首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assembly of the primosome, a multienzyme complex responsible for priming of lagging-strand DNA synthesis in Escherichia coli, occurs on defined regions of DNA. These primosome assembly sites are on the order of 70 nucleotides in length, yet they share little DNA sequence homology. In order to understand the interaction of the primosomal proteins with these sites, the isolation of single-base substitution mutants of the wild-type sequences has been undertaken. The response of 32 of these mutated primosome assembly sites to increasing concentrations of monovalent and divalent cations when they were used as DNA effectors for E. coli replication factor Y-catalyzed ATP hydrolysis and their efficiency as primosome-dependent DNA replication templates have revealed the existence of four distinct classes of mutations in primosome assembly sites. Class I mutations have essentially no effect on the activities elicited by the DNA site; thus, it is likely that they define nonessential or spacer nucleotide residues. Class II mutated DNAs require higher Mg2+ concentrations than the wild-type DNA to be fully activated as factor Y ATPase effectors and cannot be stimulated in the ATPase reaction by monovalent salt at suboptimal levels of Mg2+. The implication of this mutant phenotype on the role of secondary and tertiary DNA structure in determining an active site is examined in the accompanying article (Soeller, W., Abarzúa, P., and Marians, K. J. (1984) J. Biol. Chem. 259, 14293-14300). Class III mutations coinactivate both the ATPase effector and DNA replication template activity of the site, indicating that they probably represent essential contact points between factor Y and the DNA. Class IV mutated DNAs behave in a manner similar to class II mutated DNAs in the ATPase reaction, but have a replication template activity intermediate between that of the class III and class II mutant DNAs. It is possible that these mutant DNAs are deficient in their ability to catalyze, during primosome assembly, a step subsequent to that of factor Y binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Primosome assembly sites are complex DNA structures that share common functions (they elicit the DNA-dependent ATPase of replication factor Y from Escherichia coli and serve as origins of complementary strand DNA synthesis), but display little sequence homology. In order to ascertain a common basis for factor Y-DNA recognition, a primosome assembly site and its mutated derivatives have been functionally and structurally analyzed. Under conditions in which they lose the capacity to function as ATPase effectors these DNA templates have been (i) assayed for their ability to bind factor Y, and (ii) probed, with pancreatic DNase, for structural alterations. In this ATPase-inactivating environment (suboptimal concentrations of MgCl2 and NaCl, and high levels of the E. coli single-stranded DNA binding protein), factor Y does not bind to its cognate DNA and the DNase cleavage pattern characteristic of this site is perceptibly changed: compared to the DNase digest obtained under activating conditions, cleavage is notably decreased in the 5' half of the site and enhanced at the 3' end. The results of this study strongly indicate that the structure of the primosome assembly site under analysis consists of two hairpins which interact with each other. When the sites of pancreatic DNase attack are plotted on the proposed double hairpin structure, the 5' cleavage sites all map to one duplex while the 3' sites map to the other. The observation that, under factor Y ATPase-activating conditions, the 3' hairpin is largely refractory to the action of pancreatic DNase indicates that tertiary interactions between the two duplexes render a portion of the DNA structure inaccessible to the nuclease.  相似文献   

3.
Measurements of binding equilibria of EcoRV endonuclease to DNA, for a series of base-analogue substrates, demonstrate that expression of sequence selectivity is strongly enhanced by the presence of Ca2+ ions. Binding constants were determined for short duplex oligodeoxynucleotides containing the cognate DNA site, three cleavable noncognate sites, and a fully nonspecific site. At pH 7.5 and 100 mM NaCl, the full range of specificity from the specific (tightest binding) to nonspecific (weakest binding) sites is 0.9 kcal/mol in the absence of metal ions and 5.8 kcal/mol in the presence of Ca2+. Precise determination of binding affinities in the presence of the active Mg2+ cofactor was found to be possible for substrates retaining up to 1.6% of wild-type activity, as determined by the rate of phosphoryl transfer. These measurements show that Ca2+ is a near-perfect analogue for Mg2+ in binding reactions of the wild-type enzyme with DNA base-analogue substrates, as it provides identical DeltaDeltaG degrees bind values among the cleavable noncognate sites. Equilibrium dissociation constants of wild-type and base-analogue sites were also measured for the weakly active EcoRV mutant K38A, in the presence of either Mg2+ or Ca2+. In this case, Ca2+ allows expression of a greater degree of specificity than does Mg2+. DeltaDeltaG degrees bind values of K38A toward specific versus nonspecific sites are 6.1 kcal/mol with Ca2+ and 3.9 kcal/mol with Mg2+, perhaps reflecting metal-specific conformational changes in the ground-state ternary complexes. The enhancement of binding specificity provided by divalent metal ions is likely to be general to many restriction endonucleases and other metal-dependent nucleic acid-modifying enzymes. These results strongly suggest that measurements of DNA binding affinities for EcoRV, and likely for many other restriction endonucleases, should be performed in the presence of divalent metal ions.  相似文献   

