ribosomal subunit. It is found that the sequence that is complementary to the 18S rRNA fragment 1638–1650 is able to enhance the efficiency of the reporter mRNA translation when placed just after the initiation codon. The obtained results indicate that, in the course of the cap-independent mode of the initiation of translation, complementary interactions can occur between the mRNA coding sequence and 18S rRNA fragment in the region of the ribosomal decoding site.  相似文献   

4.
E N Trifonov 《Biochimie》1992,74(4):357-362
The translation frame-monitoring mechanism has been suggested earlier, based on transient complementary contacts, between mRNA and rRNA. Recent studies related to the frame-monitoring mechanism are reviewed. The mechanism is well supported by both new experimental and sequence analysis data. Experiments are suggested for further elucidation of the structural details of the mRNA-rRNA interaction in the ribosome.  相似文献   

5.
J J Hogan  R R Gutell  H F Noller 《Biochemistry》1984,23(14):3322-3330
Yeast 40S ribosomal subunits have been reacted with kethoxal to probe the conformation of 18S rRNA. Over 130 oligonucleotides were isolated by diagonal electrophoresis and sequenced, allowing identification of 48 kethoxal-reactive sites in the 18S rRNA chain. These results generally support a secondary structure model for 18S rRNA derived from comparative sequence analysis. Significant reactivity at positions 1436 and 1439, in a region shown to be base paired by comparative analysis, lends support to the earlier suggestion [Chapman, N.M., & Noller, H.F. (1977) J. Mol. Biol 109, 131-149] that part of the 3'-major domain of 16S-like rRNAs may undergo a biologically significant conformational rearrangement. Modification of positions in 18S rRNA analogous to those previously found for Escherichia coli 16S rRNA argues for extensive structural homology between 30S and 40S ribosomal subunits, particularly in regions thought to be directly involved in translation.  相似文献   

6.
A possibility of involvement of 3'-terminal 18S rRNA segment in the cap-independent initiation of translation on plant ribosomes was studied. It was shown that 3-terminal segment (nucleotides 1777-1811) of 18S rRNA including the last hairpin 45 is accessible for complementary interactions in 40S ribosomal subunits. Oligonucleotides complementary to this segment of rRNA when added to wheat germ cell-free protein synthesizing system were found to specifically inhibit translation of uncapped reporter mRNA coding for beta-glucuronidase, which bears in the 5'-untranslated region (UTR) a leader sequence of potato virus Y (PVY) genomic RNA possessing fragments complementary to the region 1777-1811. It was shown that a sequence corresponding to nucleotides 291-316 of PVY, which is complementary to a major portion of the 3-terminal 18S rRNA segment 1777-1808, when placed into 5'-UTR, is able to enhance translational efficiency of the reporter mRNAs. The results obtained suggest that complementary interactions between mRNA 5'-UTR and 18S rRNA 3'-terminal segment can take place in the course of cap-independent translation initiation.  相似文献   

7.
A S Hui  D H Eaton    H A de Boer 《The EMBO journal》1988,7(13):4383-4388
In the specialized ribosome system, a distinct pool of mutated ribosomes is dedicated to the translation of one particular mRNA species. This was accomplished by altering the Shine-Dalgarno sequence on the mRNA and its complementary anti-Shine-Dalgarno sequence on the plasmid-borne 16S rRNA gene. Here, using the specialized ribosome system, we were able to introduce mutations in key regions of the 16S rRNA and could study their effect on translation in vivo. The C1400 region has been implicated to play a role in the actual mRNA decoding process. Several ribosomal mutations were introduced in this region. We showed that substitution of the evolutionary highly conserved C1400 residue by a G- or an A-residue inhibits ribosomal activity by 80% and 50% respectively, whereas, a C to a U change at this conserved position does not affect overall ribosomal activity. The adjacent stem structure (1410-1490) was also examined. Disruption of the stem by replacing either one of the arms of this stem, with a different sequence, inhibits ribosomal activity by approximately 80%. A small but significant restoration of translation could be achieved by recreating a complementary stem with a different sequence. We found that full reversion of activity could be obtained when such mutated ribosomes were made spectinomycin resistant by introducing a C to A substitution at position 1192 which is located far away in the secondary structure map of the 16S rRNA molecule. Based on these results we conclude that some, but not all, of the nucleotides in the conserved C1400 region play a key role in translation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The Bacillus stearothermophilus ribosomal protein S15 (BS15) binds both a three-helix junction in the central domain of 16 S ribosomal RNA and its cognate mRNA. Native gel mobility-shift assays show that BS15 interacts specifically and with high affinity to the 5'-untranslated region (5'-UTR) of this cognate mRNA with an apparent dissociation constant of 3(+/-0.3) nM. In order to localize the structural elements that are essential for BS15 recognition, a series of deletion mutants of the full cognate mRNA were prepared and tested in the same gel-shift assay. The minimal binding site for BS15 is a 50 nucleotide RNA showing a close secondary structure resemblance to the BS15 binding region from 16 S rRNA. There are two major structural motifs that must be maintained for high-affinity binding. The first being a purine-rich three-helix junction, and the second being an internal loop. The sequence identity of the internal loops differs greatly between the BS15 mRNA and rRNA sites, and this difference is correlated to discrimination between wild-type BS15 and a BS15(H45R) mutant. The association and dissociation kinetics measured for the 5'-UTR-BS15 interaction are quite slow, but are typical for a ribosomal protein-RNA interaction. The BS15 mRNA and 16 S rRNA binding sites share a common secondary structure yet have little sequence identity. The mRNA and rRNA may in fact present similar if not identical structural elements that confer BS15 recognition.  相似文献   