4.
The PriA replication protein of Escherichia coli (formerly replication factor Y or protein n') is multifunctional. It is a site-specific, single-stranded DNA-dependent ATPase (dATPase), a 3'----5' DNA helicase, and guides the ordered assembly of the primosome, a mobile, multiprotein DNA replication priming/helicase complex. Although PriA is not absolutely required for viability, priA null mutant cells grow very slowly, have poor viability, and form extensive filaments. In order to assess which of the multiple activities of PriA are required for normal replication and growth, site-directed mutagenesis was employed to introduce single amino acid substitutions for the invariant lysine within the consensus nucleotide-binding motif found in PriA. Biochemical characterization of the representative purified mutant PriA proteins revealed them to be completely deficient in nucleotide hydrolysis, incapable of translocation along a single-stranded DNA binding protein-coated single-stranded DNA template, and unable to manifest the 3'----5' DNA helicase activity of wild-type PriA. These mutant proteins were, however, capable of catalyzing the assembly of active primosomes in vitro. Furthermore, when supplied in trans to insertionally inactivated priA cells, plasmids containing a copy of these mutant priA genes restored the wild-type growth rate, viability, and cell morphology. Based on these results, a model for PriA function in vivo is discussed.  相似文献   

5.
A hand-off mechanism for primosome assembly in replication restart   总被引:2,自引:0,他引:2  
Collapsed DNA replication forks must be reactivated through origin-independent reloading of the replication machinery (replisome) to ensure complete duplication of cellular genomes. In E. coli, the PriA-dependent pathway is the major replication restart mechanism and requires primosome proteins PriA, PriB, and DnaT for replisome reloading. However, the molecular mechanisms that regulate origin-independent replisome loading are not fully understood. Here, we demonstrate that assembly of primosome protein complexes represents a key regulatory mechanism, as inherently weak PriA-PriB and PriB-DnaT interactions are strongly stimulated by single-stranded DNA. Furthermore, the binding site on PriB for single-stranded DNA partially overlaps the binding sites for PriA and DnaT, suggesting a dynamic primosome assembly process in which single-stranded DNA is handed off from one primosome protein to another as a repaired replication fork is reactivated. This model helps explain how origin-independent initiation of DNA replication is restricted to repaired replication forks, preventing overreplication of the genome.  相似文献   

6.
Masai H  Deneke J  Furui Y  Tanaka T  Arai KI 《Biochimie》1999,81(8-9):847-857
The E. coli PriA protein, a DEXH-type DNA helicase with unique zinc finger-like motifs interrupting the helicase domains, is an essential component of the phiX174-type primosome and plays critical roles in RecA-dependent inducible and constitutive stable DNA replication (iSDR and cSDR, respectively) as well as in recombination-dependent repair of double-stranded DNA breaks. B. subtilis PriA (BsPriA) protein contains the conserved helicase domains as well as zinc finger-like motifs with 34% overall identity with the E. coli counterpart. We overexpressed and purified BsPriA and examined its biochemical properties. BsPriA binds specifically to both n'-pas (primosome assembly site) and D-loop and hydrolyzes ATP in the presence of n'-pas albeit with a specific activity about 30% of that of E. coli PriA. However, it is not capable of supporting n'-pas-dependent replication in vitro, nor is it able to support ColE1-type plasmid replication in vivo which requires the function of the phiX174-type primosome. We also show that a zinc finger mutant is not able to support recombination-dependent DNA replication, as measured by the level of iSDR after a period of thymine starvation, nor wild-type level of growth, cell morphology and UV resistance. Unexpectedly, we discovered that an ATPase-deficient mutant (K230D) is not able to support iSDR to a full extent, although it can restore normal growth rate and UV resistance as well as non-filamentous morphology in priA1::kan mutant. K230D was previously reported to be fully functional in assembly of the phiX174-type primosome at a single-stranded n'-pas. Our results indicate that ATP hydrolysis/ helicase activity of PriA may be specifically required for DNA replication from recombination intermediates in vivo.  相似文献   

7.
The primosome is a mobile multiprotein DNA replication-priming apparatus that requires seven Escherichia coli proteins (replication factor Y (protein n'), proteins n and n", and the products of the dnaB, dnaC, dnaT, and dnaG genes) for assembly at a specific site (termed a primosome assembly site) on single-stranded DNA binding protein-coated single-stranded DNA. Two of the protein components of the primosome have intrinsic DNA helicase activity. The DNA B protein acts in the 5'----3' direction, whereas factor Y acts in the 3'----5' direction. The primosome complex has DNA helicase activity when present at a replication fork in conjunction with the DNA polymerase III holoenzyme. In this report, evidence is presented that the multiprotein primosome per se can act as a DNA helicase in the absence of the DNA polymerase III holoenzyme. The primosome DNA helicase activity can be manifested in either direction along the DNA strand. The directionality of the primosome DNA helicase activity is modulated by the concentration and type of nucleoside triphosphate present in the reaction mixture. This DNA helicase activity requires all the preprimosomal proteins (the primosomal proteins minus the dnaG-encoded primase). Preprimosome complexes must assemble at a primosome assembly site in order to be loaded onto the single-stranded DNA and act subsequently as a DNA helicase. The 5'----3' primosome DNA helicase activity requires a 3' single-stranded tail on the fragment to be displaced, while the 3'----5' activity does not require a 5' single-stranded tail on the fragment to be displaced. Multienzyme preprimosomes moving in either direction are capable of associating with the primase to form complete primosomes that can synthesize RNA primers.  相似文献   

8.
An endonuclease which hydrolyzes depurinated DNA has been isolated from Phaseolus multiflorus enbryos; it has a molecular weight around 40,000. The enzyme is specific for apurinic sites; it has no action on normal DNA strands or on alkylated sites, and is without exonulcease activity. The rate of phosphoester bond hydrolysis near apurinic sites is far greater in native than in denatured DNA. The endonuclease is not inactivated by 10 mM EDTA, but is activity is however stimulated by Mg2+ or Mn2+. Its optimum pH is 7.5 to 8.0, and its optimum temperature 40degrees although, at this temperature, it is rapidly denatured; even low NaCl concentrations inhibit the enzyme activity. The endonuclease for apurinic sites of P. multiflorus is a non-histone protein of chromatin; the properties (like thermosensitivity of susceptibility to ionic strength) of the enzyme in situ, working on chromatin DNA, might be different from those described for the isolated endonuclease in homogenous aqueous solution.  相似文献   

9.
PriB is one of the Escherichia coli varphiX-type primosome proteins that are required for assembly of the primosome, a mobile multi-enzyme complex responsible for the initiation of DNA replication. Here we report the crystal structure of the E. coli PriB at 2.1 A resolution by multi-wavelength anomalous diffraction using a mercury derivative. The polypeptide chain of PriB is structurally similar to that of single-stranded DNA-binding protein (SSB). However, the biological unit of PriB is a dimer, not a homotetramer like SSB. Electrophoretic mobility shift assays demonstrated that PriB binds single-stranded DNA and single-stranded RNA with comparable affinity. We also show that PriB binds single-stranded DNA with certain base preferences. Based on the PriB structural information and biochemical studies, we propose that the potential tetramer formation surface and several other regions of PriB may participate in protein-protein interaction during DNA replication. These findings may illuminate the role of PriB in varphiX-type primosome assembly.  相似文献   