9.
J J Hogan  R R Gutell  H F Noller 《Biochemistry》1984,23(14):3330-3335
The conformation and accessibility of 26S rRNA in yeast 60S ribosomal subunits were probed with kethoxal. Oligonucleotides originating from reactive sites were isolated by diagonal electrophoresis and sequenced. From over 70 oligonucleotide sequences, 26 kethoxal-reactive sites could be placed in the 26S rRNA sequence. These are in close agreement with a proposed secondary structure model for the RNA that is based on comparative sequence analysis. At least seven kethoxal-reactive sites in yeast 26S rRNA are in positions that are exactly homologous to reactive positions in E. coli 23S rRNA; each of these sites has previously been implicated in some aspect of ribosomal function.  相似文献   

10.
11.
We have constructed synthetic coding sequences for the expression of poly(alpha,L-glutamic acid) (PLGA) as fusion proteins with dihydrofolate reductase (DHFR) in Escherichia coli. These PLGA coding sequences use both GAA and GAG codons for glutamic acid and contain sequence elements (5'-GAGGAGG-3') that resemble the consensus Shine-Dalgarno (SD) sequence found at translation initiation sites in bacterial mRNAs. An unusual feature of DHFR-PLGA expression is that accumulation of the protein is inversely related to the level of induction of its mRNA. Cellular protein synthesis was inhibited >95% by induction of constructs for either translatable or untranslatable PLGA RNAs. Induction of PLGA RNA resulted in the depletion of free 30S ribosomal subunits and the appearance of new complexes in the polyribosome region of the gradient. Unlike normal polyribosomes, these complexes were resistant to breakdown in the presence of puromycin. The novel complexes contained 16S rRNA, 23S rRNA, and PLGA RNA. We conclude that multiple noninitiator SD-like sequences in the PLGA RNA inhibit cellular protein synthesis by sequestering 30S small ribosomal subunits and 70S ribosomes in nonfunctional complexes on the PLGA mRNA.  相似文献   

12.
Two recently published but independently derived structures, namely the X-ray crystallographic structure of ribosomal protein S7 and the "binding pocket" for this protein in a three-dimensional model of the 16S rRNA, have been correlated with one another. The known rRNA-protein interactions for S7 include a minimum binding site, a number of footprint sites, and two RNA-protein crosslink sites on the 16S rRNA, all of which form a compact group in the published 16S rRNA model (despite the fact that these interactions were not used as primary modeling constraints in building that model). The amino acids in protein S7 that are involved in the two crosslinks to 16S rRNA have also been determined in previous studies, and here we have used these sites to orient the crystallographic structure of S7 relative to its rRNA binding pocket. Some minor alterations were made to the rRNA model to improve the fit. In the resulting structure, the principal positively charged surface of the protein is in contact with the 16S rRNA, and all of the RNA-protein interaction data are satisfied. The quality of the fit gives added confidence as to the validity of the 16S rRNA model. Protein S7 is furthermore known to be crosslinked both to P site-bound tRNA and to mRNA at positions upstream of the P site codon; the matched S7-16S rRNA structure makes a prediction as to the location of this crosslink site within the protein molecule.  相似文献   