10.
We have recently constructed hyperactive human deoxyribonuclease I (DNase I) variants that digest double-stranded DNA more efficiently under physiological saline conditions by introducing positively charged amino acids at eight positions that can interact favorably with the negatively charged DNA phosphates. In this study, we present data from supercoiled DNA nicking, linear DNA digestion, and hyperchromicity assays that distinguish two classes of DNase I hyperactive variants based upon their activity dependence on Ca2+. Class A variants are highly dependent upon Ca2+, having up to 300-fold lower activity in the presence of Mg2+ alone compared to that in the presence of Mg2+ and Ca2+, and include Q9R, H44K, and T205K, in addition to wild-type DNase I. In contrast, the catalytic activity of Class B variants, which comprise the E13R, T14K, N74K, S75K, and N110R hyperactive variants, is relatively Ca2+ independent. A significant proportion of this difference in Ca2+-dependent activity can be attributed to one of the two structural calcium binding sites in DNase I. Compared to wild-type, the removal of Ca2+ binding site 2 by alanine replacements at Asp99, Asp107, and Glu112 decreased activity up to 26-fold in the presence of Mg2+ and Ca2+, but had no effect in the presence of Mg2+ alone. We propose that the rate-enhancing effect of Ca2+ binding at site 2 can be replaced by favorable electrostatic interactions created by proximal positively charged amino acid substitutions such as those found in the Class B variants, thus reducing the dependence on Ca2+.  相似文献   

11.
The EcoRV mutant D90A which carries an amino acid substitution in its active center does not cleave DNA. Therefore, it is possible to perform DNA binding experiments with the EcoRV-D90A mutant both in the absence and in the presence of Mg2+. Like wild-type EcoRV [Taylor et al. (1991) Biochemistry 30, 8743-8753], it does not show a pronounced specificity for binding to its recognition site in the absence of Mg2+ as judged by the appearance of multiple shifted bands in an electrophoretic mobility shift assay with a 377-bp DNA fragment carrying a single EcoRV recognition sequence. In the presence of Mg2+, however, only one band corresponding to a 1:1 complex appears even with a high excess of protein over DNA. This complex most likely is the specific one, because its formation is suppressed much more effectively by a 13-bp oligodeoxynucleotide with an EcoRV site than by a corresponding oligodeoxynucleotide without an EcoRV site. The preferential interaction of the EcoRV-D90A mutant with specific DNA in the presence of Mg2+ was also demonstrated directly: a 20-bp oligodeoxynucleotide with an EcoRV site is bound with KAss = 4 x 10(8) M-1, while a corresponding oligodeoxynucleotide without an EcoRV site is bound with KAss less than or equal to 1 x 10(5) M-1. From these data it appears that Mg2+ confers DNA binding specificity to this mutant by lowering the affinity to nonspecific sites and raising the affinity to specific sites as compared to binding in the absence of Mg2+. It is concluded that this is also true for wild-type EcoRV.  相似文献   

12.
A new endonuclease from Escherichia coli acting at apurinic sites in DNA.   总被引:27,自引:0,他引:27  
A new DNA endonuclease has been purified 3000-fold from Escherichia coli. The enzyme specifically catalyzes the formation of single strand breaks at apurinic and apyrimidinic sites in DNA, but has no activity on intact or single-stranded DNA. Further, the enzyme shows little or no activity on heavily ultraviolet-irradiated DNA, but cleaves x-irradiated DNA, presumably at apurinic and apyrimidinic sites introduced by the radiation treatment. The enzyme, which is tentatively named endonuclease IV, has no detectable associated exonuclease or DNA N-glycosidase activity and does not seem to be identical with any previously known E. coli endonuclease. Endonuclease IV has no Mg2+ requirement, and is fully active in the presence of EDTA. Enzyme activity is stimulated by 0.2 to 0.3 M NaCl and is unusually salt-resistant. Further, the enzyme is fairly heat-stable, and is not inhibited by tRNA. The sidimentation coefficient, S(o)20,w, is 3.4 S. It seems that endonuclease IV is active in DNA repair.  相似文献   

13.
The addition of T1 to cells growing at 37 degrees C in a minimal medium at 0.4 mM Mg2+ rapidly induced an irreversible loss of K+ and Mg2+ and uptake of Na+ by the cells. Both the ATP pool of the cells and the transmembrane proton motive force were reduced. These cells did not lyse from within, since viral DNA replication and the maturation of the 36,000-molecular-weight phage head protein were inhibited. By contrast, cells lysed when infected at 5.4 mM Mg2+. In these cells, T1 initially induced K+ efflux and Na+ influx and lowered the cytoplasmic ATP concentration. After a few minutes, the cation gradients and ATP pool were restored to levels close to that of control cells. At 5.4 mM Mg2+, the shutoff of host protein synthesis was delayed and coincided with the restoration of the ATP pool. In an ATP synthase-negative mutant, infection with T1 did not affect the cytoplasmic ATP concentration but inhibited host protein synthesis with the same rate as it did in wild-type cells.  相似文献   

14.
The lagging strand DNA synthesis of the Escherichia coli bacterial chromosome and plasmids is thought to be initiated by the mobile promotor, the primosome. This primosome is assembled at a specific site on single-stranded DNA. This process is initiated by the interaction of one of the at least seven components, the n' protein, with this site. Indeed n' protein activator sites are found in the plasmids Col E1 and pBR322. To investigate the in vivo function of these n' protein sites, deletion derivates of pBR322 were constructed in which the n' protein sites are removed. The deletion plasmids show no change in stability and only threefold reduction in copy number compared to pBR322. Using a transduction system for single-stranded plasmid DNA it was shown that no other specific initiation signals for lagging strand DNA synthesis were present in the deletion plasmids. It was concluded that the n' protein activator sites in pBR322 are not essential for its DNA replication in vivo.  相似文献   

15.
PriA and other primosome assembly proteins of Escherichia coli recruit the major replicative helicase DnaB for replisome assembly during bacteriophage Mu transposition and replication. MuA transposase catalyzes the transfer of Mu ends to target DNA, forming a potential replication fork that provides the assembly site for the replisome. However, this fork lacks the single-stranded DNA needed to load DnaB. Although no pre-existing primosome assembly sites that bind PriA were found within the Mu end sequences, PriA was able to bind to the forked DNA structure created by MuA. The helicase activity of PriA could then open the duplex to create the DnaB binding site. In a tightly coupled reaction on synthetic forked substrates, PriA promoted both the unwinding of the lagging strand arm and preprimosome assembly to load DnaB onto the lagging strand template. PriA apparently translocated 3' to 5' along the lagging strand template until sufficient single-stranded DNA was exposed for binding of DnaB, which then translocated 5' to 3' in the opposite direction. Mutant PriA lacking helicase activity was unable to promote this process, and loss of PriA helicase impaired Mu DNA replication in vivo and in vitro. This suggests that the opening of the duplex by PriA helicase is a critical step in the initiation of Mu DNA replication. Concerted helicase and primosome assembly functions would allow PriA to act as initiator on recombination intermediates and stalled replication forks. As part of the replisome, PriA may act as a mobile initiator that minimizes interruptions in chromosomal replication.  相似文献   

16.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

17.
The nuclease domain of ColE7 (N-ColE7) contains an H-N-H motif that folds in a beta beta alpha-metal topology. Here we report the crystal structures of a Zn2+-bound N-ColE7 (H545E mutant) in complex with a 12-bp duplex DNA and a Ni2+-bound N-ColE7 in complex with the inhibitor Im7 at a resolution of 2.5 A and 2.0 A, respectively. Metal-dependent cleavage assays showed that N-ColE7 cleaves double-stranded DNA with a single metal ion cofactor, Ni2+, Mg2+, Mn2+, and Zn2+. ColE7 purified from Escherichia coli contains an endogenous zinc ion that was not replaced by Mg2+ at concentrations of <25 mM, indicating that zinc is the physiologically relevant metal ion in N-ColE7 in host E. coli. In the crystal structure of N-ColE7/DNA complex, the zinc ion is directly coordinated to three histidines and the DNA scissile phosphate in a tetrahedral geometry. In contrast, Ni2+ is bound in N-ColE7 in two different modes, to four ligands (three histidines and one phosphate ion), or to five ligands with an additional water molecule. These data suggest that the divalent metal ion in the His-metal finger motif can be coordinated to six ligands, such as Mg2+ in I-PpoI, Serratia nuclease and Vvn, five ligands or four ligands, such as Ni2+ or Zn2+ in ColE7. Universally, the metal ion in the His-metal finger motif is bound to the DNA scissile phosphate and serves three roles during hydrolysis: polarization of the P-O bond for nucleophilic attack, stabilization of the phosphoanion transition state and stabilization of the cleaved product.  相似文献   