13.
The 30S ribosomal P site: a function of 16S rRNA   总被引:1,自引:0,他引:1  
Noller HF  Hoang L  Fredrick K 《FEBS letters》2005,579(4):855-858
The 30S ribosomal P site serves several functions in translation. It must specifically bind initiator tRNA during formation of the 30S initiation complex; bind the anticodon stem-loop of peptidyl-tRNA during the elongation phase; and help to maintain the translational reading frame when the A site is unoccupied. Early experiments provided evidence that 16S rRNA was an important component of the 30S P site. Footprinting and crosslinking studies later implicated specific nucleotides in interactions with tRNA. The crystal structures of the 30S subunit and 70S ribosome-tRNA complexes confirmed the interactions between 16S rRNA and tRNA, but also revealed contacts between tRNA and the C-terminal tails of proteins S9 and S13. Deletion of these tails now shows that the 16S rRNA contacts alone are sufficient to support protein synthesis in living cells.  相似文献   

14.
A putative implication 3′-terminal 18S rRNA segment in the cap-independent initiation of translation on plant ribosomes was studied. It was shown that 3′-terminal segment (nucleotides 1777–1811) of 18S rRNA including the last hairpin 45 was accessible for complementary interactions within 40S ribosomal subunits. Oligonucleotides complementary to this segment of rRNA, when added to wheat germ cell-free protein synthesizing system, specifically inhibited translation of uncapped reporter mRNA encoding β-glucuronidase. In the 5′-untranslated region (UTR), the reporter mRNA contained a leader sequence of potato virus Y (PVY) genomic RNA with fragments complementary to the region 1777–1811. A sequence corresponding to nucleotides 291–316 of PVY, which was complementary to most of the 3′-terminal 18S rRNA segment 1777–1808, was shown to enhance translational efficiency of the reporter mRNAs when placed into 5′-UTR. The obtained results suggest that complementary interactions between 5′-UTR of mRNA and 3′-terminal segment of 18S rRNA can take place during cap-independent translation initiation.  相似文献   

15.
16.
M Almehdi  Y S Yoo    H W Schaup 《Nucleic acids research》1991,19(24):6895-6903
Ribosomes play an active role in protein biosynthesis. Ribosomal RNA conformation in ribosomal subunits, intramolecular interactions between different rRNA sequences within the confinement of the particles, and intermolecular interactions are presumed necessary to support efficient and accurate protein synthesis. Here we report an analysis of the disposition of 16S rRNA conserved zones centered about positions 525, 1400, and 1500 in 30S subunits. Complementary oligodeoxyribonucleotides in conjunction with nuclease S1 digestion were used to do this. All of the sequences examined in 30S subunits are accessible to DNA probes of 9 to 12 nucleotide residues in length. However, the kinetic characteristics of the respective DNA interactions with 30S particles vary significantly. In addition to the investigation of normal 30S particles, a four base deletion within the 1400 region of 16S rRNA was analyzed. The deletion was made by using synthetic DNAs to target the deletion site for RNase H digestion. The direct in vitro procedure for manipulating rRNA conserves nucleotide modifications. The alteration causes a significant change in the disposition of 16S rRNA in 30S subunits, suggesting a reduction in the freedom of movement of the altered zone in the particle. In a factor-dependent in vitro protein synthesis system primed with MS2 mRNA and altered 30S subunits, there was a 50% decrease in phage coat protein synthesis. The reduction could be due to a decrease in the rate of translation or premature termination of translation. We present evidence here, based on isotopic studies, which supports the latter possibility.  相似文献   

17.
The 16S ribosomal RNA neighborhood of ribosomal protein S20 has been mapped, in both 30S subunits and 70S ribosomes, using directed hydroxyl radical probing. Cysteine residues were introduced at amino acid positions 14, 23, 49, and 57 of S20, and used for tethering 1-(p-bromoacetamidobenzyl)-Fe(II)-EDTA. In vitro reconstitution using Fe(II)-derivatized S20, together with the remaining small subunit ribosomal proteins and 16S ribosomal RNA (rRNA), yielded functional 30S subunits. Both 30S subunits and 70S ribosomes containing Fe(II)-S20 were purified and hydroxyl radicals were generated from the tethered Fe(II). Hydroxyl radical cleavage of the 16S rRNA backbone was monitored by primer extension. Different cleavage patterns in 16S rRNA were observed from Fe(II) tethered to each of the four positions, and these patterns were not significantly different in 30S and 70S ribosomes. Cleavage sites were mapped to positions 160-200, 320, and 340-350 in the 5' domain, and to positions 1427-1430 and 1439-1458 in the distal end of the penultimate stem of 16S rRNA, placing these regions near each other in three dimensions. These results are consistent with previous footprinting data that localized S20 near these 16S rRNA elements, providing evidence that S20, like S17, is located near the bottom of the 30S subunit.  相似文献   

18.
19.
There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA–rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5′ untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5′ UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5′ UTRs of mRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号