18.
Kidney plasma membranes, which contain a single α-1 isoform of Na+/K+-ATPase, simultaneously contain two sub-conformations of E2P, differing in their rate of digoxin release in response to Na+ and ATP. Treating cells with Ang II (angiotensin II) somehow changes the conformation of both, because it differentially inhibits the rate of digoxin release. In the present study we tested whether Ang II regulates release by increasing phosphorylation at Ser11/Ser18 and Ser938. Opossum kidney cells co-expressing the AT1a receptor and either α-1.wild-type, α-1.S11A/S18A or α-1.S938A were treated with or without 10?nM Ang II for 5?min, increasing phosphorylation at the three sites. Na+/K+-ATPase was bound to digoxin-affinity columns in the presence of Na+, ATP and Mg2+. A solution containing 30?mM NaCl and 3?mM ATP eluted ~20% of bound untreated Na+/K+-ATPase (Population #1). Pre-treating cells with Ang II slowed the elution of Population #1 in α-1.wild-type and α-1.S938A, but not α-1.S11A/S18A cells. Another 50% of bound Na+/K+-ATPase (Population #2) was subsequently eluted in two phases by a solution containing 150?mM NaCl and 3?mM ATP. Ang II increased the initial rate and slowed the second phase in α-1.wild-type, but not α-1.S938A, cells. Thus Ang II changes the conformation of two forms of EP2 via differential phosphorylation.  相似文献   

19.
E. coli DNA topoisomerase I catalyzes the hydrolysis of short, single stranded oligodeoxynucleotides. It also forms a covalent protein-DNA complex with negatively supercoiled DNA in the absence of Mg2+ but requires Mg2+ for the relaxation of negatively supercoiled DNA. In this paper we investigate the effects of various divalent metals on catalysis. For the relaxation reaction, maximum enzyme activity plateaus after 2.5 mM Mg2+. However, the rate of cleavage of short oligodeoxynucleotide increased linearly between 0 and 15 mM Mg2+. In the oligodeoxynucleotide cleavage reaction, Ca2+, Mn2+, Co2+, and Zn2+ inhibit enzymatic activity. When these metals are coincubated with Mg2+ at equimolar concentrations, the normal effect of Mg2+ is not detectable. Of these metals, only Ca2+ can be substituted for Mg2+ as a metal cofactor in the relaxation reaction. And when Mg2+ is coincubated with Mn2+, Co2+, or Zn2+ at equimolar concentrations, the normal effect of Mg2+ on relaxation is not detectable. We propose that Mg2+ allows the protein-DNA complex to assume a conformation necessary for strand passage and enhance the rate of enzyme turnover.  相似文献   

20.
This study presents the results of a kinetic investigation of adenylate cyclase in human polymorphonuclear leukocytes. In the presence of a saturating concentration of substrate (1 mM), the basal activity was increased severalfold by increasing Mg2+ from 1 to 25 mM. A Hill coefficient of 1.9 was obtained for Mg2+ or ATP. The data suggest cooperative interactions between the substrate binding sites in the neutrophil adenylate cyclase complex. It has been observed that guanyl-5'-yl imidodiphosphate (Gpp(NH)p) (S0.5 = 10 MUM) significantly increased and Ca2+ (S0.5 = 0.5 MM) significantly decreased only the Vmax without affecting the Hill coefficient or S0.5 for ATP. The Hill coefficients for Ca2+ or Gpp(NH)p were 0.9 and 0.8, respectively. The Hill coefficient for Ca2+ was not changed by the increased Gpp(NH)p concentrations. It appears that neutrophil adenylate cyclase has distinct binding sites for Gpp(NH)p and Ca2+, one for each compond. The binding of ligands is not changed by the other effectors and the action is directed only toward the Vmax of the enzyme. The stimulatory action of positive effectors (prostaglandin E1, isoproterenol, histamine) was enhanced by Gpp(NH)p and depressed by Ca2+. No preferential stimulation by Gpp(NH)p nor inhibition by Ca2+ of the action of the positive effectors has been found. The data suggests that only one type of catalytic subunit responds to the action of several positive effectors. Extracellular Gpp(NH)p or Ca2+ do not affect the cyclic adenosine 3':5'-monophosphate (cAMP) level in whole neutrophils and the effect of positive effectors on cAMP production is also not significantly changed by 5 mM Ca2+ or 0.1 mM Gpp(NH)p. Ionophore A23187 in the presence of 5 mM Ca2+ enhances Ca2+ entry into cells and decreases the basal cAMP formation. It appears that Gpp(NH)p or Ca2+ act only at the intracellular site of the adenylate cyclase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号